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When a droplet coalesces with a flat liquid–air interface, a secondary drop may be
left behind resulting in only a partial coalescence rather than complete coalescence.
In this paper, we employ an arbitrary Lagrangian–Eulerian method to demonstrate that
applying an electric field favours the occurrence of partial coalescence. To understand
this phenomenon, we systematically study the effect of an external electric field on the
coalescence process between a droplet and a liquid–air interface. In an electric field, the
induced electric stresses can overcome the downward flow of the droplet, thus lifting it
upwards. As a result, the positive Laplace pressure in the neck region squeezes the droplet
towards pinch-off. We observe that both the initial neck expansion and neck shrinkage are
suppressed by the electric field. These effects become weaker as the Ohnesorge number
Oh increases. Based on the scaling analysis, we report a critical Ohnesorge number
Ohc = 14.39Γ 3/2 + 0.029 to quantify the transition from partial coalescence to complete
coalescence in the presence of an electric field, where Γ represents the dimensionless
electric Bond number. Finally, a relationship between the secondary droplet size and the
two key dimensionless numbers of Oh and Γ has been developed, which could be useful
for producing droplets of desired sizes in microfluidic applications.

Key words: breakup/coalescence, electrohydrodynamic effects

1. Introduction

The phenomenon of droplet–interface coalescence has attracted significant attention since
it is crucial to a range of industrial technologies, such as liquid–liquid separation (Prabhu
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2021), coarsening of emulsions (Sainath & Ghosh 2014), microfluidics (Akartuna et al.
2015) and inkjet printing (Lohse 2022). In these applications, a drop deposited on a
liquid pool may result in various outcomes, such as bounce, splashing, full coalescence or
partial coalescence (Houssainy, Kabachek & Kavehpour 2020). In partial coalescence, a
secondary drop can pinch off from the original drop and deposit on the liquid pool again.
This process can repeat several times, which has been termed as a coalescence cascade
(Thoroddsen & Takehara 2000). Consequently, the partial coalescence slows down the
separation of two phases in an emulsification process, and the generated secondary droplet
leads to quality defects in an inkjet printing process. Such partial coalescence can cause
unwanted effects. It is therefore necessary to thoroughly understand the mechanism of this
phenomenon for a highly efficient and optimal process.

When an injected drop comes in contact with the surface of a miscible liquid, the drop
could float on the surface without an instantaneous coalescence owing to the lubrication
force generated by a thin layer of surrounding fluid between the drop and surface (Reynolds
1881). The time of this finite period is called the residence time of coalescence (Eow et al.
2001). When the film thickness becomes thin enough, the trapped fluid film drains out and
the drop undergoes rapid coalescence with the free surface, where partial coalescence may
occur to leave a secondary drop behind.

Over half a century ago, partial coalescence was first observed by Charles & Mason
(1960). They found a secondary drop forms from the coalescence of a liquid drop with a
liquid–liquid interface, which could be suppressed by adding surfactants or applying an
electric field. Using the high-speed video imaging technique, Thoroddsen & Takehara
(2000) revealed that partial coalescence occurs several times in a self-similar cascade
instead of just once. They also demonstrated that the pinch-off time tpinch scales with
the drop diameter D as tpinch ∼ D2/3. In the previous study, Charles & Mason (1960)
suggested that Rayleigh–Plateau instability is the main inducement for partial coalescence,
where the original drop becomes a thin column and finally breaks up under the action
of surface tension. However, Blanchette & Bigioni (2006) used numerical simulations
to confirm that partial coalescence was induced by capillary wave convergence on the
top of the droplet rather than the Rayleigh–Plateau instability. Aryafar & Kavehpour
(2006) performed a series of experiments to study the effects of various parameters
on the coalescence between a drop and a liquid–liquid interface. They noted that the
Ohnesorge number is the most important dimensionless parameter in this process. The
partial coalescence can occur only when Oh < 1 and the size of the secondary droplet
mainly depends on this parameter. However, Gilet et al. (2007) identified that the Bond
number and the relative density difference between the two fluids are also responsible
for partial coalescence. They investigated the effects of capillary wave propagation and
damping on partial coalescence and proposed the criterion for partial-to-total coalescence
transition. In the further study of Blanchette & Bigioni (2009), they numerically simulated
the droplet–interface coalescence with negligible impact velocity. The critical Ohnesorge
number for partial coalescence was determined as a function of the Bond number, as well
as the density and viscosity differences of the drop and surrounding fluid. However, the
occurrence of partial coalescence in the absence of capillary waves was not addressed well
by them. In this regard, Ray, Biswas & Sharma (2010) used a coupled level set and volume
of fluid method to demonstrate that partial coalescence is affected by the competition
between the horizontal and vertical momenta of the drop. A secondary droplet could
pinch off once the horizontal momentum exceeds the vertical momentum. Apart from
these studies about the effects of physical properties on partial coalescence, researchers
have considered some special cases, such as a compound drop on a liquid pool (Deka
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et al. 2019a), a falling drop on a heated pool (Kirar et al. 2020) or a larger-viscosity
pool (Alhareth & Thoroddsen 2020). Additionally, the coalescence processes of two
drops or bubbles have been comprehensively studied (Eggers, Lister & Stone 1999;
Thoroddsen et al. 2007; Munro et al. 2015; Anthony, Harris & Basaran 2020), where
partial coalescence was also observed as reported by Zhang, Li & Thoroddsen (2009) and
Deka et al. (2019b).

