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TOTALLY REAL RIGID ELEMENTS
AND GALOISTHEORY

ANTONIO JOSE ENGLER

ABSTRACT. Abelian closed subgroups of the Galois group of the pythagorean clo-
sure of aformally real field are described by means of the inertia group of suitable
valuation rings.

1. Introduction. Let F be aformally real field and denote by F its pythagorean
closure. The purpose of this note is to investigate subextensions F C E C F, such
that the Galois group G,(E) = G(F,;E) is abelian. Griffin (1976) stated for such a
field E that either E(v/—1) contains all 2-power roots of unity or G,(E) is cyclic ([Gri],
Proposition 11). Later, Ware (1983) established that if G,(E) is abelian, for every totally
positive element t € SE? \ E2, the set of all elements of E which are represented by
the binary quadratic form X2 +tY2 is E2 U tE2 ([W2], Corollary 3.11). He also gave an
example showing that the converseis not true (Remark 3.13(ii)).

Let uscal (as usual) an element t with the above property rigid. We shall establish
clearly the link between totally positive rigid elements of F and intermediate fields
F C E C F, with G(F,; E) abelian. As a consequence, we describe completely these
subextensions. We also state that among the fields E such that G,.(E) is abelian and E|F
is normal, there exists a unique minimal one, with such properties. Proofs will be based
on valuation theoretic methods. In an earlier paper [En] we showed that the existence of
“enough” totally real rigid elementsin afield F impliesthat F admits avaluation ring A
which extends uniquely to F,.. Thisresult will be the main tool in this paper.

Let us call avaluation ring with the above property 7-henselian. In the next section
we examinethe properties of 7-henselian valuationrings. In Section 3we describe G (F)
for afield F which admits a m-henselian valuation ring and in the last three sections we
state the results concerning abelian subgroups of G, (F).

CONVENTIONS. Although the paper is concerned formally real fields we have to
consider general cases because of the residue fields of valuation rings.

In what follows all fields will have characteristic different from 2 and for any field
F, F, F2, and =F2 will denote the multi plicative groups of nonzero elements, squares,
and sums of squares, respectively. Let F,. and F(2) be the pythagorean closure and the
quadratic closure of F, respectively. If F is not formally real then F, = F(2). Therefore,
we shall denote the quadratic closure of non-formally real fields by F, in order to
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simplify the statements. In the same way, we shall refer to a quadratic closed field as
“ non-formally real pythagorean field.”

For every valuation ring A we denote by A*, ma, ka = A/ma, 4, [, and va the group
of units of A, the maximal ideal, the residue field, the canonical homomorphism, the
value group and avaluation corresponding to A, respectively. In thewhole article, except
for Sections 2 and 3, all valuation rings considered have non-formally real residuefield
of characteristic not 2. To be precise, in the next section charka = 2 is alowed and in
Section 3 we also consider the case ks formally real.

2. m-Henselian valuation rings. We are going to continue with the study of -
henselian valuation rings which we started in [En], however, with no restriction on ka
now.

For anormal extension of fieldsL|F, we say that avaluation ring A of F isL-henselian
if A extends uniquely to L. In ([Br], Lemma 1.2) Brocker showed that L-henselianity
is equivalent to Krasner's Lemma and the lifting property for simple roots applied to
polynomials splitting into linear factors over L. We are mainly interested in the F,-
henselian valuation rings (L = F,), which we call m-henselian for short. According to
our convention, if F is not formally real, m-henselianity coincides with the well-known
2-henselianity.

We shall next see that the characterization of 2-henselian henselian valuation rings
dueto Dress([D], Satz 2) already holdsfor general m-henselian valuation rings. Results
of this nature are common when dealing with relative henselianity and are very useful
to work out calculations.

LemmA 2.1. For eachvaluationring A of afield F of characteristic # 2 thefollowing
conditions are equivalent:
(i) Aism-henselian.
(i) (L+4ma) NEF2 C F2
(iii) Fors.t e ZF2 suchthat va(t —s) > va(4) +Va(9) it follows that s € F2 if and only
ift e F2,

PROOF. (i) = (ii) Letx € (1+4ma) N =F2 Then VX € Frandx = 1+4a, for some

a € ma. For f(X) = X2 + X — a, it follows that f (X) splits over F, and f(X) = (X + 1)X
(mod ma[X]). Therefore, by ([Br], Lemma1.2), f(X) hasitsrootsin F. Hence /X € F,
as desired.

(i) = (iii) Fors.t € SF2 suchthat va(t—s) > va(4s) it followsthat (1/4)(@st-1)
ma. Hencets™ € (1+4my) N =F2 and sots™! € F2, asrequired.

(iii) = (i) Take an extension C of A to the algebraic closure of F and let F# be the
corresponding henselization ([E], Section 17). According to ([E], 15.6-c), we have to
prove that F* N F, = F. To this end, since G(F,; F) is a pro-2-group, it is enough to
show that FZ N F,. contains no quadratic extension F(,/3), s € SF2\ F2. Finally, by
([E], Theorem 17.17), the last statement will be true if we prove that A has exactly one
prolongation to each extension F(,/9), of the above type.
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Let s € ZF2\ F2 and, for every z € F(,/9), denote by Z the image of z through
the non-trivial F-automorphism of F(,/s). We want to show that v(z) = v(2), where v
is a valuation corresponding to an extension of A to F(,/2). Take z = a + by/s and
f(X) = X2 — 2aX + (a? — sb?). Observefirst that if a = 0or b = 0, then clearly v(2) = v(Z).
So, weassumea, b # 0. Observe now that if « isaroot of f(X), then one of the following
casesholds:

(1) V(a?) =v(@® — sb?) < v(2aa)
(2) V(a?) = v(2aa) < v(a2 — sb?)
(3) v(2aa) = v(a® — sb?) < v(a?)

In thefirst case, V(%) = v(z2). So V(2) = V(z) and we are done.

We now claim that in the cases (2) and (3), v(«) = v(2a). Therefore, again v(z) = v(2)
and the proof is completed.

Proof of the claim. Since case (2) is clear let us consider case (3). As v(2aa) < v(o?),
then v(2a) < v(«). On the other side, condition (iii) implies that v(a® — sb?) < v(4a?).
Hencev(2aax) < 2v(2a) and so v(«) < v(2a), proving the claim. ]

If charka # 2, we can cut 4 from the conditions (ii) and (iii) above. Observe also that
if we replace =F2 by F in these conditions we get the characterization of 2-henselian
valuation rings ([D], Satz 2). Therefore, it is clear that if F is not formally real -
henselianity coincideswith 2-henselianity.

Following with this anal ogy, we shall seein the next results that the set of w-henselian
valuation rings of afield has a description similar to the 2-henselian case.

Let usfirst state a technical lemma.

LEMMA 2.2. Let A be a 7-henselian valuation ring of a field F with char F £2.1f
a € F verifies1+a? ¢ F?, then —va(2) < va(@) < Va(2).

PROOF. If 271a € my, then 1+ a2 = 1+ 4(271a)? e (1 + 4ma) N =F2. So, Proposi-
tion 2.1(iii) implies 1 + a? € F2. Similarly, (2a) ™! € myyields1+a2=1+4(2a)! ¢
(1+4my) NZF% Hencel+a? = a?(1+a?) € F2 .

We now describe ka for pythagorean fields.

ProPOSITION 2.3. Let C bea valuationring of field K such that charK # 2.

(@) If Cism-henselian and k¢ is a pythagorean formally real field, then K is also
pythagorean and formally real.

(b) If K is pythagorean and char k¢ # 2, then ke is also pythagorean. Moreover, if K
is not formally real, then ke = k& and I'c = 2c.

