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Inviscid evolution of a uniform vortex dipole
in a strain field
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Competing models employing anti-parallel vortex collision in search of a finite-time
singularity of Euler’s equation have arisen recently. Both the vortex sheet model proposed
by Brenner et al. (Phys. Rev. Fluids, vol. 1, 2016, 084503) and the ‘tent’ model proposed
by Moffatt & Kimura (J. Fluid Mech., vol. 861, 2019, pp. 930–967) consider a vortex
monopole exposed to a strain flow to model the evolution of interacting anti-parallel
vortices, a fundamental element in the turbulent cascade. Herein we employ contour
dynamics to explore the inviscid evolution of a vortex dipole subjected to an external
strain flow with and without axial stretching. We find that for any strain-to-vorticity
ratio E , the constituent vortices compress indefinitely, with weaker strain flows causing
flattening to occur more slowly. At low E , the vortex dipole forms the well-documented
head–tail structure, whereas increasing E results in the dipole compressing into a pair
of vortex sheets with no appreciable head structure. Axial stretching effectively lowers
E dynamically throughout the evolution, thus delaying the transition from the head–tail
regime to the vortex sheet regime to higher strain-to-vorticity ratios. Findings from this
study offer a bridge between the two cascade models, with the particular mechanism
arising depending on E . It also suggests limits for the ‘tent’ model for a finite-time
singularity, wherein the curvature-induced strain flow must be very weak in comparison
with the vorticity density-driven mutual attraction such that the convective time scale of
the evolution exceeds the core flattening time scale.

Key words: vortex dynamics, turbulence theory, contour dynamics

1. Introduction

The vortex monopole/column is a fundamental element used to explore the dynamics
of coherent vortices in turbulence. Moore & Saffman (1971) first considered an inviscid
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column vortex subject to a planar irrotational strain field where the principal strain axes
are perpendicular to the vortex axis. They found that weak strain-to-vorticity ratios result
in an elliptical vortex that nutates around its centre. In subsequent numerical simulations,
Kida (1981) noted that above a certain strain-to-vorticity threshold, the solution bifurcates,
and the vortex flattens into a sheet. Neu (1984) investigated analytically the influence
of axial stretching on a strained vortex monopole, and found that stretching delays the
critical bifurcation point to a higher strain-to-vorticity ratio. Subsequently, Moffatt, Kida &
Ohkitani (1994) generalized the motion of a vortex column in a uniform non-axisymmetric
irrotational strain field using large Reynolds number asymptotic theory. They showed that
strained vortices undergoing axial stretching could survive for a long time in a viscous
flow, consistent with the observed persistence of vortex filaments in turbulent flows.

While analysis of a single vortex column in a strain field provides compelling
descriptions of vortex dynamics in turbulent flows, recent surveys of turbulence have
shown the tendency of anti-parallel vortex pairs to form (Goto, Saito & Kawahara
2017; Motoori & Goto 2019) (see also the excellent review article by Yao & Hussain
2021). McKeown et al. (2018) observed experimentally an iterative process of colliding
anti-parallel vortices, wherein the vortices first flatten into thin vortex sheets, then roll up
into smaller anti-parallel vortices that subsequently collide and then flatten into another
set of smaller vortex sheets, and so on. An elemental analysis of this iterative flattening
process using the vortex monopole model by Brenner, Hormoz & Pumir (2016), which
assumed that the strain field sourced from pairing vortices is sufficient to flatten a vortex
core, suggested the possibility of a finite-time singularity for Euler’s equation. However,
a subsequent theoretical analysis of anti-parallel vortex collision by Moffatt & Kimura
(2019a) found that mutually induced strain from pairing vortices is insufficient to flatten
their cores. Their analysis, based on the vortex monopole model with the imposed strain
field extracted from anti-parallel vortex pairs using the Biot–Savart law, shows that if the
vortices are sufficiently small (low strain-to-vorticity ratio), then the cores maintain their
compactness. As such, they concluded that a finite-time singularity could not be achieved
by the iterative flattening process. Rather, they proposed that an inviscid finite-time
singularity can be achieved via the so-called ‘tent’ process, where vortex motion between
colliding vortices results in a singularity at the apex of the ‘tent’. Numerical simulations
by Yao & Hussain (2020b), however, disputed their claim of vortex compactness, as they
found core flattening during an analogous collision of anti-parallel vortices with the core
size limit suggested by Moffatt & Kimura (2019a).

It is important to note that the Biot–Savart singularity of colliding anti-parallel vortex
pairs was considered decades ago by Siggia & Pumir (1985), and then via simulations of
Euler’s equations by Pumir & Siggia (1990). They pointed out that the flattening of vortex
cores is one of the primary factors preventing singularities in Euler’s equations, despite
encouraging Biot–Savart analyses. A potential culprit contributing to this disagreement
between theoretical predictions and experimental and numerical observations of colliding
anti-parallel vortex pairs may lie in the applicability of a strained vortex monopole as a
model of the dynamics.