In the works mentioned above, it is worth noting that no external forces were involved
throughout the liquid–air or liquid–liquid system. However, previous experiments showed
that the extra Marangoni effect and electric field have significant effects on droplet
coalescence. Blanchette, Messio & Bush (2009) studied the coalescence of a drop with
a miscible but different fluid reservoir. Under the effect of surface tension gradient,
partial coalescence was observed. This phenomenon is primarily dependent on the
surface tension ratio of the reservoir to drop. Recently, Constante-Amores et al. (2021)
conducted a parametric study of the role of surfactant-induced Marangoni stresses in
drop–interface coalescence. Unlike the Marangoni effect caused by the surface tension
difference, an external electric field can result in the addition of shear stresses on
the two-phase interface and consequently alter the coalescence dynamics. The effect
of the electric field on hydrodynamics has been of interest since it was reported by
Melcher & Taylor (1969). A curious phenomenon of droplet coalescence under an electric
field, namely electrocoalescence, has been an attractive technology for its advantages
in promoting or preventing coalescence when it is needed or undesirable. Eow and
co-workers reviewed the droplet–droplet and droplet–interface coalescence under an
applied electric field (Eow et al. 2001; Eow & Ghadiri 2003a,b). They showed that the
residence time before coalescence decreases as the electric field strength increases. The
extra shear stress can pull the falling drop upward and promote partial coalescence leaving
a secondary drop behind. Aryafar & Kavehpour (2007) found that the introduction of a
DC electric field can lead to partial coalescence. However, if the electric field reaches
the critical strength for droplet breakup, the droplet will not coalesce but instead form
into a fluid jet. Mousavichoubeh and co-workers studied the electrocoalescence of a
droplet on an oil–water interface under DC and pulsatile electric fields (Mousavichoubeh,
Ghadiri & Shariaty-Niassar 2011a; Mousavichoubeh, Shariaty-Niassar & Ghadiri 2011b;
Mousavi, Ghadiri & Buckley 2014). Three patterns were observed: full coalescence,
partial coalescence and rebound without coalescence. They found that a pulsatile electric
field could promote electrocoalescence and suppress the formation of secondary droplets.
Moreover, Pillai et al. (2017) used an electrokinetic model to simulate the charge
transfer dynamics during droplet–interface coalescence. They showed that increasing the
drop charge can also prevent the secondary droplet. Anand, Juvekar & Thaokar (2020)
experimentally confirmed that there exists a critical electrocapillary number determining
the transition from full coalescence to partial coalescence. Based on the level-set method,
Li et al. (2020) found a different jet-like partial coalescence induced by electric stress. The
jet then disintegrated into several progeny droplets, which is undesirable in most cases.

Although many experimental and numerical studies have investigated the effect of an
external electric field on droplet–interface coalescence, not much work has been carried
out on the coalescence between a droplet and a liquid–air interface, and most work
relates to liquid–liquid systems, e.g. water-in-oil systems (Aryafar & Kavehpour 2009;
Mousavichoubeh et al. 2011b; Anand et al. 2020). When the surrounding liquid is replaced
by air, the density and viscosity differences between the two fluids are not crucial to the
occurrence of partial coalescence (Blanchette & Bigioni 2009). The dominant parameters
can be summarized as the dimensionless Ohnesorge number (liquid properties), the Bond
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number (gravity) and, certainly, the electric field. Importantly, we note that previous
numerical studies described the two-phase flows by using different modelling techniques,
e.g. the level-set method (Li et al. 2020) or the volume-of-fluid method (Deka et al. 2019a),
where a so-called distance function (or volume fraction function) is utilized to track the
interface. However, for the electrohydrodynamic problem, surface charge conservation
requires special attention. For a typical leaky-dielectric fluid (Saville 1997), the density
of charge is zero in the bulk but both tangential and normal electric stresses appear at the
two-phase interface to balance with the viscous stress. Previous studies usually converted
the surface charge to the volume charge as a simplification (Das, Dalal & Tomar 2021;
Tian et al. 2022), since it is too difficult to directly solve the jumps of stresses at the
interface by the two methods. The electric volumetric forces are then included in the
momentum conservation equation as a numerical treatment. Fortunately, these limitations
can be addressed by a sharp interface method using an arbitrary Lagrangian–Eulerian
(ALE) algorithm (Kjellgren & Hyvärinen 1998), in which all mesh nodes are always
moving. The moving interface can be accurately captured by reconstructing the mesh.
The leaky-dielectric model and ALE technique have proven to be extremely applicable
for simulating electrohydrodynamic problems, such as pinching of charged jets (Nie et al.
2021), tip streaming and emission of charged drops (Collins et al. 2008; Wagoner et al.
2021) and electrospray in cone–jet mode (Herrada et al. 2012; Ponce-Torres et al. 2018).

In this work, we adapt the ALE technique to study the coalescence process of a
leaky-dielectric drop on a liquid–air interface under a vertical electric field. The objective
is to systematically investigate the influence of the electric field on the characteristic
parameters of the droplet–interface coalescence process. The rest of this paper is organized
as follows. The problem is formulated in § 2, wherein the physical model, governing
equations, initial and boundary conditions and numerical method are presented. Section 3
includes the parameter independence analysis of our model, together with a comparison
between our numerical results and experimental observations from the literature. Section
4 discusses the influence of the electric field on the characteristics of droplet–interface
coalescence. Finally, concluding remarks are given in § 5.

2. Problem description

2.1. Physical model
The coalescence process of a liquid drop on a liquid–air interface is numerically
investigated via axisymmetric ALE simulations using the commercial software COMSOL
Multiphysics. The system consists of a spherical liquid drop with radius R0 and a large
reservoir of identical fluid. The two-phase Navier–Stokes equations are solved in a
two-dimensional axisymmetric computational domain (r, z), which is a cylindrical region
with a radius of 6R0 and a height of 15R0 as shown in figure 1. Here r and z respectively
represent the radial and axial coordinates, such that r = 0 is the axis of symmetry, and
z = 0 and z = 15R0 are the two parallel positive and negative electrodes, respectively. The
width of the domain proves to be large enough to eliminate the influence of boundaries
at the time scales in this study (Constante-Amores et al. 2021). The horizontal liquid
reservoir has an initially uniform thickness of 3R0. A vertical electric field is then
produced by applying a positive voltage φ = φ0 at the bottom electrode. The top electrode
is grounded and thus the upward electric field is E0 = φ0/15R0. The time-dependent
computational domains of the two fluid phases are denoted by Ωi(t) as depicted in
figure 1. Here i = 1 represents the drop and the liquid reservoir and i = 2 represents
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Fluid 1 (ρ1, μ1, ε1, σ1)