(c) Assume now that K = F, for some subfield F and A = CN F is m-henselian. If
char ke # 2, then ke isthe pythagorean closure of ka. Furthermore, if K isa non-formally
real field, then ' is also the 2-divisible hull of 4.
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PrROCF. (a) Itiswell-knownthatif ke isformally real soisK ([L2], Lemma3.7, p. 23).
Going for a contradiction let us assumethat K is not pythagorean. Then 1 + a? ¢ K2 for
somea € K. Sincecharkc = 0,a € C*, by Lemmaz2.2. Askcisformally real, 1+a® ¢ mc.
Moreover, ke is pythagorean and so there exists b € C* such that pc(1 + @) = ¢c(b?).
Therefore, (1+a?)b2 € (1+mc). Since (1+a?)b~2 € £K2, Proposition 2.1 implies that
(1+a?)b2 € K2, acontradiction.

(b) Forx,y € C*, let z € K such that X2 + y? = Z2. Then pc(X)? + pc(Y)? = »c(2)?,
and so k¢ is pythagorean.

By aresult dueto Krull (see[E], Theorem 27.1, p. 206), if kc admits any extension of
degree 2, or if there exists asubgroup A of thedivisible hull of I'c suchthat (A : '¢) = 2,
then there exists a quadratic extension of L. But this is not possible since K is a non-
formally real pythagorean field.

(c) From general valuation theory we know that k¢ is anormal extension of ks such
that [Kc : ka] isa2-power (as supernatural number) and I'c /T A is atorsion group where
each element has 2-power order. Hence, if ka is not formally real, it follows from (b)
that ke is the quadratic closure of ka. Otherwise, let ¢ be a pythagorean closure of ka
contained in kc. By ([E], Theorem 19.13, p. 152), there exists an intermediate extension
F C E C F, suchthat CNE has ( asitsresiduefield. Since Ais r-henselian, soisCNE.
Therefore, by (a), E is pythagorean, which impliesE = F, (E C F;). Thuskc = ¢, as
desired.

The last statement follows from (b). ]

Recall that two valuation rings A and B of afield F are said to be independent if there
is no non-trivial valuation ring C of F containing both A and B.

PrOPOSITION 2.4 (F. K. SCHMIDT [ScHM]). Let F be a field such that char F # 2 and
assumethat there exist m-henselian valuation rings A and B which areindependent. Then
F=F,.

PrOOF. Going for a contradiction let usassumethat F # F... Thenthere existsa € F
suchthatt = 1+ a2 ¢ F2. Take now b € F such that va(b) > Va(2). By Lemma 2.2
—vg(2) < vg(a@) < vg(2) ands = 1+ b? € F2 Since A and B are independent, by
the Approximation Theorem ([E], 11.16, p. 80), for v € I'x and 6 € I'g such that
v > maximum{va(4),va(b)} and § > maximum{vg(8t),vg(a)} there existsc € F
satisfying va(c — b) > v and vg(c — @) > 6. Therefore va(c — b) > va(b) which implies
that va(c) = va(b). In the same way vg(c) = vg(a).

Takenowr = 1+c2. Thenva(r —s) = Va(c>—b?) = va(c—b)+va(ct+b) > Y+va(2) > 7.
In the sameway vg(r —t) > 6 — vg(2). Consequently, Va(r — s) > va(4) = va(4) + va(s).
Thus, by Proposition 2.1(iii), r € F2. On the other side, asvg(r — t) > vg(4) + vg(t), it
followsthat r ¢ F2, acontradiction. .

Maybe it isworth mentioning that a relative version of the F. K. Schmidt’sresult was
stated by Brocker for prime closed Galois extensions ([Br], Proposition 1.4). Our next
result is arelative version of ([EE], Proposition).
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COROLLARY 2.5. Let A and B bevaluation rings of a field F with char F # 2. Assume
that Ais-henselian and char kg # 2. If Bisnot comparableto A, then kg is pythagorean.

PrOOF. LetC = AB. Sincecharks # 2, also char ke # 2. Denote by D the unique pro-
longation of Cto F,.. Set A= pc(A) and B= pc(B), respectively. Using Lemma 2.1(ii),
a simple computation shows that the m-henselianity of A and C implies that Ais 7-
henselian (or see Lemma 1.3 of [Br]). Let B be an extension of B to kp and denote by k?
the decompositionfield of B over kc, (see[E], Section 15, p. 109). By Proposition 2.3(b),
the residue field of D is pythagorean. On the other side, the unique extension of A to k?
is also m-henselian. By construction Aand B are independent. Therefore, their prolon-
gations to k* are also mdependent Thus, by Proposition 2.4, kZ is pythagorean and so
kZ = kp. Since B and BN kZ have the same residue field ([E], Theorem 15.8, p. 112),
we can conclude that the residue field of B is pythagorean. Finally, as B and B havethe
same residue field, the result is proved. ]

In the next corollary we shall see that the set H of all proper m-henselian valuation
rings A of F suchthat char ka # 2 hasthe same aspect asthe set of all henselian valuation
rings of afield (see [EE], Corollary 1), or the set of al Q-henselian valuation rings of a
p-closed normal extension Q|F ([EK], Lemma4.1).

COROLLARY 2.6. For a non-pythagorean field F with char F # 2 let H be the set
introduced above and put H; = {A € H | ka isnot pythagorean}, H, = H \ Hj. Then:

(a) Hy istotally ordered by inclusion, provided it is not empty. Moreover, there exists
Ay € H suchthat Agy C Afor every A € H;.

(b) 1f Hy # 0, thereexists Az € Ha such that each B € H, satisfiesB C A).

(c) If both, Hy and Hy, are non-empty, then A C Ay andthereisno valuationring
B of F suchthat Ay ¢ B ¢ Agy. Furthermore, if Ag) # Ay, then Ay € Hy.

Proor. Thefirst part of (&) is clear by of the previous proposition. Take Ay = N A,
A € Hj. Since H; is totally ordered, Ay is avaluation ring and has maximal ideal
m=Jma, A€ Hi. As2 ¢ my, for every A € Hy, also 2 ¢ m. Thus Ay hasresiduefield
of characteristic different from 2. Finally, Lemma2.1(ii) impliesthat Ay is 7-henselian.

(o) Since F is non-pythagorean, every pair of elements of H, are dependent, by
Proposition 2.4. Hence, H, is a directed set, ordered by inclusion. Then Az = B,
B € H,, is a subring of F. Let k be the residue field of Ap). We claim that Kk is
pythagorean. By the claim A,y € Hj, asdesired. To 0 prove the claim, let B be the image
of Bink, for every B € H,. By constructionk = | B, B € H,. Thus, for everya b € k2,
thereisB suchthata, b, a+b € B* (recall that H, is adirected set). By assumption, there
exists ¢ € (B")? satisfying ¢5(c) = pg(a+ b). Therefore, (a+b)ct € (1+mg) N K2
Observe that Lemma 2.1(ji) and the 7-henselianity of B and A yield B n-henselian.
Also 2 € B*. Hencea+b € k2, by Lemma 2.1(ii), and the claim is proved.

(c) By the previous proposition, every A € H; is comparable to A). Due to the
properties of their residue fields, A C A. Hence Aiz) C Ay). The other assertions are
clear. ]
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REMARK 2.7. Recall from [En] that a m-henselian valuation ring A of afield F which
is comparable to each of the others is called distinguished (Definition 2.17). Observe
that each valuation ring in Hy, and also A if H, # 0, is distinguished. Therefore, if
H #0, F admits a distinguished valuation ring.