The evolution of a strained vortex dipole is a relatively unexplored topic. Formation of
a head–tail structure for a strained dipole was first reported by Buntine & Pullin (1989).
Subsequently, Kida, Takaoka & Hussain (1991b) improved the initial conditions of the
simulations by employing a Lamb dipole and tested a small range of strain-to-vorticity
ratios. They observed that the relative sizes of the head and tail depend strongly on
this ratio. They further demonstrated via perturbation analysis that the interaction with
the background strain flow introduced a symmetry breaking term, which is the cause

971 A6-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.594


Evolution of a uniform vortex dipole in a strain field
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Figure 1. Schematic of a vortex dipole in a strain field, with relevant variables indicated.

of head–tail formation. Trieling, Van Wesenbeeck & Van Heijst (1998) validated the
simulation results experimentally. These studies were limited to low Reynolds numbers,
where the dynamics was dominated by viscous effects, which are also known to produce
a head–tail structure (Kida, Takaoka & Hussain 1991a; Delbende & Rossi 2009). As
such, our present understanding of the role of strain flow on vortex dipole dynamics is
confounded by viscous effects, making it difficult to extend these findings to high Reynolds
number turbulent and inviscid flows. Furthermore, only planar strain was considered in
these studies, and the range of strain-to-vorticity ratios explored was limited.

Herein, we examine the behaviour of a vortex dipole in an inviscid converging strain
flow using contour dynamics. Specifically, we consider the impacts of strain-to-vorticity
ratio and axial stretching on vortex dipole conformation evolution in an effort to explain
the apparent disagreement between theoretical predictions (Moffatt & Kimura 2019a) and
numerical and experimental observations (McKeown et al. 2018; Yao & Hussain 2020b)
of colliding anti-parallel vortex pairs.

The paper is organized as follows. Section 2 outlines the problem formulation and
numerical set-up. Section 3 explores the evolution of vortex dipoles under planar strain,
and § 4 considers the effect of axial stretching on dipole evolution. Section 5 discusses
implications of the present study on the search for a finite-time singularity of Euler’s
equation and the turbulent cascade, and § 6 concludes the work. A brief review of the
motion of a strained vortex monopole is presented in Appendix A, and validation of our
numerical contour dynamics scheme is provided in Appendix B.

2. Problem statement

We consider a vortex dipole in an unbounded ideal fluid. A Cartesian coordinate system
x = (x, y, z) is defined such that the x-axis is aligned with the self-induction direction
of the vortex dipole, and the z-axis is parallel to the vortex lines, as shown in figure 1.
The vortex dipole consists of two uniform vorticity patches bounded by contours Ci,
where the subscript i = 1, 2 designates the top (positive y) and bottom (negative y)
patches, respectively. The vortex patches have opposing circulations Γi = ±Ai(t)Ωi(t)
(top patch positive), where Ωi(t) and Ai(t) are the uniform vorticity patch magnitude
and area, respectively. The initial uniform vorticity magnitude of each patch is given by
Ω0 = Ωi(t = 0).

2.1. Strain field
A three-dimensional irrotational uniform strain flow us(x) = (αx, βy, γ z) is imposed,
where α, β and γ are the strain rates along each coordinate direction. This strain flow
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α/Ω0 β/Ω0 γ /Ω0

Planar E −E 0
Low E/2 −E E/2
High 0 −E E
Axisymmetrical −E −E 2E

Table 1. Irrotational strain flows considered, where Ω0 is the initial vortex patch vorticity magnitude, and E
is the strain-to-vorticity ratio.

has its principal axes aligned with the vortex dipole and continuity constraints such that
α + β + γ = 0. We note that if the strain flow was not aligned with the dipole principal
axes, then a rotational component on the dipole would arise, which is not of concern
in the present study, and is hence not considered herein. We restrict β < 0 such that
the y-component of the strain flow acts to squeeze the two vortices together. For β > 0,
the dipole splits into two monopoles that then evolve separately with minimal coupled
dynamics (Trieling et al. 1998).

Four types of strain fields are considered, as listed in table 1, where the initial
strain-to-vorticity ratio is denoted E . The first type is a planar strain field with equal but
opposite strain rates in the x–y plane, and no axial stretching (along the z-axis). This is
analogous to the strain fields employed in previous studies (Buntine & Pullin 1989; Kida
et al. 1991a; Trieling et al. 1998). The second type of strain field is a low axial strain field.
This is achieved by decreasing the expansion rate in the x-direction by half to compensate
for the increase in z-axis stretching. The third type is a high axial stretching strain field with
equal magnitudes of compression and stretching along the y- and z-directions, respectively.
Note that the ‘low’ and ‘high’ axial strain rates are meant only as relative descriptors
herein as we examine the effect of axial stretching; they do not represent any limiting
cases. Finally, the limiting case of axisymmetrical stretching is considered.

For each strain type, the strain-to-vorticity ratio is varied systematically in 0 ≤ E ≤ 1.
The ratio is bounded from above by unity, based upon pilot studies that found no significant
change in the behaviour for E > 1 as the motion is dominated by the external strain flow.