12R0

3R0

R0

z

r

E∞

q Sf

γ

Ω2

Ω1

φ = φ0, u = 0

z

r

(b)(a)

z
r

rmin

(c)

Figure 1. (a) Two-dimensional axisymmetric computational domain used in numerical simulations of the
coalescence between a drop and a liquid–air interface under a vertical electric field. Initially, the drop and large
fluid reservoir are connected by a neck of radius rmin = 0.2R0 to ensure the continuity of the liquid domain.
(b) Three-dimensional schematic diagram of the system. (c) Zoomed-in view of the initial neck region.

the surrounding medium, which is air in this study. We assume the two phases are under
laminar viscous flow and are an incompressible Newtonian fluid with constant density
ρi, dynamic viscosity μi, electrical permittivity εi and conductivity σi. The liquid–air
interface is denoted by Sf with a constant surface tension γ .

We begin our simulations with an initially quiescent flow. Since the ALE technique
cannot handle the coalescence of two separate domains, there must exist a neck of finite
size between the drop and liquid reservoir for initialization. As shown in figure 1(c), at
the initial time t = 0, the resting drop is connected to the reservoir by a small neck of
radius rmin = r0 = 0.2R0. The choice of the initial size of the neck is verified in the next
section. From previous studies (Blanchette & Bigioni 2006; Martin & Blanchette 2015;
Constante-Amores et al. 2021), it proves convenient to adopt this for a convergent result.
Moreover, we note that a small Taylor cone may be formed at the gap between the drop
and the interface just before coalescence (Lukyanets & Kavehpour 2008). The locally
increased electric field gives rise to the deformation once the gap distance is far smaller
than the droplet diameter. Since the time scale is too short to affect the coalescence in this
study, we ignore the early deformation and assume that the initial interface is flat. Detailed
discussions are shown in the Appendix.

2.2. Governing equations
When the initial drop velocity is not very large, it is reasonable to non-dimensionalize the

problem by a characteristic length scale lc = R0 and an inertial time scale tc =
√

ρ1R3
0/γ .
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Then all variables will be made dimensionless (denoted with asterisks) using

(r∗, z∗) = (r, z)
R0

, t∗ = t√
ρ1R3

0/γ

, (u∗, w∗) = (u, w)

R0/

√
ρ1R3

0/γ

,

ρ∗
i = ρi

ρ1
, μ∗

i = μi

μ1
, ε∗

i = εi

ε0
, σ ∗

i = σi

σ1
,

p∗ = p
γ /R0

, q∗ = q
ε0E0

, Q∗ = Q

ε0E0R2
0
, E∗ = E

E0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where the flow velocity u = (u, w) represents the radial and vertical components of the
velocity vector. The pressure, the surface charge density, the surface charge and the electric
strength are denoted by p, q, Q and E, respectively. It is noted that we choose the properties
of the drop (i = 1) as characteristic scales, while the dielectric permittivities of both
phases are non-dimensionalized by the vacuum permittivity ε0 = 8.85 × 10−12 F m−1.
In what follows, all asterisks have been dropped and the corresponding variables are
dimensionless unless stated otherwise.

Since we focus on a liquid–air system, the density and viscosity ratios are fixed at
ρ2/ρ1 = 0.001 and μ2/μ1 = 0.0186 (i.e. air to water) to minimize the influence of the
surrounding medium. Then the velocity u and pressure p inside the liquid domain (Ω1)
are governed by the Navier–Stokes equations, which in dimensionless form are

∂u
∂t

+ u · ∇u = −∇p + Bo iz + Oh∇2u in Ω1, (2.2)

∇ · u = 0 in Ω1, (2.3)

where iz is the unit vector in the direction of gravity. The two dominant dimensionless
numbers in (2.2) are defined as

Bo = ρ1gR2
0

γ
, Oh = μ1√

ρ1R0γ
. (2.4a,b)

Here, Bo is the bond number that relates gravity (g is the acceleration due to gravity) to the
surface tension force and Oh is the Ohnesorge number, which is the ratio of the viscous
force to the inertial and surface tension forces. In both domains, the electric potential φ

obeys the axisymmetric form of the electrostatic equation:

∇2φ = 0 in Ω1 and Ω2. (2.5)

Then the electric field can be computed by the formula E = −∇φ. To solve the
electrohydrodynamic problem, Laplace’s equation (2.5) is coupled with the Navier–Stokes
equations by adding the Maxwell stresses into the traction condition (Aris 1990) of
tangential and normal stress balance along the interface Sf :

n · [T H
i + T E

i ]2
1 = κn on Sf , (2.6)

where [xi]2
1 = x2 − x1 represents the jump of a physical quantity x across the two-phase

interface and n the outward unit vector of normal direction at the interface pointing
to the air phase. On the left-hand side of (2.6), T H

i = −piI + Ohi(∇u + (∇u)T) is the
hydrodynamic stress tensor and T E

i = 2Γ εi(EE − E2I/2) is the Maxwell stress tensor
(Melcher & Taylor 1969). Here, I is the unit tensor and Γ = ε0E2

0R0/2γ denotes the
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dimensionless electric Bond number, which is the ratio of the electric force to the capillary
force. On the right-hand side of (2.6), κ = −∇ · n is the local mean curvature of the
interface.

