ABELIAN GROUPS WITH A VANISHING
HOMOLOGY GROUP

JAMES A. SCHAFER

In this paper, we wish to characterize those abelian groups whose integral
homology groups vanish in some positive dimension. We obtain a complete
characterization provided the dimension in which the homology vanishes is
odd; in fact, we prove that the only abelian groups which possess a vanishing
homology group in an odd dimension are, up to isomorphism, subgroups of
Q", where Q denotes the additive group of rational numbers. The case of
vanishing in an even dimension is much more complicated. We exhibit a class
of groups whose homology vanishes in even dimensions and is otherwise very
nice, namely the subgroups of Q/Z, and then show that unless we impose
further restrictions, there exist abelian groups which possess the homology
of subgroups of Q/Z without being isomorphic to a subgroup of Q/Z.

All groups will be abelian and all homology groups will have integral
coefficients.

It is well known that if F(n) denotes the free abelian group of rank %, then
H.(F(n)) is isomorphic to the exterior algebra Az[ui, . . ., u,] on #n generators,
where the dimension of each #; = 1. (Itis also true that this is an isomorphism
of rings.)

ProrosiTIiON 1. If A is torsion free, then H,.1(4) = 0 if and only if A is
isomorphic to a subgroup of Q".

Proof. 1t is sufficient to assume that A C Q" Since 4 is torsion free, any
finitely generated subgroup of 4 is free. If F(m) C A4, then tensoring with Q
over Z preserves the inclusion, and therefore Q" T 4 ®, Q C Q" ®,Q = Q~,
which implies that m = #. Since for any group G,

H(G) = lim H,(G"),
P
where G’ runs through the finitely generated subgroups of G, we have that
Hn+1(A) = lim H71+1(F(m))°
—

Since m = #, this implies that H,,1(4) = 0.
Conversely, suppose that H,,1(4) = 0 and 4 is torsion free. Again, every
finitely generated subgroup of 4 is free, and hence

Hi(4) = lim (Hy(F(m)), g,),
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where the maps g+: Hy(F(m)) — Hy(F(n)) are induced from the inclusions
g: F(m) — F(n). An easy computation (see 4) shows that the induced maps
are monomorphisms. Since H,1(4) = 0, we must have that H,1(F(m)) = 0
for all finitely generated subgroups of 4. Hence, if F(m) C A, we must have
that m =< n. Since 4 is torsion free, we have a monomorphism 4 — 4 ®, Q.
Since 4 contains at most # linearly independent elements over Z, 4 ®, Q = QF
for some k =< n, and therefore A is isomorphic to a subgroup of Q¥ C Q™.

ProrositioNn 2. If A s isomorphic to a subgroup of P = Q/Z, then
Hy(A) = Z, Hy1(4) = A and Hy(A) = A for all &k > 0

Proof. 1t is sufficient to assume that A C P, and therefore 4 = A’/Z for
some subgroup A’ € Q. It follows that there exists a spectral sequence
{E, } with E, 2 = H,(4, H,(Z)) and E«” isomorphic to the associated
graded group of a suitable filtration of Hx(A’); see (1; 3). Since H,(Z) =0
for ¢ > 1, there exists an exact sequence

= Hy1 (A7) = Hp1(4) = Hya(4) = Hy (A7) — .

Now, 4" € Q, and therefore by Proposition 1, H,(4’) = 0 for ¢ > 1, and
thus we obtain H,1(4) = H, 1(4) for ¢ > 1 and 0 —» Hy(4) - Ho(4) = Z
for ¢ = 1. It follows that Hay1(4) = A since H1(4) = A and that Hy,(4) =
H,(A) is either Z or the zero group. Since 4 is a torsion group, it is the direct
limit of finite groups. Since H+ (finite group) is a torsion group or zero in each
positive dimension, it follows that Hx(4) is either torsion or zero in each
positive dimension. We conclude that Hy(4) = 0 for & = 1.

We now turn our attention from exhibiting groups with the desired homology
groups to determining how complete our enumeration is. The corollary to
Theorem 1 shows that for an odd-dimensional vanishing homology group it
is totally complete.

The following lemma concerning induced homomorphisms will be needed.
A proof may be found in (4).

LeEMMA. Let p be a prime and let f: Z, — Z, be a non-zero homomorphism.
Then the induced map fx: H«(Z,) — H+«(Zy) 1s non-zero in every odd dimension.

THEOREM 1. If Hyp1(A) = 0 for some k = 1, then A is torsion free.