2.2. Contour dynamics
The induced velocity by the uniform vortex patches at any point uω(x) is computed from

uω(x) = − 1
2π

2∑
i=1

Ωi(t)
∫

Ci

ln |x − x′| dl′, (2.1)

where dl′ is the infinitesimal boundary segment at x′ (Zabusky, Hughes & Roberts 1979),
and t is time. Though contour dynamics is a purely two-dimensional method, the effect of
axial stretching can be captured analytically as

Ω(t) = Ω0 exp(γ t) (2.2)

(Neu 1984; Jacobs & Pullin 1985). That is, axial stretching acts essentially to dynamically
decrease the strain-to-vorticity ratio E throughout the interaction when γ > 0.
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2.3. Numerical scheme
The total velocity at any point is

u(x) = uω(x) + us(x), (2.3)

which is a combination of both the background strain flow us(x) and the vortex induced
flow uω(x). To compute the evolution of the vortex motion, we discretize the vortex
contours into a collection of linear segments. The integral in (2.1) is evaluated in closed
form along each linear segment, then summed, along with the strain flow, to compute the
total induced velocity at each of the endpoints of the line segments. The line segments
are then advected in time using an adaptive eighth-order explicit Runge–Kutta method.
For all simulations in this study, the contours are discretized into 1024 segments. Note that
1024 segments are employed based upon a convergence study, and we found no observable
difference in the quantities of interest when comparing 1024 and 2048 segment solutions.
Dynamic re-discretization of line segments is performed after every time step for two
reasons: because discretization points become unevenly distributed and clustered after
some time, which significantly corrupts the accuracy; and to ensure that curvatures are
properly resolved. We note that we redistribute only the discretization points, but maintain
a fixed number of segments to ensure computational efficiency. A symmetry condition
between the two halves of the dipole is implemented to improve computational efficiency,
as past studies of strained vortex dipoles have found them to maintain their top–bottom
symmetry (Buntine & Pullin 1989; Kida et al. 1991a; Trieling et al. 1998). Numerical
simulations were run up to non-dimensional times t |β| = 10.

The numerical scheme is validated in two ways: by checking that circulation is
conserved; and via comparison with classical examples in contour dynamics. Regarding
circulation, since the vortex patches have uniformly distributed vorticity, conservation
of circulation is equivalent to conservation of area, such that (2.2) becomes A(t) =
A(0) exp(−γ t). The deviation in the vortex patch area for all results presented herein is
less than 0.1 %, indicating that throughout the patch evolution, the number of elements
and their re-discretization are sufficient. In addition, several classical examples of contour
dynamics were solved using the present numerical scheme, including a strained vortex
monopole (Kida 1981; Neu 1984), the Kirchhoff elliptic vortex (Dritschel 1986; Mitchell
& Rossi 2008), and coalescence of two equal same-signed vortices (Zabusky et al. 1979;
Jacobs & Pullin 1985). Samples of the solutions to these classical problems are presented
in Appendix B, which agree very well with solutions documented in the literature.

2.4. Initial conditions
Special consideration for the initial condition is required since circular vortex dipole cores
produce unrealistic deformations (Kida et al. 1991a). Rather, an inviscid strain-free vortex
dipole (the limiting case of E = 0, also known as a Lamb–Chaplygin dipole; Meleshko &
van Heijst 1994), which travels steadily with no self-induced deformation and maintains
its twofold symmetry (front–back and top–bottom), is used herein. To establish such an
initial condition for our simulations, we employ the method developed by Pierrehumbert
(1980). In short, the method relies on the fact that a steady vortex dipole has a constant
stream function value along its bounding contour. Hence the shape of a steady uniform
vorticity vortex dipole can be found by adjusting its contour until the streamfunction value
becomes constant at the vortex boundary using an iterative optimization algorithm.

The shape of the vortex core can be controlled through the gap ratio G/(G + 2T), where
G is the minimum gap length in the y-direction, and T is the maximum thickness of
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Figure 2. Initial condition of a vortex dipole with a gap ratio G/(G + 2T) = 0.1.

the vortex patch in the y-direction (see figure 1). A gap ratio 0.1 is employed herein,
which produces the vortex dipole shown in figure 2. Note that Req = √

A(t = 0)/π is the
equivalent radius of the vortex core, which is employed as the characteristic length scale
in this study.

A non-zero gap ratio is employed for two reasons. First, it is unreasonable to assume
that only axial touching vortex pairs exist in turbulent flows, and we wish to examine the
nonlinear collision dynamics driven by an external/curvature-induced strain field. Second,
Moffatt & Kimura (2019b) have shown that colliding vortices (their ‘tent’ model) reach
an asymptotic value yc/Req = 0.7788, where yc is the core centroid position, at the time
of the Biot–Savart singularity. Our initial condition has a value yc/Req = 0.8736, which
permits us to evaluate the vortex core behaviour prior to the reported singular value under
the influence of curvature-induced strain.

3. Planar strain field

Three strain-to-vorticity ratios, E = 0.05, 0.2 and 0.4, are considered to highlight vortex
dipole behaviours under the applied plane strain field introduced in table 1. Evolution of
the dipole contours for E = 0.05 is shown in figure 3, which illustrates a typical formation
of the head–tail structure of a strained vortex dipole (Kida & Takaoka 1994; Hussain &
Duraisamy 2011). In figure 3(b), the dipole halves are being squeezed together under the
converging strain flow, which decreases the gap between the dipole halves and deforms
their shape. As time continues, the classical head–tail structure arises, with the cores
initially beginning to touch (figure 3c) followed by progressive elongation and thinning
of the tail (figures 3d–f ). As the tail grows, the leading dipole shape initially resembles
a strain-free axially touching vortex dipole (figure 3d) (Pierrehumbert 1980; Saffman &
Tanveer 1982), which continues to shrink as vorticity is ejected into the tail (figures 3e, f ).