In the leaky-dielectric model (Melcher & Taylor 1969; Saville 1997), the density of
charge is zero in the bulk but the charge distribution on Sf obeys the surface charge
transport equation, which in dimensionless form is

∂q
∂t

+ ∇s · (qu) − 1
Pe

∇2
s q = ε1αn ·

[
E1 − σ2

σ1
E2

]
on Sf , (2.7)

where q = n · [εiEi]2
1 is the surface charge density computed by the Gauss law, ∇s =

(I − nn) · ∇ is the surface gradient operator and E1 and E2 are the electric fields along
the interface Sf on the liquid and air sides, respectively. The Péclet number, Pe = R2

0/Dctc,
is defined as the ratio of the charge diffusion time scale R2

0/Dc to the inertial time
scale tc, where Dc is the surface diffusion coefficient. The dimensionless relaxation

parameter α = tc/te =
√

ρ1R3
0σ

2
1 /γ ε2

1 is introduced for measuring the importance of
charge relaxation, where te = ε1/σ1 is the charge relaxation time. It should be noted
that here ε1 is the dimensional electrical permittivity of fluid 1, while in (2.7) ε1 is
the relative permittivity (asterisk dropped) dimensionalized by ε0. The three terms on
the left-hand side of (2.7) represent the charge accumulation, the charge convection and
the charge diffusion, respectively. The source term on the right-hand side represents the
Ohmic conduction caused by the movement of free electrons. In our simulations, the
surrounding air is considered to be free of any electrons. Thus, the conductivity of fluid
2, σ2 ≡ 0, and the second term on the right-hand side of (2.7) has been omitted. When
the relaxation parameter α → ∞, the charge is entirely dominated by Ohmic conduction
and can accumulate instantaneously to the peaks and troughs of the interface. Then the
fluid can be regarded as a perfect conductor. When α is finite (e.g. α = 5.4 in the present
work), the charge convection and diffusion compete with the Ohmic conduction and thus
the charge transport would slow down (Nie et al. 2021).

On the interface, the velocity satisfies the kinematic condition (Scriven 1960):

n · (u − us) = 0 on Sf , (2.8)

where us is the local velocity on the interface Sf . For the electric potential, Dirichlet
boundary conditions on φ are imposed on the top (z = 12) and bottom (z = 0) boundaries,
and Neumann boundary condition ∂φ/∂r = 0 is imposed on the right-hand boundary
(r = 6). At r = 0, symmetry boundary conditions are imposed for both the flow and the
electric field. The no-slip and no-penetration conditions are imposed on other boundaries.

From the equations above, the dimensionless groups used to describe the results can be
summarized as the Ohnesorge number Oh, the electric Bond number Γ , the Bond number
Bo and the Péclet number Pe, which represent the roles of fluid viscosity, electric field
strength, gravity and charge diffusion, respectively. Moreover, the electrical properties εi
and α and the density and viscosity ratios ρ2/ρ1 and μ2/μ1 are kept constant in the present
work.

2.3. Numerical scheme
The governing equations for mass and momentum conservation (2.2) and (2.3),
electrostatic equation (2.5), traction condition (2.6) along with the surface charge transport
equation (2.7) are numerically solved by a moving-grid finite-element method (FEM)
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together with the weak formulation implemented in COMSOL Multiphysics. Following
the methodology described by Martínez-Calvo et al. (2020), equations (2.2)–(2.7) are
written in weak form by introducing the so-called test functions. First, we derive the weak
forms of (2.2) and (2.3) for fluid 1 by defining vu and vp as the test functions of the
velocity and pressure, respectively. Applying the Gaussian theorem and incorporating the
boundary conditions, (2.2) and (2.3) become

0 =
∫

Ω1

vu
∂u
∂t

dΩ1 +
∫

Ω1

vu(u · ∇u) dΩ1 +
∫

Ω1

vu∇p dΩ1 − Bo
∫

Ω1

vu(iz) dΩ1

+ Oh
∫

Ω1

(∇vu)(∇u) dΩ1 − Oh
∫

S1

vu(∇u) · n dS1 (2.9)

and

0 =
∫

Ω1

vp(∇ · u) dΩ1. (2.10)

Here, S1 represents the boundary of the domain Ω1. The solutions and test functions are
supposed to belong to the same function space, and we can assume that they satisfy the
same boundary conditions, e.g. vu satisfies the symmetry boundary condition on the axis
of symmetry and the no-slip condition on the other boundaries. Likewise, the weak form
of the electrostatic equation (2.5) reads

0 = −
∫

�1,2

∇vφ · ∇φ dΩ1,2 +
∫

S
vφ(∇φ · n) dS, (2.11)

where vφ is the test function of the electric potential and S is the boundary of the whole
domain (Ω1 and Ω2). On the interface, the surface charge transport equation (2.7) is given
as

0 =
∫

Sf

vq
∂q
∂t

dSf −
∫

Sf

(∇svq) · (qu) dSf + 1
Pe

∫
Sf

(∇svq) · (∇sq) dSf

−
∫

Sf

vq(ε1αn · E1) dSf +
∫

Pf

vq(qu) · n dPf − 1
Pe

∫
Pf

vq(∇sq) · n dPf , (2.12)

where vq is the test function of the surface charge density and Pf is the boundary point of
Sf . Moreover, the traction condition (2.6) along the interface is given as

0 = −
∫

Sf

vu(n · [T H
i + T E

i ]2
1) dSf +

∫
Sf

vu(κn) dSf , (2.13)

where the effect of the electric field is incorporated into the free-surface flow. The
boundary conditions of each equation are imposed to obtain the FEM solutions. Then the
computational domain is discretized by free triangular meshes. Importantly, the mesh is
heavily concentrated near the neck region while relatively coarser elsewhere. In the ALE
technique, the computational mesh inside the domains can change arbitrarily to deform
the interface during the coalescence process, which, however, results in an unavoidable
large deformation of the mesh. To handle this problem, we adapt the automatic remeshing
algorithm to enhance the convergence of the solution. When the mesh quality falls
below a specified value, the algorithm will automatically remesh the whole domain and
reinitialize the solution. During the calculation, the mesh size is always ensured to be
smaller than the neck radius. The time discretization is performed using the built-in
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Figure 2. Temporal evolutions of the minimum neck radius for different (a) grid numbers N, (b) Péclet
numbers Pe and (c) initial neck radii r0. The open symbols denote the results reported by Constante-Amores
et al. (2021) for surfactant-free droplet–interface coalescence. (d) Temporal evolutions of the droplet neck for
different initial neck radii r0. Here the dimensionless parameters are fixed at Oh = 0.02, Γ = 0.01 and Bo = 0.

backward differentiation formula. All variables are fully coupled by the constant Newton’s
method (Deuflhard 1974) with a constant damping factor of 0.9. To constrain the mesh
displacement, we adapt the Yeoh smoothing method (Yeoh 1993) since it allows the largest
displacement before the mesh is inverted. Considering that the ALE technique cannot
capture the topology changes when the computational domain is broken into separate parts
(Antonopoulou et al. 2020), the calculation will be automatically terminated, and thus only
the coalescence dynamics before pinch-off is discussed in this paper.