On the other side, if H, # § and B € H,, then every valuation ring C of kg is
m-henselian. Hence, by Lemma 2.1(ii), the lift C = 9051(6) is also m-henselian. Hence
B has to contain non-comparable r-henselian valuation rings, unless kg is an algebraic
extension of afinite field. Consequently, if A is adistinguished valuation ring of F such
that charka 7 2, the above corollary implies either A= Az, or A € Hs.

We may now rewrite Proposition 2.18 of [En] in a more complete form.

COROLLARY 2.8. For a normal subextensionF C L - F., if L admits a m-henselian
valuation ring A with charka # 2, then there exists a r-henselian valuation ring B
containing A such that BN F is also m-henselian.

Moreover: If A is distinguished, B = A verifies the statement above. If AN F is not
m-henselian, B can be chosen such that kg is pythagorean.

PrROOF. If A is distinguished, with the same proof of Proposition 2.18 in [En] it
followsthat that AN F isaso n-henselian. Therefore, if AN F isnot n-henselian, by the
remark above, A ¢ Ac. Hence B = A has the desired properties. "

We end this section reviewing the link between w-henselian valuation rings and rigid
elements. For every a € F wedenote D(1.a) = {x®+ay? #0 | x,y € F}.

Anelementt € Fiscalledrigidif t # F2 and D(1.t) = F2UtF2. In this paper we are
mainly interested in rigid elementst € F2. We also denote by B, (F) = {t € ZF? | tis
not rigid}. Recall that for a formally real field F arigid element t € $F2 is not birigid
(when t and —t arerigid) ([BCW], Proposition 1). On the cther side, if F (charF # 2)
is not formally real, arigid element t is birigid ([CR], Corollary). An element t which
is not birigid is called basic and it is well-known that the set B of basic elementsis a
subgroup of F ([W], Proposition 2.4). As observed above 5F2 C Biif F isformally real
and B, (F) = B otherwise.

REMARK 2.9 ([EN]). Let F beaformally real field with a w-henselian valuation ring
A such that ka isanon-formally real field of characteristic different from 2.

(A) It wasstated in [En] that B,(F) C A*F2 isasubgroup of F (Propositions 2.5 and
2.7). Actudly, B,(F) C (A* N =F?)F?, since B, (F) C ZF2

(B) Theinclusion wa(A* NB.(F)) C By(ka) is lwaystrue. Moreover, if ka # +k2,
then (A" N B(F)) = B, (ka) (Proposition 2.5).

(C) Thereexistsam-henselian valuationring B of F suchthat B C A, charkg # 2 and
(ks : Bx(ks)) < 2 (Proposition 2.6(1)).

For afield F where B, (F) is a subgroup of F such that (XF? : B.(F)) > 2 we have
the converse of (A):
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(D) F admitsadistinguished w-henselian valuation ring Awhich verifiesthefollowing
conditions: ZF2 # (A* N ZF?)F2, charka 7 2, (Ka : Br(ka)) < 2and oa(A* N B,(F)) =
B, (ka) (Theorem 2.8 and Corollary 2.15).

(E) If B.(F) = F2, the residue field of the above valuation ring also verifies: (kA :
k2) < 2, B.(ka) = k2, —1 € k2 and denoting by ¢, a primitive 2" root of unity, &, € ka
if and only if £, € F(i) ([En], Proposition 2.14).

3. The Galois group of a m-henselian valued field. From now on, F stands for a
formally real field and for al valuation rings A we assume that charka # 2.

Following [E], if L isanormal extension of F and Cisavaluationring of L, we denote
the decomposition group, the inertia group and the ramification group of C over F by
G?#(C;F), G'(C; F) and GY(C; F), respectively. Let K%(C; F), K'(C; F) and KY(C; F) be
the corresponding fixed fields. By ([E], 15.1-b, p. 109), A= CN F isL-henselian if and
only if GZ(C;F) = G(L; F).

According to ([E], Theorem 20.12, p. 163), there exists a continuous surjective ho-
momorphism W: GT(C; F) — Hom(I'c /T a. kc) whose kernel is GY(C; F). Recall that
GY(C;F) is the unique p-Sylow subgroup of G'(C;F), where p = 1 if charky = 0
and p = charka otherwise ([E], 20.18, p. 167). Therefore, under the present condition
(G'(C; F) is a pro-2-group), since charka # 2, GY(C;F) is trivial. Hence, GT(C;F) ~
Hom(I"c /T a. kc) is an abelian group.

Consider now a formally real field F and let F(2) be a quadratic closure of F. For
avaluation ring A (charka # 2) of F let D be an extension of A to F(2). Recall from
([E], Theorem 19.1, p. 145) that the canonical projection ¢p gives rise to a split exact
sequence

(%) 1— G'(D;F) — G*(D;F) — G(kp; ka) — 1.
By Proposition 2.3(b), kp isthe quadratic closure of ka (F(2) isnot formally real). Hence
G(kp; ka) = G, (Ka) if ka isnot formally real.

Summing up the comments above:

REMARK 3.1. If ks isnot formally real, G*(D; F) ~ G'"(D; F) x G,(ka) and G'(D; F)
is an abelian group.

We now consider the following framework:

Let A be a m-henselian valuation ring of a formally real field F (char ks # 2), C the
unique extension of A to F, and let D be any extension of C to F(2).

Let usalso denote by G,(K) the Galois group G(F(2); K ), for every intermediate field

FCKCF?2.
Recall from ([E] 15.6, p. 111, 19.10, p. 151 and 20.15, p. 166) the relations:;

(1) G2(K*(C; F)) = G*(D; F)Ga(F,) G2(K'(C;F)) = GT(D; F)Gy(F)
G*(D;F,) = G*(D;F) N Gy(F,) G'(D;F;) = G'(D;F) N Ga(F)

We are now able to prove that G, (F) has a decomposition like the one described in
the above remark.
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ProPOSITION 3.2. Under the conditions introduced above, the following statements
aretrue.
(@) Ifkaisformallyreal, G,(F) ~ G,(ka). Otherwise,
(b) Gx(F) ~ G'(C;F) x G(KT(C;F); F) ~ G'(C; F) Xt G (Kn).

PROOF. Observefirst that G,(F) = G*(C; F), since A is 7-henselian.

(@ Recall that C N KT(C;F) has residue field ke ([E], Theorem 19.12, p. 152).
Therefore, by Proposition 2.3(c), KT(C; F) is pythagorean. Hence K'(C;F) = F,. So
G'(C; F) istrivial and G, (F) ~ G,(Ka), as desired.

In order to prove (b) we claim that G*(D;F,) = G'(D;F,) and G'(C;F) ~
G'(D;F)/G'(D; Fy).

PROOF OF THE CLAIM. By Proposition 2.3(c), k¢ is pythagorean. But, since ky is not
formally real, this already meansthat k¢ is quadratically closed. Hence, ke = kp. Aswe
know that D N K#(D; F,) and C have the sameresiduefield ([E], Theorem 15.8, p. 112),
it follows from ([E], 19.11, p. 151) that K#(D;F,) = KT(D;F,) and so G*(D;F;,) =
G'(D;F,), asrequired.

By therelations (), presented before the proposition, it follows that

G'(CiF) ~ Gy(KT(CiF)) /Ga(F,) ~ G'(D; F)Gy(Fr) / Ga(F)
~ G'(D;F)/(G'(D;F) N Gx(F,)) ~ G'(D; F)/G'(D; F,),
and the claim is proved.

Continuing with the proof of (b), observefirst that the relations (1) imply

G:(F) = Ga(F)/Ga(Fs) ~ G*(D; F)Ga(F,)/Ga(Fr)
~ G*(D;F)/(G*(D; F) N Gy(F;)) ~ G*(D; F)/G*(D; Fy).