The dipole behaviour begins to change with an increase in the strain-to-vorticity ratio
to E = 0.2, as shown in figure 4. The vortex cores are far more stretched out in the
x-direction, to the point where the leading region of the dipole exhibits no appreciable
bulging (figures 4c,d). However, the profile of the vortex patches is still thickest near the
leading edges, which then taper off into a tail (figures 4d,e). At t |β| = 1.5 (figure 4f ),
the bulges near the leading edge finally emerge, indicating that there is still a head–tail
structure, but with much of the circulation embedded in the tail.
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Figure 3. Contour evolution of a vortex dipole in a planar strain field with E = 0.05. Snapshots from t |β| = 0
to 1.5 at intervals of 0.3 are shown from (a) to ( f ). The contours at each time step are aligned at their leading
edge xl for ease of comparison.
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Figure 4. Contour evolution of a vortex dipole in a planar strain field with E = 0.2. Snapshots from t |β| = 0
to 1.5 at intervals of 0.3 are shown from (a) to ( f ). The contours at each time step are aligned at their leading
edge xl for ease of comparison.

With a sufficiently large strain-to-vorticity ratio, the dipole is flattened completely into
vortex sheets, as shown in figure 5 for E = 0.4. During the early stages of the evolution,
the vortex patches are mostly left–right symmetrical, as seen in figures 5(a–c), which
is an early indication of a change in regime. As time continues (figures 5d–f ), the
patches become completely flattened into sheets. At t |β| = 1.5 (figure 5f ), the vortex
patches have a near-uniform thickness along their length, with the leading edges forming a
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Figure 5. Contour evolution of a vortex dipole in a planar strain field with E = 0.4. Snapshots from t |β| = 0
to 1.5 at intervals of 0.3 are shown from (a) to ( f ). The contours at each time step are aligned at their leading
edge xl for ease of comparison.

diffuser-like shape. The pairing of the vortex sheets induces a planar jet along the x-axis
that is ejected into the ambient environment.

3.1. Dipole thickness
The compactness of monopoles can be quantified easily via the ratio between the
principal axes of their elliptical form (Kida 1981; Neu 1984). However, there is no
predetermined form for dipole deformation, hence a new descriptor is needed to measure
the ‘compactness’ of the deformed vortex dipole patches. Observing that the deformations
are always aligned with the axes of the strain field (see, for example, figure 4), we employ
the maximum thickness T(t) of the vortex patch (see figure 1) as a proxy measure of the
compactness of the dipole patches, as a decrease in thickness corresponds to flattening of
the vortex patches.

Temporal evolution of the maximum thickness T(t) for all considered planar strain field
cases is illustrated in figure 6(a), normalized by the initial thickness T(0). Overall, there
is a decreasing trend regardless of the strength of the strain field, with all cases ultimately
approaching zero thickness asymptotically. That is, unlike the vortex monopole, the cores
of the vortex dipole do not arrive at a ‘final compactness’, even for the head–tail regime.
This highlights a limitation of the analogy with monopole compactness. Rather than
comparing the aspect ratio, dipole ‘compactness’, represented here as dipole thickness,
has meaning only in a relative sense at a given time point. As discussed in Appendix A, a
vortex monopole combats the strain field via self-induced rotation that causes the principal
axes to flatten and contract in a periodic manner. For a vortex dipole, however, the pairing
essentially creates a slip wall that prevents the principal axes of each component vortex
patch from rotating. As such, the axes of deformation are always aligned with the strain
field, thus the patches flatten continually and increasingly.
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Figure 6. Temporal evolution of vortex dipole patch (a) thickness T(t), and (b) normalized thickness T̃(t), for
the planar strain field cases. The head–tail regimes between E = 0.05, 0.1, 0.15, 0.2 are shown in blue, while
the plane jet regimes between E = 0.4, 0.6, 0.8, 1.0 are shown in orange.

To isolate the effect of vorticity, we consider normalized thickness T̃(t), defined as

T̃(t) = T(t)
T(0) exp(βt)

. (3.1)

The denominator represents the thickness evolution of a simple material contour subjected
purely to the strain flow. A value of normalized thickness greater than 1 indicates that
vorticity decelerates the strain-field-induced flattening. Normalized thickness presented
in figure 6(b) clearly shows two trends. First, for cases E = 0.05, 0.1, 0.15, 0.2, there is a
continuous and rapid growth of the normalized thickness, indicating that vorticity provides
some ‘resistance’ to the strain flow as it works to flatten the dipole. Interestingly, these
cases correspond to the head–tail regime. That is, the ‘resistance’ arises from the same
left–right flow field asymmetry that creates the head–tail structure Kida et al. (1991a), a
mechanism that is absent from a vortex monopole.

For cases E = 0.4, 0.6, 0.8, 1.0, the normalized thickness remains near unity for the
entirety of the simulation (up to t |β| = 10). These cases correspond to the planar jet
regime, where the head–tail formation is arrested by the strain flow, preventing any
vorticity from collecting at the leading edges. Vorticity for these cases does not decelerate
appreciably the strain-induced flattening. The rate of flattening for the planar jet regime is
much faster than for monopoles under the same strain flow since monopole self-rotation
changes the relative angle of the principal axes with respect to the strain field; see
Appendix A.