3. Validation of the numerical method

3.1. Parameter independence analysis
We first validate our numerical simulations by conducting parameter independence
analysis. Water and air are chosen as the two working fluids, the density and viscosity ratios
of which have been determined as mentioned above. To obtain the electrical properties, we
use deionized water (ε1 = 78ε0 and σ1 = 1 × 10−6 S m−1) as the leaky-dielectric fluid.
Thus the charge relaxation time can be calculated as te = 0.69 ms, which is less than
the electrocoalescence characteristic time of ∼10 ms (Anand et al. 2020). Considering
a spherical water drop with R0 = 1 mm, ρ1 = 1 000 kg m−3 and γ = 0.072 N m−1, the
relaxation parameter α = 5.4 is used in the following simulations.

Figure 2(a) shows the grid independence analysis for the variations of minimum neck
radii during the coalescence processes. Parameters used are Oh = 0.02, Γ = 0.01 and
Bo = 0, representing a universal case with the balance of inertial, viscous and electric
forces in the absence of gravity (Constante-Amores et al. 2021). Here the selected Péclet
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Figure 3. Comparison of our numerical results (second row) against the experimental results (first row) from
Aryafar & Kavehpour (2009) for coalescence of a 4 mm initial diameter drop on a planar interface under
an electric field of E0 = 3.27 × 105 V m−1. Here the surrounding medium is silicone oil with viscosity
of 10 000 cSt. The dimensionless parameters are Oh = 3.39 × 10−3, Γ = 0.022, Bo = 0.9, ρ2/ρ1 = 0.971,
μ2/μ1 = 9.7 × 103, ε1 = 78, ε2 = 2.5 and α = 19.6. Reprinted with permission from Aryafar & Kavehpour
(2009). Copyright 2009 American Chemical Society.

number for charge relaxation is set to Pe = 1 000. Initially the neck radius increases
quickly to reach the maximum value and then starts to decrease until pinch-off. We note
that the variations of rmin have no dependence on the grid number N, and thus the choice
of N = 50 000 is therefore sufficient. Moreover, comparison with the results (Oh = 0.02,
Γ = 0 and Bo = 0.001) from Constante-Amores et al. (2021) shows good agreement with
our simulations as depicted in figure 2(a).

For the choice of the Péclet number, figure 2(b) shows a universal profile of rmin
versus t for different Péclet numbers. Previous studies have demonstrated that the role of
surface charge diffusion is insignificant in charge transport provided that Pe 	 1 (Wagoner
et al. 2021). We also test the choice of the initially existing neck radius r0. As shown in
figure 2(c), decreasing the initial neck radius has a negligible effect on the variations of
rmin. Figure 2(d) further confirms that the value of r0 is not decisive in the coalescence
dynamics. However, a sufficiently small neck brings substantial difficulty in computational
efficiency. Therefore, all numerical results are obtained using r0 = 0.2 R0. Based on the
parameter independence analysis, we use N = 50 000, r0 = 0.2 and Pe = 1 000 for all
simulations in this study.

3.2. Comparison against experiments
Figure 3 shows snapshots of droplet–interface coalescence under an electric field from
the experiments of Aryafar & Kavehpour (2009), together with the present numerical
simulations. It should be noted that here the surrounding medium is high-viscosity silicone
oil. The corresponding dimensionless numbers are Oh = 3.39 × 10−3, Γ = 0.022, Bo =
0.9, ρ2/ρ1 = 0.971, μ2/μ1 = 9.7 × 103, ε1 = 78, ε2 = 2.5 and α = 19.6. A water droplet
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Figure 4. (a) Temporal evolutions of the coalescence sequence for Γ = 0 and Γ = 0.01. In both cases, Oh =
0.02 and Bo = 0. Black profiles denote the liquid–air interfaces within r < 3 at different moments, where the
time interval between the two consecutive profiles is t = 0.25. The times are given in dimensionless units.
(b) Temporal evolutions of the three-dimensional interfacial contours of the surface charge density q (left) and
the radial interfacial velocity u (right).

is initially released and then touches the interface. Under the electric field, the coalescing
droplet will form a Taylor-cone-like jet at its apex and then breaks up into a secondary
droplet. Our numerical results can well reproduce this phenomenon and show qualitative
agreement with the experiments of Aryafar & Kavehpour (2009); however, there are some
differences in the shape of the meniscus and sizes of the secondary droplets. We note that
this may be attributed to the initial velocity of the deposited droplet in the experiments,
which has been neglected in our simulations. Nevertheless, this work confirms that the
numerical model can capture the dynamics of droplet–interface coalescence under an
electric field.