2

The first statement of the claim yields then, G,(F) = G#(D;F)/G"(D; F,). Finaly,
Remark 3.1 and the second statement of the claim imply the result. ]

Case (a) can be deduced from [Be], Theorem 7' (p. 85) and Theorem 21 (p. 55).
Actualy, (a) showsthat the case ka formally real isnot interesting for the study of G,.(F).
Therefore, we will be assuming that ks is not formally real, for every A.

In order to have a more precise description of G,(F) let us recall a few facts about
2-power roots of the unity. Let u., C F(2) bethe group of all 2-power roots of the unity.
Since charka # 2, we may assume that the restriction of pp to 1o, is the identity.

Fix the following convention: Takeinside ., asystem of 2" roots of unity: {1 = —1,
€ =i =+-1, &,..., chosen so that €2,, = &, for dl n > 2. For every n > 3 let
hn =&+ 551-

Following [Gri] let us denote by FH the field which arises from F by adjoining {hp, |
n > 3}. By ([Gri], Proposition 6 and Corollary 7), FH C F, isanormal subextension
suchthat either G(FH; F) ~ Z, or FH = F. Thelast caseoccursif and only if p, C F(i).
Itisalso clear that FH(i) = F(uso) and so pe, C Fr(i).

Keep the conditions and notations we have introduced so far.
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LEMMA 3.3. There exists exactly one subextension F C Fo C KT(C; F) such that the
residuefield of C N Fg is ka(ioo). Furthermore,
(@) if —1 € ka, then Fg = FH;
(b) if =1 & ka, aunitug € A*N SF2 can be chosen such that Fg = FH(,/Uo) and
CNF(,/Up) hasresiduefield ka(i).

ProOF. We first recall that k¢ is quadratically closed, by Proposition 2.3(b), since
ka isnot formally real. So o, C Kc. We know by Theorem 19.13b of [E] (p. 152) that
there exists a bijective and inclusion-preserving correspondence between the set of all
subextensions F C L C K'(C;F) and the set of all subextensionsks C k C kc =the
quadratic closure of ka, where every L isassociated with the residuefield of CNL. Thus,
there existsjust one such subextension Fq for which ka(u) istheresiduefield of CN .

Aswe have assumed that therestriction of pp to 11, istheidentity it followsthat there-
striction of ¢p to {h, | n > 3} isalso theidentity. Therefore, kaH = ka ({hn In>3}) c
Ka(tteo) @and also ka(iieo) = kaH(i). Hence, FH is the subextension of KT(C; F) which
correspondsto kaH and also FH C Fq verifies[Fo : FH] < 2.

Now itis clear that if i € ka, then ka(uoo) = kaH and so Fo = FH, which proves (a).

(b) As ka is not formally real —1 is a sum of sguares in ka. Thus there exists
Up € A* N =F2 such that ¢a(uo) = —1. Therefore, F(/Uo) C F; and the extension
B of Ato F(,/Up) verifies kg = Ka(i). Since CN KT(C;F) is m-henselian, Lemma 1.2
of [Br] implies that ,/Ug € KT(C;F) and so F(,/Ug) C K'(C;F) is the subextension
which corresponds to Ka(i). As ka(i) C Kka(io), by the inclusion-preserving property,
F(,/Uo) C Fo. Thus FH(,/Uo) C Fo. Since the residue field of C M FH(,/Uo) clearly
contains ., we can conclude that FH(,/Uo) = Fo. ]

We are now able to refine the description of G,.(F) given by Lemma 3.2(b).

PrROPOSITION 3.4. Let F be a formally real field and A a w-henselian valuation ring
of F such that ka is a non-formally real field of characteristic not 2. Let C be its unique
extensionto F,. Then:

(@) If &, € ka for everyn > 1, then G,(F) ~ G'(C; F) x G,(Ka).

(b) If &n € ka and Epey # ka for somen > 2 then

G.(F) = (GT(CiF) x G (Kalkis) ) % Z2:

where the factor Z, corresponds to G(ka(uo); ka) and has a generator ¢ such that
77 =12 for every 7 € G'(C; F).

(€ Ifi & ka, letup € A*N SF2 and Fo be the unit and the field introduced in
Lemma 3.3(b). Then GT(C;F(,/Up)) = G'(C;F) and G,(F(,/Up)) can be described
either asin (a) or (b). Moreover, for every ¢ € G.(F) \ GW(F(\/U_O)) such that ¢? €
Gr(Fo), 7 = 771, for each € G'(C;F). Furthermore, if G(ka(uoo); ka) =~ Z5, then
&n € ka(i) and &ne1 ¢ Ka(i) for somen > 3, G.(F) has a description asin (b) and the
factor 7, which correspondsto G(Ka(ii); ka ), hasa generator o such that 77 = 21
for everyr € GT(C; F).
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PROOF. As we saw in the claim during the proof of Proposition 3.2 G'(C;F) ~
G'(D;F)/G™(D; F,). Hence (a), (b) and the last two assertions of (c) follow from
Proposition 3.2(b) and ([EK], Proposition 1.1). The first statement of (c) follows from
Lemma 3.3(b). ]

Observe that since G (F) istorsion free the exact sequence
1 — G,(F(y/U)) — G:(F) — Z/2Z — 1

doesnot split. Hencewe can giveadescription of G,(F) only in thecaseG(kA(poo); kA) ~
7.
The last proposition has the following interesting corollary.

CoROLLARY 3.5. For a field F as in the previous proposition every subgroup of
G'(C; F) isanormal subgroup of G, (F).

PrROOF. The statement isclear if F verifieseither (a) or (b) of the above proposition.

For F asin (c) and U a subgroup of G'(C; F), we have that U is a normal subgroup
of GW(F(\/U_O)) by (a) and (b).

Next we consider the case where F(,/Up) verifies the condition (a). In this case
F(,/To) = Fo. S0 ¢? € G,(Fo) for each ¢ € G(F) \ G+(F(y/To)). Thus, by (c) of the
previous proposition, pU¢~1 = U and the statement is proved in this case.

For the other case, by Lemma 3.3(b), FHNF(,/Uo) = F and Fo = FH(,/Ug). Applying
the previous case to FH we see that U is a normal subgroup of G,(FH). As G,(F) =
G(FH)G(F(,/Uo)), U is also anormal subgroup of G(F). .

We shall now state alink between GT(C; F) and ZF2 / (A* N ZF2)F2. For the extension
Cof Ato F, let uswrite K = KT(C; F) for short.

PrROPOSITION 3.6. For a field F with a 7-henselian valuation ring A the inclusion
F C K induces an isomorphism from F? /(A" N F?)F? onto 2K? /K2,
Consequently, GT(C; F) and £F? / (A* N ZF%)F? have the same rank.

PROOF. Let x € SF2 be an element such that x = 7 for some z € K. Since
(K. CNK) isanon-ramified extension of (F. A), thereexistsy € F suchthat vc(y) = vc(2).
Consequently, vc(X) = ve(y?) and so x € A*F2. Thus, the map from ZF? / (A* N ZF?)F? to
$K?2 /K2 isinjective. In order to show the surjectivity of the map, for eachz € K2\ K2
let U = GW(K(\/E)). By the previous corollary U is a hormal subgroup of G, (F). By
Proposition 3.2(b), G+(F)/U ~ (GT(C; F)/U) x G(K; F) ~ Z /2Z x G(K; F). Therefore,
if L isthe fixed field of G(K; F) inside K(,/2), there exists x € F such that L = F(,/X).
SinceL C F, we may take x € F2. By Galoistheory K(,/2) = K(,/X). Hencez € xK?2,
which provesthe surjectivity.