3.2. Mutual attraction
Contrasting the cases of E = 0.05 and E = 0.4 in figures 3 and 5 suggests an interesting
and counterintuitive aspect of dipoles in a planar strain field, namely that a weak strain flow
forces the two comprising patches together at a faster rate than does a high strain field. For
the head–tail regime in figures 3(a–c), the gap between the patches tends to decrease from
head to tail, whereas the minimum for the gap in the planar jet regime in figure 5(b) is at
approximately the middle of the dipole.

To quantify the patch separation distance, we introduce the gap length G(t), defined
as the minimum distance between the patches (figure 1), and present it in figure 7(a) for
all cases. The cases with E ≤ 0.2 exhibit rapid decreases in gap spacing, with E = 0.05
showing the most rapid approach of the vortex patches towards one another. On the other
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Figure 7. Temporal evolution of (a) gap length G(t) and (b) normalized gap length G̃(t) between vortex
patches. The head–tail regimes between E = 0.05, 0.1, 0.15, 0.2 are shown in blue, while the plane jet regimes
between E = 0.4, 0.6, 0.8, 1.0 are shown in orange.

hand, while cases with E ≥ 0.4 still show a decrease in the gap between the patches, the
rate of approach is much slower, and there is a marginal influence of strain-to-vorticity
ratio.

The influence of vorticity can be isolated from that of the strain flow, which also
squeezes the patches together, by normalizing the gap length as G̃ = G(t)/ exp(−t |β|);
see figure 7(b). As with normalized thickness, the denominator originates from the
analytical solution of a simple material contour without vorticity, where the gap reduces
exponentially under the strain flow. Thus a line with a zero slope indicates that the gaps are
closed under the strain flow exclusively. Any deviation from a horizontal line indicates that
other effects are at play. The time series in figure 7(b) for E ≤ 0.2 deviates noticeably from
G̃ = 1, indicating that gap closure is strongly aided by vorticity. For cases with E ≥ 0.4,
the curves deviate only slightly from unity, demonstrating that the patches are primarily
closed under the influence of the strain flow.

The mechanism by which vorticity aids in driving the patches together warrants
additional consideration. Though it may be enticing to attribute this to the flow induced
by the dipole head on its tail in figure 3, vorticity-driven closing is still prominent in cases
without a prominent leading dipole (e.g. the E = 0.15 case in figure 4). Furthermore,
the gap in figure 4 decreases relatively uniformly in space, without any localized throat
area between the patches that would hint at the role of the leading dipole. That said,
the intuitive leading dipole explanation can be generalized to provide insight into the
mechanism by which vorticity drives the patches together. As illustrated schematically
in figure 8, the local thickness of a vortex patch is proportional to the circulation at
that location. The thickness of the patch generally increases from ‘tail’ (left) to ‘head’
(right), resulting in an increasing gradient of circulation along the deformed dipole. This
circulation differential produces a net inward flow (blue arrows in figure 8) that drives a
self-induced motion of each patch towards the centreline, similar to that of a potential flow
vortex sheet with a circulation strength gradient. Therefore, the observed enhanced mutual
attraction is a direct consequence of asymmetrical deformation inherent to a vortex dipole
in a compressive strain field (Kida et al. 1991a).

4. Axial stretching

In this section, we present the results of strain flow with axial stretching (see table 1).
As discussed in § 2, axial stretching amplifies the vorticity relative to the strain field as
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Figure 8. Schematic illustrating the mechanism by which vorticity distribution drives the vortex patches
towards one another. The size of the black ‘vortices’ indicates local circulation; blue arrows show the magnitude
and direction of induced inward flow.
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Figure 9. Contour snapshots of (a) E = 0.1 and (b) E = 0.8 at t |β| = 2 for the low axial stretching case.

time progresses, effectively lowering E dynamically. Based upon the analysis in § 3, the
transition from the head–tail regime to the planar jet regime is expected to occur at higher
values of strain-to-vorticity ratio E under the action of axial stretching. Indeed, snapshots
of vortex contours shown in figure 9 for the head–tail and planar jet regimes are similar
in structure to the planar strain cases presented in § 3 for low axial stretch stretching cases
(see table 1 for definition).

The normalized thickness and gap presented in figure 10 are qualitatively similar to the
planar strain results, albeit with the aforementioned delay of regime transition to higher E .
Normalized thickness in figure 10(a) shows that for a given E , there is less flattening
than in the planar strain case. For E = 0.6 and 0.8, the rate at which thickness decreases
begins to reduce after t |β| > 1.5 (normalized thickness begins to increase) because the
leading edge of the vortex sheet begins to re-spiral into a vortex core under the aid of axial
stretching. As for the gap length in figure 10(b), the range of mutual attraction expands
with increasing vorticity.

Under high axial stretching, the typical head–tail structure is observed for low values of
the strain-to-vorticity ratio, as shown in figure 11(a). However, for stronger strain flows,
increased axial stretching enhances the leading dipole strength, causing it to travel faster
than its tail, resulting in separation between the head and tail, as shown in figure 11(b).
This is a key signature that can be observed during the reconnection of vortices (Hussain
& Duraisamy 2011; Yao & Hussain 2020b), which can be used to identify the type of strain
flow experienced by the vortices.