4. Results and discussion

4.1. Mechanism of partial coalescence under an electric field
We begin our study by presenting the results of droplet–interface coalescence with and
without an external electric field. Figure 4(a) shows the time evolutions of droplet shapes
during the coalescence processes for Γ = 0 and Γ = 0.01. Here the other dimensionless
parameters are Oh = 0.02 and Bo = 0, indicating that gravity is negligible in our study. As
predicted by Blanchette & Bigioni (2006), partial coalescence occurs in both cases since
the critical Ohnesorge number Ohc = 0.026 ± 0.003 has not been reached. Moreover, the
time spent from the onset of coalescence to pinch-off, ∼1.7tc, is consistent with their
experiments. Figure 4(a) shows how partial coalescence occurs: the initial rapid expansion
of the neck generates a capillary wave along the whole interface, under which the original
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droplet starts to oscillate and deform. Once the capillary wave reaches its apex, the droplet
will be stretched upward to form a thin column as shown in the sixth profile (t = 1.25).
However, the surface tension force will pull the expanded neck inward, and consequently,
pinch-off will occur to leave a secondary droplet behind provided that the vertical collapse
is not enough to prevent it. The radius of the secondary droplet is nearly half that of
the original droplet, Rd = 0.556 for Γ = 0 and Rd = 0.585 for Γ = 0.01, denoting that
17 %–20 % of the volume will be ejected from the original droplet. It is clearly seen
that the electric field hardly affects the shapes of the interface during the initial stage
of coalescence. However, the electric field gives rise to a slight upward elongation of the
droplet as depicted in the last two profiles in figure 4(a). Both the size of the secondary
droplet and the pinch-off time increase when applying an external electric field.

Figure 4(b) shows the spatiotemporal contours of the surface charge density and the
radial component of the interfacial velocity. It can be seen at the early time (t ≈ 0.5)

in the velocity field that negative and positive interfacial velocities are created on the
interface above and below the neck point (rmin, zneck), respectively: u < 0 for z > zneck
and u > 0 for z < zneck. This pulls the neck inward and the higher part of the droplet
upward. When pinch-off occurs, the velocity is concentrated near the breaking point and
the radial interfacial velocity of the secondary droplet approaches zero. For the case in the
presence of an electric field, initially, the surface charge is q|t=0 = 0 and then is quickly
distributed across the interface as seen in figure 4(b). Whether the neck expands out or
narrows in, the charge will gradually concentrate at the apex of the secondary droplet,
indicating stronger electric stress in this region. Hence the droplet is stretched upward
compared with the electric-field-free case.

We now investigate the effect of an electric field on the temporal dynamics of the
minimum neck radius rmin and the maximum height hmax of the droplet. Figure 5(a)
shows the temporal evolutions of neck radius for different electric Bond numbers Γ . In
figure 5(a), the growth of the neck radius rmin follows a linear relationship with t for a
very short time. It can be seen during this expansion stage that these four curves almost
overlap, denoting that Γ has little or no influence on the initial neck growth. However,
at longer times, the rate of neck expansion decreases with Γ due to the electric force.
The maximum value of the neck radius decreases slightly when the electric field strength
becomes stronger. These observations are consistent with the experimental results of
Anand et al. (2020). During the subsequent shrinkage stage of the neck, increasing Γ

leads to a decrease in the neck radius until a transition time. After this time, the decreasing
rate of the neck becomes slower as Γ increases, and consequently, the bottom pinch-off
is delayed due to the presence of an electric field. Unlike neck radius, the maximum
height hmax exhibits a monotonically increasing dependence on Γ and the oscillation of
the drop apex due to capillary waves is well observed as shown in figure 5(b). Moreover,
the evidence for upward elongation of the droplet induced by the electric force can be seen
in this figure. For Γ = 0 and Γ = 0.01, hmax starts to decrease when arriving at the final
stage of pinch-off. However, for Γ = 0.02 and Γ = 0.03, hmax continuously increases to
reach a much higher value than the two former cases. This demonstrates that the electric
force has overcome the downward flow, thus lifting the droplet upwards.

It is noted that for Γ = 0.03 in figures 5(a) and 5(b), the calculation has been terminated
before rmin decreases to zero since a sharp singularity appears. A conical tip structure is
finally formed at the apex of the droplet as shown in figure 5(c), and consequently, a thin
fluid jet could be ejected, which is similar to the phenomenon of electrohydrodynamic
tip streaming (Collins et al. 2008). Due to the large difference in length scales between
the tip streaming (∼ 0.01) and droplet–interface coalescence (∼ 1), we do not simulate
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Figure 5. Temporal evolutions of (a) the minimum neck radius and (b) the maximum height of the droplet
during the coalescence processes for different electric Bond numbers Γ . (c) Tip streaming phenomenon and
the conical tip structure are marked for Γ = 0.03. Here, Oh = 0.02 and Bo = 0, which are the same as in
figure 4. The surface profile z, the charge density q, the normal electric stress jump TE

n and the radial interfacial
velocity u are shown for (d–g) t = 1.2 and (h–k) t = 1.63, where the coloured points represent the positions of
the neck. The abscissa in (e–g) and (i–k) corresponds to the arclength s, which is zero at the apex of the droplet.

the subsequent phenomenon. However, our results show that if the electric field is strong
enough, tip streaming will occur at the apex of the droplet before its bottom pinch-off.

Figure 5(d–k) shows the interfacial parameters, including the droplet shape z, the surface
charge density q, the normal electric stress jump TE

n and the radial interfacial velocity u.
Here we choose the results of t = 1.2 and t = 1.63 to study the effect of electric field
on the pinch-off dynamics. Droplet shapes for different Γ are given in figures 5(d) and
5(h), where the neck positions are all marked. On increasing Γ , both the droplet height
and the neck height are enhanced. At t = 1.2, most of the surface charge is accumulated
at the droplet apex. When the droplet approaches pinch-off, the surface charge at the
droplet apex for Γ = 0.01 and Γ = 0.02 increases slowly, whereas this for Γ = 0.03
rises markedly. Das et al. (2021) demonstrated the importance of charge convection due
to fluid flow in the electrohydrodynamic interactions between droplets. However, since ε1
and α are kept constant in our study, we do not discuss the effect of charge convection
on the coalescence dynamics. The accumulation of q near the apex modifies the electric
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field, thereby inducing a local increase of the normal electric stress jump as shown in
figure 5( j). Here, TE

n is defined as the normal component of the electric stress jump across
the interface:

TE
n = n · [T E]2

1 · n = Γ [ε2E2
2,n − ε1E2

1,n − (ε2 − ε1)E2
t ], (4.1)

where Ei,n = n · Ei and Et = t · Ei. The normal electric stress is the dominant electric
force that acts at the drop interface. It is seen from figures 5( f ) and 5( j) that the variation of
the normal electric stress is similar to that of the charge density. For Γ = 0.03, the normal
electric stress is much larger at the apex. However, as marked by the coloured points in
figure 5( j), the values of the normal electric stress become negative in the neck region for
the three electric-field-laden cases. Here TE

n ≤ 0 indicates that the electric normal stresses
are compressive (act inward) along the local interface (Wagoner et al. 2021). Although the
inward force favours pinch-off, the coalescence is still delayed under the outward electric
normal stress, which is along the rest of the interface and inhibits neck shrinkage. The
peak and trough in the curves of the radial interfacial velocity represent the direction of
the developing neck as depicted in figures 5(g) and 5(k). It is evident that u < 0 near the
neck region during the shrinkage stage. The magnitude of u decreases as Γ increases and
the overall shape in u is similar for all four cases. Further in time, as the curvature of the
neck increases, the negative interfacial velocity becomes sharper (large peak or trough) as
shown in figure 5(k), denoting the subsequent formation of pinch-off. It is noted in this
figure that the curves of u for Γ = 0.02 and Γ = 0.03 show little difference in the neck
region, while varying greatly in both ends of the interface, especially in the apex region.
This reveals that during the later stage of coalescence, the effect of the electric field on
neck shrinkage becomes less significant with increasing Γ , which is consistent with the
trend in figure 5(a).

After the above analysis, one remaining problem is how the electric field affects the
different stages of the droplet–interface coalescence. From figure 5(a) we conclude that
both the initial neck expansion and the eventual pinch-off are suppressed in the presence of
an electric field. Previous results show that the outward electric normal stress gives rise to
the suppression of pinch-off. However, the initial coalescence is also slowed down owing
to the electric force, and therefore the maximum neck radius decreases as Γ increases.
We plot the distribution of the interface charge density in figure 6. Since the bottom
electrode is positive, the surface of the liquid reservoir is positively charged; moreover, the
upper and lower parts of the droplet are positively and negatively charged, respectively, as
depicted in figure 6(a). The surface charge distribution at different moments is shown in
figure 6(b). Here, Oh = 0.02 and Γ = 0.03. At very early time (t = 0.01), positive and
negative charges are evenly distributed on both sides of the neck. Over time, the charge
starts to accumulate and increase. The peak of q first rises and then falls as shown in
figure 6(c). The result is consistent with that of Hamlin, Creasey & Ristenpart (2012).
They demonstrated that during the coalescence process, the charge at the droplet bottom
is pulled away by convection. However, before coalescence, the top half of the droplet
already contains charges of the opposite sign. The remaining charge accumulates on the
top and provides the electric driving force for the pinch-off. Additionally, we note that the
charge density is always negative at the neck. Then we plot the electric normal stress in
figure 6(d), which is found to be compressive (inward) in the neck region and particularly
much larger in the early time. For this reason, the electric field has suppressed the initial
coalescence and culminated in the reduction of the maximum neck radius. From figures 5
and 6, it is known that the electric normal stress will be compressive in the neck region if
there is a singularity, e.g. during the initial coalescence and the eventual pinch-off.
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Figure 6. (a) Schematic representation of the charge distribution on the interface during the initial
coalescence. (b) Charge density distribution in the neck region at different moments for Oh = 0.02 and
Γ = 0.03. (c) The charge density and (d) the normal electric stress jump on the interface with marked neck
positions.

Next, we turn our attention towards cases with a larger Ohnesorge number, where the
capillary wave is not strong enough to favour the pinch-off due to the highly viscous
effect. Blanchette & Bigioni (2009) reported the critical Ohnesorge number for partial
coalescence is Ohc ≈ 0.026 ± 0.003. Therefore, we set the Ohnesorge number to 0.03
because it allows for the observation of the transition from complete coalescence to partial
coalescence. Figure 7(a) demonstrates the time evolutions of droplet shapes during the
coalescence processes for Γ = 0 and Γ = 0.01. As expected, complete coalescence is
observed in the absence of electric field (Γ = 0). Upon coalescence, the capillary wave
moves towards the apex, leading to the formation of a thin column at t = 1.25, which is
similar to the results in figure 4. The surface tension pulls the neck inward to form the
pinch-off. However, under the highly viscous effect, the droplet starts to drain into the
reservoir and the pinch-off fails to occur. The neck will experience a second expansion
and shrinkage, resulting in a self-similar behaviour. The inset in figure 7(a) shows that
a small bulge forms at the interface centre at t = 2.5. The bulge moves downward and
finally the droplet completely merges with the liquid reservoir at t = 4. The coalescence
time is obviously larger than that where pinch-off occurs. Unlike the electric-field-free
case, partial coalescence is not prevented by the viscous effect for Γ = 0.01. The electric
force has overcome the interfacial forces, leading to the pinch-off of the droplet at t = 1.76.
Likewise, the spatiotemporal contours of q and u are given in figure 7(b). The charge is
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Figure 7. (a) Temporal evolutions of the coalescence sequence for Γ = 0 and Γ = 0.01. In both cases, Oh =
0.03 and Bo = 0. Black profiles denote the liquid–air interfaces within r < 3 at different moments, where the
time interval between the two consecutive profiles is t = 0.25. The times are given in dimensionless units.
The inset shows the interface shape at t = 2.5 for Γ = 0. (b) Temporal evolutions of the three-dimensional
interfacial contours of the surface charge density q (left) and the radial interfacial velocity u (right).

expected to concentrate at the apex of the secondary droplet and the electric force stretches
the droplet upward; therefore, the height of the droplet apex for Γ = 0.01 is higher than
that for Γ = 0. At t = 2.0, when the pinch-off does not occur for Γ = 0, the positive
(outward) interfacial velocity is observed on the interface below the neck point, which is
responsible for the formation of the small bulge as depicted in figure 7(a).