Proof. Suppose that 4 contains an element of finite order, then A contains
a subgroup Z, for some prime p. Since Hyy1(Z,) # 0 and Hyn(4) = 0,
there exists a finitely generated subgroup 4’ of 4, containing Z,, such that if
1. Z, — A’ is the inclusion, then 4x: Hyp1(Z,) — Horr1(47) is the zero map.
Suppose that 4’ = F(n) X Zy, X ... X Zy, then the composition p;, 07 is
non-zero for some s, where p;, is the projection A’ — Z,,, since proi: Z, — F(n)
must be zero. By the lemma, (p;,)+i= is non-zero in dim 2k + 1, and therefore
1« is non-zero in dim 2k + 1. This shows that no such 4’ can exist, and thus 4
contains no elements of finite order.
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COROLLARY. If A s an abelian group, then A is isomorphic to a subgroup of
Q% if and only if Hoyp1(4) = 0.

The situation with regards to the even dimensions is not as simple, and we
can give only a partial solution.

A group is said to satisfy the minimum condition on subgroups if
By > By;>...> By > ... being a descending chain of subgroups implies
By, = Byy1 = Byy2 = ... for some k.

TaEOREM (Kurosh (2)). An abelian group A satisfies the minimum conditions
on subgroups if and only if A has finitely many primary components A,, and
each A, is the direct sum of a finite number of copies of Zye (p-divisible envelope
of Z,) and cyclic p-groups.

TaEOREM 2. If A satisfies the mimimum condilion on subgroups and
Hy(A) =0, Hy1(A) = A for k> 0, then A is isomorphic to a subgroup of
P = Q/Z.

Proof. Since 4 = XA4,, it is sufficient to show that 4, is isomorphic to a
subgroup of Z,»~. By Kurosh’s theorem, A, is isomorphic to a direct sum of
finitely many copies of Z,» and cyclic p-groups. If there is more than one
cyclic p-group in this decomposition, then H«(Z,. X Z,s) is a direct summand
of Hx(4,), which is in turn a direct summand of Hx(4). However, it follows
easily from the Kiinneth formula that Hy(Z,c X Z,s) % 0, and thus
Hy.(4) £ 0 which is false; hence, 4, = Z,o X Ze.

We again use the Kiinneth formula to show that the condition Ha;1(4) = 4
forces either 4, = Z,. or A, = Z,», and therefore 4, C Z,o.

It is natural to ask whether the conditions Hy,(4) = 0 and Hyy1(4) = A4
are alone sufficient to force 4 to be isomorphic to a subgroup of P. The
following example shows that this is false and indicates that the characteriza-
tion for even dimensions is much more complicated than for the odd.

Let A = ®; Z,», where I has cardinality X,. Now,

4 = lim @ Z,,
— 5
where F runs through the finite subsets of I and the maps are such that if
FC F', then v: @r Zpo — ®p Zyo embeds ®r Z,» as a direct summand
of @p Zpe. [t follows that H, (@ Z,») is a direct summand of H,(®p Zy=),
and hence v is a monomorphism. An easy application of the Kiinneth formula
and Proposition 2 shows that Hoy1(@r Zye) = @ gy Zp=, where H(F) is a
finite set containing F. Moreover, if F C F’/, then H(F) € H(F’). Let {F,}
be a linearly ordered cofinal subsystem of all the finite subsets { F} of I. It
follows that {H(F;)} is a linearly ordered cofinal subsystem of {H(F)}.
Therefore,
H2k+1(A) = lim @ Zp“‘.

—> H(Fi)
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Since all the induced maps are monomorphisms, Ha.y1(4) is just the ‘“union”
of the groups @ g,y Zp=. Now, the cardinality of Hyy1(4) cannot exceed
Ny since we are taking the ‘“‘union’” of only countably many sets, each con-
taining a countable number of elements. Now, since Ha1(A4) is the limit of
divisible p-groups, it is a divisible p-group, and therefore isomorphic to
@ Zy~ for some index set J. We have seen that the cardinality of J cannot
exceed No; however, it cannot be finite since Hyy1(4) contains @ gy Zpe,
and the cardinality of H (F;) approaches N, as the cardinality of F; approaches
No. It follows that Hap1(4) = A. Since A is a divisible p-group, Hy,(4) = 0
for all £ = 1. Hence, we have produced an abelian group whose homology is
like the homology of subgroups of P, but is not itself isomorphic to a sub-

group of P.
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