Quantitatively, we see that all strain-to-vorticity ratios considered are in the head–tail
regime for high axial stretching, as shown in figure 12. Transition to the planar jet regime
occurs at much higher E . Pinch-off of the tail does not change the behaviour as the
dipole still ejects vorticity into a new tail as the strain flow squeezes the leading dipole
continuously.
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Figure 10. Time series of normalized (a) thickness T̃(t) and (b) gap length G̃(t) for the low axial stretching
case. The head–tail regimes between E = 0.05, 0.1, 0.15, 0.2 are shown in blue, while the plane jet regimes
between E = 0.4, 0.6, 0.8, 1.0 are shown in orange.
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Figure 11. Contour snapshots of (a) E = 0.2 and (b) E = 0.6 at t |β| = 2 for the high axial stretching cases.
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Figure 12. Time series of normalized (a) thickness T̃(t) and (b) gap length G̃(t) for the high axial stretching
cases with E = 0.2 to 1.0 at intervals of 0.2.

The limit of increasing axial strain flow is the axisymmetrical axial strain case. Under
axisymmetrical axial strain, the dipole cores are finally able to maintain their compactness
and remain as vortices, as shown by the contour snapshots in figure 13. The shape of the
contour at t |β| = 2 is exactly the same as the initial condition but at a significantly reduced
area due to vortex stretching. The centroid-to-equivalent radius also remains the same the
entire time. That is, only high-strain flow is capable of maintaining the integrity of a vortex
dipole.
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Figure 13. Contour snapshots of a vortex dipole in an axisymmetrical axial stretching strain flow with
E = 1.0 at (a) t |β| = 0 and (b) t |β| = 2.

5. Discussion

The implications of the reported strained dipole results to the ongoing discussions of
the finite-time singularity and the turbulent cascade of anti-parallel vortex collision are
discussed in this section.

5.1. Finite-time singularity avoidance
A significant criticism of the Biot–Savart ‘tent’ model by Moffatt & Kimura (2019a)
is that direct numerical simulations of slender core anti-parallel vortex ring collision
at Re = 4000 (Yao & Hussain 2020b) did not exhibit the predicted vorticity growth
scaling. Yao & Hussain (2020b) speculated that two physical processes, namely, the
braking effect of reconnection bridges and the head–tail separation, were omitted by
Moffatt & Kimura (2019a), resulting in discrepancies between the theoretical modelling
and numerical results. We have proposed previously that additional factors are at play to
prevent Euler’s equation finite-time singularity during anti-parallel vortex collisions (Hu
& Peterson 2021). Specifically, we argued that at the time of the ‘tent’ apex curvature
reversal, the reconnection bridges have yet to form due to the slower time scale of vortex
reconnection relative to vortex motion, which implies that the braking effect plays a
secondary role in halting the ‘tent’ development. As for the stripping of vorticity due to
head–tail separation, our present results show that such a phenomenon occurs only when
the vortex dipole overcomes the compressive strain flow from high axial stretching. That
is, the loss of circulation from the tail separation is a transient effect and an indication that
the effective strain-to-vorticity ratio is sufficiently high to prevent further core flattening.
Numerical results of Yao & Hussain (2020b) and Hu & Peterson (2021) further support
this claim as the colliding vortex cores at the apex maintain their compactness post tail
separation.

We propose that the enhanced mutual induction from the asymmetrical deformation of
vortex cores is the missing link between Moffatt & Kimura (2019a) and Yao & Hussain
(2020b). As reported in Hu & Peterson (2021), we observed in prior direct numerical
simulations that curvature reversal occurs when the colliding vortex tubes break the ‘tent’
form, which we referred to as ‘parallelization’. We speculate that the enhanced mutual
induction observed in the present work drives parallelization between colliding vortices
as illustrated in figure 14. The compact vortex core assumption (associated with the
monopole model) is one of the fundamental requirements for the ‘tent’ model; hence
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Parallelization

Enhanced mutual induction

Figure 14. Schematic of the parallelization process, introduced in Hu & Peterson (2021), during anti-parallel
vortex reconnection and the role of enhanced mutual attraction. The top view of the ‘tent’ process is shown,
and black lines represent the colliding vortices.

the model is, by definition, unable to predict arresting of the ‘tent’ formation process
and the subsequent avoidance of a finite-time singularity, driven by asymmetrical core
deformation as observed herein. However, the universality of the proposed enhanced
mutual induction-driven parallelization process remains unknown. Careful analysis of
the scaling between the curvature-induced strain, which also becomes stronger as the
curvature develops at the apex of the ‘tent’, and vortex stretching during the formation
of the ‘tent’, remains to be examined.

Finally, we would like to point out that a major assumption employed by Moffatt &
Kimura (2019a) and the present contour dynamics simulations is two-dimensionality,
which neglects stretching and axial flow that can arise in a three-dimensional non-uniform
strain field. These effects would undoubtedly play a major role during the collision
of anti-parallel vortices. However, the goal of the present study is to highlight the
consequences of dipole core deformation using a two-dimensional approximation to gain
some insights into the complex problem of anti-parallel vortex interaction.