Finally, as GT(C; F) and K2 /K2 have the same rank, the result is proved. .

We would like to remark that for afield F which admits a r-henselian valuation ring
A suchthat ka isanon-formally real field of characteristic not 2, Proposition 3.2 implies
that G, (F) has normal abelian subgroups. In the next section we shall prove a partial
converse.
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4. Normal abelian subgroupsofrank > 2. Letusstart thestudy of thelink between
normal abelian subgroups of G, (F) and rigid elements of F. The first result completes
the analysis made by Ware in [W2], Theorem 3.9, Corollary 3.11 and Remark 3.12, for
fields satisfying B,.(F) = F2.

In order to avoid repeating conditions, we assume for the rest of the paper that ka is
a non-formally real field of characteristic not 2.

PROPOSITION 4.1. Let F be a formally real field such that (F? : F2) > 2. Then the
following conditions are equivalent.
() G,(F)isabelian.
(i) B.(F)=F2and ¢, € F() for everyn > 1.
(iii) F admits a distinguished w-henselian valuation ring A such that B, (ka) = k2,
(ka : k3) < 2and &, € ka for everyn > 1.

PROOF. (i) = (i) Theassumption (F2 : F2) > 2 implies that G,(F) # Z,. Hence,
by ([Gri], Proposition 11 and Corollary 7), £, € F(i), for every n > 2. Finally, by ([W2],
Corollary 3.11), B,(F) = F2,

(i) = (iii) By Remark 2.9, (D) and (E), F admitsadistinguished 7-henselian valuation
ring A such that ks hasthe desired properties.

(iii) = (i) Observethat (kA : kﬁ) < 2impliesthat G, (ka) iseither trivial or isomorphic
to Z,. Therefore (i) follows from Proposition 3.4(a). m

We shall next improve the above result. To this end let us state a technical lemma.

LEMMA 4.2. Let F beafield with a m-henselian valuation ring A. Then:

(8) (ZF2: F?) isfinite if and only if ZF2/(A* N ZF2)F2 and (ka : k3) are finite. In
which case (SF2 : F2) = (ZF2 : (A" N ZF)F2) (ka : KZ).

(b) If (ZF2: F?) > 4, (SF2: (AN ZF2)F?) < 2and (Ka @ B(ka)) < 2, then there
exists a 7-henselian valuation ring B C A of F such that B.(F) = (B* N ZF?)F? and
Br(ks) = k.

PrROOF. (&) Aska isnot formally real by assumption, the restriction of pa to A* N
YF2 is a surjective map onto ka and has (1 + ma) N SF2 as its kernel. Since A is -
henselian, Lemma2.1(ii) implies that (1+ma) NZF2 C (A*)2. Therefore, pa inducesan
isomorphism from (A* M ZF2) / (A*)? to ka / k3. On the other side, as (A* N ZF?)F?/F2 ~
(A" N ZF?) / (A*)?, we get the following exact sequence

1— ka/KZ — ZF?/F? — 3F? /(A" N ZFP)F? — 1.,

from which (a) follows.

(b) Wefirst observethat since (ZF2 : (A'NZF?)F2) < 2, (a)impliesthat (ka : k) > 2.
Consequently, by Remark 2.9(B), a(A* N B (F)) = By (ka).

We now consider two cases. First case: B,(ka) = ka. Hence, as we saw in the
prove of (a), (A" N TF?) = ka = By(ka) = ¢a(A" N By(F)). Which implies that
A*NB,(F) = A* N ZF2. As F?2 C B,(F) by the very definition of B,(F), we have that
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(A* N ZF2)F2 C B,(F). Since the other inclusion is always true (Remark 2.9(A)), the
statement is proved in this case by taking B = A.

We now look for B in the case (kA : B (kA)) = 2. Since we have seen that (kA
k2) > 2, we can conclude that B,.(ka) # k3. We claim that k2 is not exceptional ([AEJ],
Definition 2.15). In fact, if B-(ka) = ikﬁ, the above conditions show that —1 ¢ k2, and
k2 is not addively closed, sinceka # k2

Consequently, Proposition 2.11 of [EN] implies that ka has a w-henselian non-
dyadic valuation ring B such that ka # B*k2 On the other side, by ([AEJ], Proposi-
tion1.9(1)), B, (ka) iscontainedin B*k,%, and so these two groups must beegual (recall that
(kA B-(ka)) = 2). _

We now take B C A the valuation ring of F such that pa(B) = B. Observe that the
residue field of B, being equal to the residue field of B,isa non-formally real field such
that charkg # 2. Next, as A and B are r-henselian it follows from Lemma 2.1(ii) that B
isalso m-henselian (or use Lemma 1.3 from [Br]).

We claim that B isthe desired valuation ring. By Remark 2.9(A), itisenoughto prove
that (B* N ZF2)F2 c B,(F). Asin the prove of (a), we have that pa(B* N ZF?) =
Thus ¢a((B* N ZFZ)(A*)Z) B*k2 = B, (ka). But, we saw in the beginning of the prove
that ¢a(A* N B(F)) = Bx(ka). And so, putting the things together, (B* N ZF?)(A")? =
A* N B,(F). Therefore, (B* N SF?)F2 C B,(F), as desired. Finally, since B, (ka) = B*kZ,
an easy verification showsthat B, (kg) = k. n

PROPOSITION 4.3. Let F be a formally real field such that (F? : F2) > 4. Then the
following conditions are equivalent.
(i) Thereexistsa normal abelian subgroup U of G, (F) of rank > 2.
(i) F admits a m-henselian valuation ring A such that rank G'(C;F) > 2 for the
extension C of Ato F.
(iii) B.(F)isagroupsuchthat (XF2 : B.(F)) > 2.

PROOF. (i) = (ii) LetL bethefixedfieldof U. Sincerank U > 2, then (£L2 : L2) > 2
and so Proposition 4.1 appliesto L. Let A’ be a distinguished 7-henselian valuation ring
of L verifying the condition (iii) of 4.1. Therefore, Corollary 2.8 impliesthat A= A'NF
is a m-henselian valuation ring of F. By Remark 2.9(C), we can assume without |oss of
generality that (Ka : B.(ka)) < 2

If (ZF2 : (A" N ZFA)F?) > 2 the proof is done by Proposition 3.6. If
(ZF? : (A N ZF?)F2) < 2, let B be the valuation ring given by Lemma 4.2(b). We
claim that (XF? : (B* N ZF?)F?) > 2. Going for a contradiction we assume that
(ZF2 : (B* N ZF?)F2) < 2. Then, it follows from Proposition 3.6 that GT(C;F) is
either trivial or isomorphic to Z,, where C is the extension of B to F,. Therefore the
same s true for G'(C; L), sinceit is a subgroup of G"(C; F). Let B’ be the extension of
Bto L. Sincerank U > 2, Proposition 3.2(b) impliesthat G, (kg) isanon-trivial abelian
subgroup of G, (kg). It is also a normal subgroup, since L|F isanormal extension. Ob-
serve now that since (ZF2 : F?) > 4, then (kg : k&) > 2 by Lemma 4.2(a). Therefore,
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Lemma 4.3 of [EN] leads to the contradiction B, (kg) # ks (recall (b) of 4.2). Therefore
the claim is proved and so, replacing A by B, (ii) follows from Proposition 3.6.

(if) = (iii) SinceF admitsar-henselian valuationring A, we know by Remark 2.9(A)
that B,(F) is agroup. Since B.(F) C (A* N ZF?)F? and (ZF? : (A" N ZFY)F?) > 2t
follows that (XF2 : B(F)) > 2.