5.2. Turbulent cascade
Recent surveys have shown that turbulent flows are composed of a self-similar hierarchy
of anti-parallel pairs of vortex tubes (Goto et al. 2017; Motoori & Goto 2019), for which
the vortex dipole model can be considered a fundamental element. There are competing
frameworks explaining the turbulent cascade in terms of the interaction of anti-parallel
vortices. Brenner et al. (2016) introduced a turbulent cascade model wherein vortices
iteratively flatten into vortex sheets and then re-roll into smaller vortices. Experiments
by McKeown et al. (2018) support this, in which up to three iterations of the flattening
and re-spiralling process were observed. In contrast, a numerical study of a pair of straight
vortex tubes by McKeown et al. (2020) did not observe the iterative flattening process.
Rather, an iterative process of elliptical instabilities was discovered. The contact between
vortex tubes at large amplitudes triggered the vortex reconnection, which Yao & Hussain
(2020a) proposed to be an alternative framework of turbulent cascade via anti-parallel
vortex interaction (interested readers are also pointed to the excellent review article by
Yao & Hussain 2021).
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Figure 15. Spectrum of instabilities during an anti-parallel vortex collision.

Given the complexity of turbulence, it is unlikely that a single mechanism is responsible
for the entirety of the energy cascade. Our findings have shown that an interacting vortex
pair can turn into a head–tail structure or flatten into vortex sheets, depending on the
strain-to-vorticity ratio. Herein we found flattening to occur in high strain-to-vorticity
ratio scenarios, such as a high curvature-to-core radius ratio (Kida et al. 1991b) and/or
a high collision angle (McKeown et al. 2018; Hu & Peterson 2021). In such conditions,
it is tenable that vortex sheet instabilities would drive the iterative cascade process,
as suggested by Brenner et al. (2016). Conversely, we observed a head–tail structure
formation in low strain-to-vorticity ratio scenarios, where the leading vortex dipole is the
dominant feature. In these scenarios, vortex tube instabilities (McKeown et al. 2020) and
the subsequent vortex reconnections would likely be the primary mechanism responsible
for the turbulent cascade. That is, the present work offers a framework wherein seemingly
disparate turbulent cascade mechanisms can be unified through the strain-to-vorticity ratio
as illustrated in figure 15.

6. Conclusion

In this study, we surveyed the evolution of a vortex dipole in an external strain flow,
which behaves qualitatively and quantitatively differently from the well-studied vortex
monopole. Under an imposed strain flow, vortex dipoles do not maintain their compactness
as a result of each vortex patch preventing the self-induced rotation of the other.
Hence the deformation is always aligned with the strain flow, resulting in the dipole
compressing indefinitely. This has implications for the search for a finite-time singularity
of Euler’s equation through anti-parallel vortex collision and proposed turbulent cascade
mechanisms. Regarding the former, our results suggest that the validity of the Euler’s
equation finite-time singularity model of Moffatt & Kimura (2019a) appears to depend
on the ratio between the strength of the curvature-induced strain flow and the vorticity
density of the dipole cores en route to the potential singularity. If the ratio reaches an
asymptotic value that is strongly biased towards the vorticity density, then a finite-time
singularity may be possible due to the disparity between the flattening and convective time
scales. If curvature-induced strain flow dominates, then vortex sheets will form instead.
Regarding the turbulent cascade, we show that, depending on the strain-to-vorticity ratio,
strained dipole evolution can result in the formation of vortex sheets or a well-defined
head–tail structure. These two configurations, vortex sheets and vortex tubes, serve as
fundamental elements of competing turbulent cascade models. Our work demonstrates
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Figure 16. Schematic of a vortex monopole in an irrotational strain flow.

a physical mechanism whereby these two foundational configurations can both arise
naturally, suggesting that both cascade mechanisms may play a role in turbulence.
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Appendix A. Vortex monopole

In this appendix, we present the results for an initially circular vortex monopole in the
same external strain flow in table 1 to provide a baseline for the dipole study. In particular,
the principal axes length ratio (Ra/Rb, see figure 16) is the primary quantitative results
reported in the literature (Kida 1981; Neu 1984), which does not apply to the dipole study.
Instead, we employ the thickness parameter T = 2 min(Ra, Rb) as the measurement of the
compactness of the vortex core to facilitate comparisons with the dipole results.

The vortex monopole remains elliptical at all times in the strain flow, and its motion is
governed by the following set of ordinary differential equations:

dRa

dt
= Ra(α cos2 θ + β sin2 θ), (A1a)

dRb

dt
= Rb(β cos2 θ + α sin2 θ), (A1b)

dθ

dt
= Ω(t)

RaRb

(Ra + Rb)2 − α − β

2
R2

a + R2
b

R2
a − R2

b
sin 2θ, (A1c)

where θ is the orientation of the vortex monopole (Neu 1984). The results reported here are
obtained with (A1), though it was confirmed that the contour dynamics method described
in § 2 yielded identical results (see Appendix B for a comparison sample).

The equations of motion for the monopole can be decomposed into two major effects.
The first is the self-rotation of an elliptical vortex captured by the first term in (A1c), which
states that a higher ellipticity of the vortex monopole corresponds to a lower self-rotation
rate. Second, the irrotational strain field can be decomposed into a linear (symmetric) and
a rotational (anti-symmetric) component, depending on the bearing (θ ) of the principal
axes. As the monopole reorients under its self-induced rotation, the linear component of
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Figure 17. Snapshots of a vortex monopole in a planar strain flow with strain-to-vorticity ratio (a) E = 0.1
and (b) E = 0.6, at a time interval t |β| = 0.426.
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Figure 18. Evolution of (a) the rotation rate θ̇ (t), and (b) the thickness T(t), of a vortex monopole in a planar
strain field with strain-to-vorticity ratio E = 0.02 to 0.12 at intervals of 0.02. One period of oscillation is shown
for clarity.

the strain flow can either flatten or compact the vortex core, which in turn influences the
rotation rate.

For the planar strain listed in table 1, the vortex motion bifurcates into either averaging
or flattening regimes, as shown in figure 17. For the averaging regime in figure 17(a), the
strain flow elongates the monopole into an ellipse. Once the major axis passes θ = 45◦,
where the maximum aspect ratio occurs, the strain flow compresses the boundary back
to a circular shape. For the flattening regime in figure 17(b), the major axis never rotates
past θ = 45◦ because the anti-clockwise self-rotation halts and the strain flow flattens the
monopole indefinitely into a sheet.

Quantitative results for the averaging regime for planar strain flow are shown in
figure 18. Prior to the major axis reaching θ = 45◦, the rotation rate θ̇ decelerates under the
influence of both the counter-rotating strain component and increased monopole ellipticity,
as shown in figure 18(a). Therefore, a stronger strain field results in a slower rotation rate,
which corresponds to a longer period of thickness oscillation in figure 18(b). However,
the deceleration is insufficient to prevent the monopole from moving past θ = 45◦, after
which the strain flow compacts the vortex back to the circular shape; hence oscillation of
the vortex increases, but it never flattens.
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Figure 19. Evolution of (a) the rotation rate θ̇ (t), and (b) the normalized thickness T̃(t), for a vortex
monopole in a planar strain field with strain-to-vorticity ratio E = 0.2 to 1.0 at intervals of 0.2.

0.2

0.4

0.6

0.8

1.0

T(
t)/

T(
0
)

E ↑
0 2 4 6 0 2 4 6

1.0

1.2

1.4

1.6

E ↑

t|β| t|β|

T̃ 
(t)

(b)(a)

Figure 20. Evolution of (a) the thickness T(t), and (b) the normalized thickness T (t), for a vortex monopole
in a low axial strain flow with (a) E = 0.1 to 0.3 at intervals of 0.1, and (b) E = 0.4 to 1.0 at intervals of 0.2.

For E ≥ 0.123, the strain flow prevents the major axis of the elliptical vortex monopole
from passing θ = 45◦, and reverses the monopole self-rotation as shown in figure 19(a).
As such, the principal axes of the vortex are oriented with the flattening strain field, which
compresses the monopole into a vortex sheet. A transient period can be seen from the
normalized thickness evolution in figure 19(b) because of the initial misalignment, but as
time progresses, the counter-rotating component of the strain flow re-aligns the principal
axes between the strain flow and the vortex. Thus the vortex flattens at the same rate as a
simple material surface, as shown by the levelled normalized thickness at large times in
figure 19(b). Note that the normalized thickness is defined as T1 = T1(t)/ exp(βt), which
highlights the role of vorticity on the thickness evolution in contrast to a vorticity-free
material contour under the same compression.

Introducing weak axial stretching pushes the bifurcation limit to E ≥ 0.317. Stretching
effectively lowers the strain-to-vorticity ratio E dynamically, hence we see a gradual
decrease in the magnitude of the thickness oscillation for the averaging regime in
figure 20(a). For the flattening regime in figure 20(b), the added weak axial stretching
extends the transition period, but the strain flow still re-aligns with the principal axes of
the vortex monopole in the end, then flattens the vortex like a simple material surface at
large times. Further strengthening of the axial stretching only exaggerates this effect.
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Figure 21. Aspect ratio Rb/Ra comparison between the analytical and numerical results for a vortex
monopole in a low axial strain field with E = 0.1.
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Figure 22. Evolution of a Kirchhoff elliptical vortex with aspect ratio 6 : 1 and m = 4 perturbation.
Snapshots from (a) t = 0, (b) t = 15 and (c) t = 30 are shown.

Appendix B. Validation

Here, we compare our numerical contour dynamics results with three classical problems
in the literature in order to validate our numerical method. We first compare our
strained monopole numerical results with the analytical solutions from (A1) to check the
accuracy of axial stretching implementation. A sample comparison with initial conditions
Rb/Ra = 0.5 and θ = 0◦ in a low axial strain field (see table 1) with E = 0.1 is shown in
figure 21. The time series of the aspect ratio is identical between the analytical results and
our numerical results.

Next, we simulate the evolution of a perturbed Kirchhoff elliptical vortex (Dritschel
1986; Mitchell & Rossi 2008). In particular, a Kirchhoff vortex under an m = 4
perturbation generates a tail-like feature that somewhat resembles a dipole tail, which
provides a reasonable test case for our solution methodology. Numerical results of a
Kirchhoff vortex with aspect ratio 6 : 1, vorticity density Ω = 1, and m = 4 perturbation
magnitude 0.02 are shown in figure 22, which captures the double spiralling tails as
expected.

Finally, we simulate the coalescence of two same-signed vortices to check if our
numerical scheme can capture the interaction between two separated vortex patches in
close proximity. Figure 23 illustrates the results of two equal vortices with radii R = 1 and
vorticity density Ω = 1 separated by 3.5R between their centres. Our solution exhibits
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Figure 23. Coalescence of same-signed circular vortices with radius R = 1 and separated by 3.5R. Snapshots
from (a) t = 0, (b) t = 10 and (c) t = 20 are shown.

the documented behaviour in the literature wherein the circular vortices are deformed into
comma-like shapes as they merge (see figure 23c).
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