(iii) = (ii) It followsfrom Remark 2.9(D) that F admits a m-henselian valuation ring
A such that (kA I Bo(ka)) < 2.1 (ZF2 S(A*N ZFZ)FZ) > 2 the statement follows from
Proposition 3.6. In the other case, by Lemma4.2(b), there exists a r-henselian valuation
ring B C A of F such that B,(F) = (B* N =F2)F2. Thus B fulfills the conditions of (ii)
(Proposition 3.6).

(i) = (i) istrivial, since G'(C; F) is abelian. L]

In the next section we partially remove the two restrictions, (5F2 : F2) > 4 and
rank U > 2, in the study of normal abelian subgroups of G,(F).

5. Thecase(SF?: F2) = 4. Inthissectionweshall study G, (F) for fields satisfying
(5F2 : F?) = 4. This case requires a particular care since Remark 2.9(D) does not apply
to F, if B,(F) # F2. We first prove three preparatory results. Let us adapt Theorem 3.4
of ([L], p. 202) to sum of squares.

LEMMA 5.1. Let F be a formally real field, d € £F2\ F2 and K = F(+/d). The
following sequenceis exact

1— {F2.dF?} — 3F?/F? — 5K2 /K2 - (D(1. —d) N 5F?) /2 — 1.

where N isinduced by the norm N: K — F and the others maps are natural.

ProOF. Recall that D(1. —d) is the image of N. We next show that N(=K?2) c ZF2,
Thus, the image of N is contained in D(1,—d)N ZFZ/F2 Denote by z the conjugate of
each z € K. If z € $K? then Z € 3K?, too. Therefore, N(z) € SK2NF. Since K|F is
normal, each order of F extends to K. On the other side, Artin-Schreier Theory states
that the set of sum of squaresis the intersection of the positive cones of all orders of the
field. Hence IK2 N F = 3F2 So N(2) € F?, asrequired. We now prove the surjectivity.
Takex € D(1.—d) N ZF2 and z € K such that N(2) = x. By ([W2], Lemma 3.10) there
isa € F suchthat az € SK2. Thus a?x = N(az) showsthat N is surjective.

The sequenceisexact at ZK? /K2, For z € K2 such that N(2) = X2 € F?, Nz =
Thus, by Hilbert's Theorem 90, zx* = y/y = y?/N(y), for somey € K. Hence
x/N(y) € ZK2NF = ZF2 and zK? = (x/N(y))K2 Therefore the kernel of N is contained
in image of F2 / F2. Since the other inclusion is clear the statement is proved.

The sequence is exact at F2/F2. Let x € 3F? such that x € K2 and write x =
(a+by/d)2. Then 2ab = 0. If b = 0, then x € F2. Otherwise x € dF2. .

LEMMA 5.2. For everya, b, € F thefollowing is true:

(@) ae D(l ab)ifandonlyif a € D(1. —b).
(b) ab e D(1,a)if and only if ab € D(1, —b).
(c) be D(1.—b) ifandonlyif b € D(1,1).
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PROOF. Letx,y e F2,

(@ If a=x+ aby, then ax = a® — ba?y € D(1, —b). Conversely, a = x — by implies
ax=a?+aby € D(1, ab).

(b) If ab = x + ay, then abx = (ab)?> — ba’y € D(1, —b). Conversely, ab = x — by
implies that abx = (ab)? + ab?y € D(1, a).

(c) Jdusttakea=1in(b). n

From now on we assume (£F2 : F2) = 4. Therefore, (as F is non-pythagorean) either
D(1,1) =3F?or (ZF?: D(1,1)) = 2.

PROPOSITION 5.3. Let F bea formally real field such that (£F2 : F2) = 4. Then
(@) D(1.1) = £F?, if and only if either B.(F) = F? or B(F) = 2F2.
(b) 1f D(1.1) # 5F2, then B,(F) = D(1. 1).

PROOF. (a) Observe first that since D(1,1) = 3F2, B.(F) is a group, by ([En],
Corollary 2.13(2)). Take a,b € =F2 for which F2 = F2 U aF2 U bF2 U abF? and
assume B,(F) # F2. Without loss of generality we may assume b € B,.(F). Therefore,
F?UbF? ¢ D(1,b). Thus D(1,b) = F2. Hence, ab € D(1, b) which implies, by (b) of
the last lemma, that ab € D(1, —a). By assumptiona € D(1, 1). Thus, (c) of the above
lemmaimpliesthat a € D(1, —a). Therefore, a’b € D(1, —a) andb € D(1, —a). Hence,
(a) of the last lemmaimpliesthat b € D(1, ab) and so ab € B, (F). Then B,(F) = ZF2.

Conversely, assume B, (F) = ZF2 and take x € 3F2 \ F2. Since (D(1.x) : F?) > 2,
then D(1,x) = SF2 Therefore, if y € SF? verifiesy.xy ¢ F? asy € D(L xy) and
xy € D(1,y), by (b) and (c) of the above lemma, y, xy € D(1, —x). Thusx € D{1, —X)
and (c) impliesthat x € D(1, 1).

If B,(F) = F2, the statement was proved by Ware, ((W2], Corollary 3.11).

(b) According to (a), B,(F) # ZF2. Therefore, it is enough to prove that D(1. 1) C
B.(F). By assumption, there arex. y, z € F2 such that a = x+y+z # D(1. 1). Therefore,
b=y+zeD(11)\FPanda c D(Lb). Sincea ¢ F2UDbF?, thenb € B,(F). So
D(1.1) = F2UbF2 C B,(F), asdesired. .

“ProposiTION 5.4. Let F be afield asin the previous proposition such that D(1. 1) #
SF2.If E= F(vb) for b € D(1.1) \ F?, then (ZE? : E?) = 4 and B, (E) =

PrOOF. For a € 2F2\ D(1.1) we have that ZF2 = F2 U aF? U bF? U abF2,
Observe that the choice of b implies that D(1,1) = F2 U bF2. By (b) of the previous
proposition B, (F) = D(1. 1). Hence, a,ab ¢ B,(F). Thusa ¢ D(1, ab). Hence, by (a)
of Lemma5.2, a ¢ D(1, —b). On the other side, asb € D(1, 1), Lemma5.2(c) implies
that b € D(1. —b). Henceab ¢ D(1. —b) and consequently D(1. —b) N $F? = F2U bF2.
Therefore, the exact sequence of Lemma5.1 impliesthat (SE2 : E?) = 4, as required.

We now claim that a € Dg(1.1) \ E? and a ¢ B, (E). It follows from the claim that
B.(E) # ZE?, Dg(1. 1). Therefore, the last proposition implies that B,.(E) = E2 and the
proof is complete.
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PROOF OF THE CLAIM. Sinceb € B,(F) (= D(1,1)), D(1.b) = sF2 and so a €
D(1,b). Since b € E?, then a € Dg(1.1). Again, the exact sequence of Lemma 5.1
impliesthat a ¢ E2. We now prove that a ¢ B,(E). Take x € Dg(1. a). By the “Norm
Principle” ([EL], 2.13), N(x) € Dg(1, a), where, asin Lemma5.1, N is the norm map.
Sincea ¢ B,(F), D(1, a) = F2UaF2. Aswe saw in thefirst paragraph, D(1. —b)NZF? =
F2UbF2. Therefore, sinceN(x) € D(1, —b)NZF?, it followsthat N(X) € F2. Onceagain
the exact sequence of Lemma 5.1 impliesthat x = yz for somey € £F2 and z € E2. For
y € ZF2 thereare e, € {0,1} andt € F2 such that y = a"b’t. Consequently, x € a°E?
and so De(1, a) = E2 U aE2 Hencea ¢ B, (E), asdesired. .

We now carry on with the study of G, (F). Let us consider the case where there exists
a normal extension L|F such that L C F, and G,(L) ~ Z,. Denote by C(U) = {g €
G:(F) | gh = hg VYh € U}, the centralizer of U, for every subgroup U of G.(F). Since
G, (F) istorsion free ([Be], Theorem 7, p. 81), we can make use of the Proposition 3.1
of [EN]. Then, thereexists F C L’ C L such that either

(1) Gx(L') ~ Z2 and C(G,(L")) = G,(L'), or

(2) GW(LI) ~ 7o X Zs.

In the case (1) we shall prove that (SF2 : F2) = 4 and describe G,(F). Case (2) will
be study later.

PrOPOSITION 5.5. Let F be a formally real field for which there exists a normal
extensionF ¢ L C F, suchthat G, (L) = 7, and C(G(L)) = G,(L). Then, (F? : F?) =
4, (B:(F) : I'ZZ) < 2 and F admits a 7-henselian valuation ring A such that char ka 7 2
and G,(L) = G"(C; F), where C is the extension of A to F.

Moreover, £niq € F(i), for somen > 2 and G,.(F) ~ Z, x Z,, where the components
have generators, o verifying one of the following conditions:

() If B,(F) = F2, thenr, o can be chosen such that o701 = 72"+,
(b) If (B«(F) : F?) = 2, then n > 3 and we can find generators 7, ¢ such that

_ n—1__
oot =721,

PROOF. Let 6: G (F) — Aut(G(L)) ~ Z5 x Z /2Z be the homomorphism given by
6(g)(h) = ghg™?, for every g € G,(F) and h € G,(L). By assumption, kernel 6 = G,(L).

We claim that imaged ~ Z».

To prove the claim we only need to show that imagef contains no element of order
2. Assume this is not so and let g € G,(F) such that 6(g) has order 2. Hence ¢* €
C(Gr(L)) = Gy(L) andghg~* = h~* (the unique order 2 automorphism of Zy). Therefore
(0»)~! = gg?g~* = ¢°. Thisleadsto acontradiction, since G, (F) istorsion free.

By the claim G, (F) ~ Z, x Z, and G(L;F) ~ Z,. Hence (£F? : F?) = 4 and the
commutator subgroup [G : G] of G, (F) satisfies[G : G] C G,(L). ASZ/2Z x Z/2Z is
a homomorphic image of G, (F), we concludethat [G : G] # G,(L). Thus, there exists
n > 1suchthat [G: G] = G,(L)?". We now consider 2 cases.

If n=1, weseethat Z/4Z is ahomomorphic image of G(F) and Z /4Z x Z/4Z is
not. It iswell known that there exists a Galois extension E|F such that G(E; F) ~ 7 /4Z
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if and only if there existsanon-squarec € F, whichisasum of 2 squaresand F(,/c) C E
([L], EX. 8, p. 217). On the other side, from Griffin ([Gri], Lemma 8), we can choose
E C F,. Therefore, in the case n = 1, we can conclude that F? ¢ D(L1) ¢ SF2. So,
Proposition 5.3(b) yields B,(F) = D(1. 1) and (2F? : B.(F)) = 2.

In the other case, [G : G] = G.(L)?, for some n > 2, we shall prove that the
dihedral group of order 8, Dg, is not a homomorphic image of G,.(F). Thus, by ([W2],
Theorem 3.9), B,(F) = F2.

Suppose that there exists a subgroup T of G, (F) such that G,(F)/T ~ Dg and let A
be a generator for G,(L). Hence the image of X in G,(F)/T has order 1, 2 or 4. But, if
M e T, forsomel <s<4,then[G:G] C T,since[G: G] = G,(L)? (n > 2)is
generated by A\?". Therefore G,.(F) /T is an abelian group, contradicting the supposition.

We now prove the existence of A as in the statement. In the case B,(F) = F2,
by Remark 2.9(E), F admits a distinguished m-henselian valuation ring A such that
(ka : k%) < 2and —1 € k2.

In the other case, B,(F) = D(1,1). If b € B,(F) \ F2 and E = F(v/b), then (ZE? :
E?) = 4 and B,(E) = E2, by Proposition 5.4. Then the last considerations apply to E. Let
B be a distinguished 7-henselian valuation ring of E such that (kg : kf:,) < 2andlet Cbhe
its extension to F.. By Lemma4.2(a) and Proposition 3.6, G'(C; E) is non-trivial. Next,
we take A = BN F. According to Corollary 2.8, A is a n-henselian valuation ring of F.
It is clear that C isthe extension of Ato F,.. Thus G"(C; F) is also non-trivial, and now,
Proposition 3.6 and Lemma4.2(a) imply that (K : kﬁ) < 2. Moreover, Proposition 3.2(a)
implies that ka is not formally real.

Consequently, in both cases, B,(F) = F? or B,(F) = D(1. 1), F admits a 7-henselian
valuation ring A such that ka is not formally and (kA : kﬁ) < 2. Thus G, (kp) is either
trivial or isomorphicto Z,. Thetrivial case cannot occur, otherwise G,.(F) = G'(C; F) is
an abelian group, contradicting the assumption C(G(L)) = G(L). Thus G(ka) =~ Z>
and also G'(C; F) ~ Z, by the above considerations.

Once again the assumption C(G(L)) = G,(L) implies that G.(L) N G'(C;F) # 1.
Otherwise, G'(C; F) C C(G(L)) because G,(L) and G'(C; F) are normal subgroups of
G (F). Hence (G, (L) : G-(L)NG'(C; F)) isfinite. But, as G,(L) NG'(C; F) = G'(C; L)
([E], 19.10-b) and G, (ka) contains no finite subgroups, it follows that G.(L) = G'(C; F),
as desired.

Our assumption on G, (L) implies C(G'(C; F)) = G'(C; F). Hence, it follows from
Proposition 3.4(a) that there exists n > 2 such that ¢, # ka. Furthermore, if —1 £ k2,
the above argument showsthat £, & ka(i), for somen > 2 (see 3.4(c)). Sincetheresidue
field of the extension of Ato F(i) iska(i) we canconcludethat &, & F(i), for somen > 2.

We now prove (a) and (b). Observefirst that the last considerationsimply that Ka(tic0)
is the quadratic closure of ka. S0 G(Ka(i4x0); Ka) = Gr(Ka).

In the case B, (F) = F2 we have observed that —1 < ka. Then, Proposition 3.4(b)
implies that G,(F) hasthe required description.

In the other case, B,.(F) = D(1.1) # ZF2, the lemmabelow implies that —1 ¢ kf\.
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LEMMA 5.6. Let A be a m-henselian valuation ring of a formally real field F. If
—1 e k2, then F2 = D(1.1) (charka 7 2).

PROOF. Lett € F2 and wright t = Xq + - - - + X, where x,. ....%, € F2 We may
assumethat n > 2. Take 1 < i < n such that va(x) < va(x), for every 1 <j < n.
Without lossof generality we may assumei = 1. Thentx; ! = 1+x; 1 (xo+- - - +X,) € Aand
asoxp (ot - +X%) € A I X H(xa+- - - +%;) € M, thentx t € 1+mpandsotx ! € F2,
by Lemma 2.1(ji). Since this contradicts n > 2, it follows that x;1(xz + - - - + %) € A"
We now consider two cases. If tx;1 € my then <pA(x51(x2 e+ Xn)) = —1. Take
u € A*NF2 suchthat pa(u) = —1. Thenx;i(xa + - - + X)u™t € (1 +ma) N ZF2 Thus
X[ (X2 + - + %)) € F2 (2.1(ii)) and t € D(1, 1) as desired. If tx;! € A* there exist
a.b € AN F2 suchthat pa(tx;t) = wa(@) + pa(b), since —1 € k2 (every element of ka
isasum of at most two squares). Once again tx; 1(a +b)~t € (1 +ma) N ZF2 will imply

te D(1.1). ]
Therefore, back in the proof of the proposition, we see that (b) follows from Propo-

sition 3.4(c). ]
Conversely,

PROPOSITION 5.7. Let F be a formally real field for which (£F2 : F2) = 4 and there
existsn > 2 suchthat £n+1 & F(i). Then there existsa normal subextensionF C L C F;,
suchthat G(L) ~ Z, and C(G(L)) = G(L).

ProoF. Let usdenoteby L thefield FH introduced before Lemma3.3. ThenL|F isa
normal subextension such that G(L; F) ~ Z,. Thus, G,(F) ~ G,(L) x Z5. Since G,(F)
hasrank 2 and G, (L) istorsion free, G, (L) ~ Z,.

Going for acontradiction let usassumethat C(GW(L)) # G,(L). Denoteby E thefixed
field of C(Gx(L)). Since F C E C L and G(L; F) ~ Z,, it follows that E|F is afinite
extension. Therefore, there existsm > n+ 1 suchthat £, £ E(i). It followsfrom thisand
([Gri], Proposition 11) that C(G(L)) is not abelian.

Ontheother side, arguing asabove, we haveadecomposition C(GW(L)) ~ G,(L)XZ>.
Consequently, dueto its nature, C(GW(L)) hasto be an abelian group, a contradiction. =

We now consider the case C(G(L)) # G-(L).

ProOPOSITION 5.8. Let F be a field for which there exists a normal subextension
F ¢ L CFysuchthat G(L) ~ 7o, C(Gx(L)) # Gx(L) andfor every normal subextension
F C ECL, Gi/(E) # Z, Then F admits a m-henselian valuation ring A such that
charka # 2 and G'(C; F) isnon-trivial, where C is the extension of A to F... Moreover, if
B isthe extension of Ato L, then &, € kg, for everyn > 1. Furthermore, (SF2 : F2) > 4
and G, (F) is abelian if equality occurs.
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ProOOF. By ([EN], Proposition 3.1), the above assumptionsimply that there exists a
subgroup N of C(G,(L)) suchthat N ~ Z, and NG(L) ~ Z, x Z». Let E be the fixed
field of NG, (L). According to Proposition 4.1, E admits a m-henselian valuation ring B’
such that its residue field k verifies: chark # 2, (k : k?) < 2 and ¢, € k for every n > 1.
Observe now that the extension B of B’ to L is 7-henselian and kg shareswith k the above
properties. By Corollary 2.8, we may assumethat A = BN F is n-henselian.

Let C bethe extension of B’ to F,.. Since rank G,.(E) = 2 and (k : Ikz) < 2, it follows
that GT(C; E) isnon-trivial. As C is also the extension of Ato F, it follows that G™(C; F)
isalso non-trivial.

Finally, asG-(E) isnotacyclicgroupthesameistruefor G, (F). Hence(SF2 : F2) > 4.
On the other side, if (SF2 : F2) = 4, by Lemma 4.2(a), (ka : k%) < 2. Therefore, either
G, (kn) istrivia or G,(ka) ~ Z,. In the first case G,(F) = G'(C;F) is abelian. In the
other case, Lemma4.2(a) and Proposition 3.6 imply that G™(C; F) ~ Z,. We now claim
that &, € ka, for every n > 1. If thisis not so ka(iiso) iS the quadratic closure of K.
BUt, 1o C K (the residue field of B"). Hence k = Ka(1100) Which implies KT(C; F) C E.
Since this cannot occur, because rank G, (E) > rank G'(C; F), we get a contradiction.
Consequently, Proposition 3.4(a) yields G,(F) abelian. ]

6. The general case. Now, by combining the results of the previous sections we
shall consider general abelian subgroups of G, (F).

THEOREM 6.1. Let F be a formally real field such that (EF2 : F2) > 2. Then the
following conditions are equivalent.
(i) Thereexistsa normal abelian subgroup U of G (F).
(i) F admits a 7-henselian valuation ring A such that =F? ¢ A*F? and ka is a
non-formally real field with charka # 2.
Furthermore, assuming that G, (F) is not abelian, A can be chosen such that U C
G'(C; F), for the unique extension C of Ato F.

ProoF. Theimplication (i) = (ii) is conseguenceof Proposition 4.3, Proposition 5.5
and Proposition 5.8. The other direction is clear by Proposition 3.4.

For the last statement we assume G,.(F) non-abelian and let U be a non-trivial normal
abelian subgroup of G, (F). Observe first that, by Proposition 3.4(a), ka = k2 cannot
occur, since G,(F) is not abelian. Moreover, if there exists A such that G, (ka) has no
non-trivial normal abelian subgroup, then A has the required property. Indeed, for the
extension C of A to F, the quotient UGT(C; F)/G'(C; F) is trivial by the assumption.
HenceU C G'(C;F), asdesired. On the other side, by Remark 2.9(C), A can be chosen
suchthat (Ka : Br(ka)) < 2. But, if ka = B-(ka) and (ka : k%) > 2, Lemma4.3 of [EN]
implies that there is no non-trivial normal abelian subgroup of G, (ka) and the result is
proved. Therefore, to finish the proof we have to consider two cases: (kA : k,i) =2o0r
(ka : kZ) > 2and (ka : B, (Ka)) = 2.

In thefirst casewe shall seethat A hasthe required property. L et C bethe extension of
Ato F,. Sinceka is not formally real, Proposition 2.3(c) implies that ke is the quadratic
closure of ka. Since G, (F) is not abelian, &, € ka for somen > 2 (Proposition 3.4).

https://doi.org/10.4153/CJM-1998-058-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-058-2

REAL RIGID ELEMENTS 1207

Henceke = Ka(tioo). Now, if rank U > 2 and L isthefixed field of U, Proposition 4.1(iii)
and Remark 2.7 imply that CNL hasresiduefield k. From ([E], Theorem 19.11, p. 151)
it followsthat KT(C;F) c EandU C G'(C : F), asdesired.

In the case rankU = 1, if C(U) = U, the result was proved in Proposition 5.5. In
the other case (C(U) # U), observe first that we may replace U by a maximal normal
abelian subgroup of G, (F) (Use Zorn's Lemma and recall that the topological closure
of a normal abelian subgroup is till normal and abelian). Thus we can assume that U
is maximal. Hence, by Proposition 5.8 and Remark 2.7, for the fixed field L of U, the
residue field of CN L contains &y, for every n > 1. Once again KT(C; F) C E, asin the
above case and the result is proved.

We now consider the case (ka : k%) > 2 and (ka : Br(ka)) = 2. According to ([AEJ],
Corollary 2.17) ka admitsar-henselian valuation ring Bsuch that B, (ka) = B*k4 (observe
that the above conditionsimply that k,§ is not exceptional (JAEJ], Definition 2.15)). Let
B= <p;1(|§). Since A and B are r-henselian, soisB (by Lemma 2.1(ii)). Furthermore, by
Proposition 1.9 of [AE]], B.(kg) = k. Therefore, by what we have proved before, B has
the desired property. ]

The next theorem improves Griffin's result.

THEOREM 6.2. Wth the same conditions of the previoustheoremassumethat U isan
abelian subgroup of G,(F) such that rank U > 2. Then there exists a valuation ring C
of F. with charkc # 2 for which either U C G'(C;F), or there exists a subextension,
F C E C F, suchthat G,(E) ~ G'(C;F) x Z, and U C G,(E).

ProoF. Apply Proposition 4.1 to the fixed field of U. L]
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