Figure 8(a) shows the temporal evolutions of neck radius for different electric Bond
numbers. It can be seen that the initial coalescence is slightly suppressed by increasing Γ .
During the first shrinkage stage, the neck radius decreases to zero, i.e. pinch-off occurs for
all electric-field-laden cases. Compared with the curves in figure 5, the effect of the electric
field is weakened by increasing the Ohnesorge number. For the electric-field-free case, the
neck radius will increase again instead of decreasing to zero, which is consistent with the
droplet shapes in figure 7. Note that we define the neck as the location where the radius
is minimum; therefore, the neck sometimes disappears during the second shrinkage stage
and the final coalescence as shown in figure 7(a). For this reason, the curve of the neck
radius will break as marked in figure 8(a). The temporal evolutions of the maximum height
are given in figure 8(b). We find a faster vertical collapse velocity for Γ = 0. Although
the dynamics is similar to the case with Oh = 0.02, which also exhibits a monotonic
dependence on Γ , there is no emergence of the tip-streaming phenomenon before the
final bottom pinch-off for Oh = 0.03. This sequence corresponds to the requirement of tip
streaming, where the capillary pressure at the droplet apex must be overcome by either
electrostatic pressure or dynamic pressure. Figure 8(c) shows a magnified view of the
secondary droplet’s tail at t = 1.76, and also shows a thin thread (∼0.001) connecting
the about-to-form secondary droplet to the interface. The formation of thin threads was
observed for Oh = 0.03 in all three electric-field-laden cases, while not for Oh = 0.02,
denoting that it can only be produced by the electric field when the Ohnesorge number is
high enough.

Likewise, the droplet shape z, the surface charge density q, the normal electric stress
jump TE

n and the radial interfacial velocity u are further provided in figure 8(d–k). Here
we choose the results of t = 1.3 and t = 1.75 to study the effect of the electric field on
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Figure 8. Temporal evolutions of (a) the minimum neck radius and (b) the maximum height of the droplet
during the coalescence processes for different electric Bond numbers Γ . (c) The structure of bottom pinch-off
at t = 1.76 is marked for Γ = 0.01. Here, Oh = 0.03 and Bo = 0, which are the same as in figure 7. The
surface profile z, the charge density q, the normal electric stress jump TE

n and the radial interfacial velocity u
are shown for (d–g) t = 1.3 and (h–k) t = 1.75, where the coloured points represent the positions of the neck.
The abscissa in (e–g) and (i–k) corresponds to the arclength s, which is zero at the apex of the droplet.

the coalescence dynamics. At t = 1.3, the effect of Γ on the instantaneous parameters
is similar to that previously observed in figure 5(d–g). The corresponding surface charge
density and normal electric stress jump are almost unaltered as compared with the cases of
Oh = 0.02. Moreover, it is clearly seen that the magnitude of the radial interfacial velocity
remains constant as Γ increases. This further demonstrates the weakened effect of the
electric field on the neck shrinkage process with a higher Ohnesorge number. The droplet
shapes at t = 1.75 given in figure 8(h) show that the neck radius for Γ = 0 is much larger
than that for Γ > 0. This arises due to the delayed neck shrinkage velocity caused by
the fast vertical collapse. As a result, the negative interfacial velocity is sharpest for Γ =
0.01 as shown in figure 8(k). Since tip streaming is avoided by the highly viscous effect,
the curvature of the apex decreases; therefore, the surface charge density and the normal
electric stress jump at the apex for Oh = 0.03 decrease slightly as compared with the cases
for Oh = 0.02.

The results in both figures 5 and 8 comprehensively indicate the effect of the electric
field on the partial coalescence, but for the underlying mechanism yet another question
has to be answered: Why does applying an electric field favour the partial coalescence
between a droplet and a liquid–air interface? It turns out that the electric force overcomes
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Figure 9. Temporal evolutions of the vertical location of the neck for (a) Oh = 0.02 and (b) Oh = 0.03.

the downward flow of the droplet and stretches the droplet upwards. According to Ray
et al. (2010), pinch-off could occur when the horizontal momentum exceeds the vertical
momentum. Alhareth & Thoroddsen (2020) suggested that the pinch-off is determined
by the interplay between the axial curvature κx = 1/ra and the azimuthal curvature κθ =
1/rmin. Here ra is the axial curvature radius of the neck point and rmin is the azimuthal
curvature radius (minimum neck radius). If the Laplace pressure p = γ (κθ − κx) is
positive, i.e. rmin < rc, the neck shrinkage will be promoted, finally leading to pinch-off.
These studies confirmed that the partial coalescence is related to the vertical and horizontal
motion of the neck. To identify this, we first plot the temporal vertical locations of the neck
in figure 9 with different Γ for Oh = 0.02 and Oh = 0.03. The figure clearly shows that
the initial neck height zneck grows in a similar way for all cases. We note that the maximum
neck height → 4, and this corresponds to the initial height of the droplet’s centre, denoting
the upward motion of capillary waves. Then the neck continues to drain into the liquid
reservoir, leading to pinch-off as expected for all cases except for Oh = 0.03 and Γ = 0.
The electric field slightly increases the neck height and the effect has little dependence on
the Ohnesorge number.

As shown by figure 9, there is little difference in the vertical motion of the neck in
the presence of the electric field. Hence, we turn our attention towards the horizontal
motion (expansion and shrinkage) of the neck. The two types of neck curvature radii,
rmin and ra, are defined in figure 10(a). Previous studies usually focus on the comparison
of the two radii at a certain moment (Zhang et al. 2009; Alhareth & Thoroddsen 2020;
Constante-Amores et al. 2021). In contrast to those studies, we plot the temporal evolutions
of rmin and ra during the whole coalescence process. Here the axial curvature radius ra in
the neck is calculated by ra = −1/(∇ · n). For the two cases with Oh = 0.03, complete
coalescence (Γ = 0) and partial coalescence (Γ = 0.01) are used for comparison as
shown in figures 10(c) and 10(d). During the first expansion stage, rmin 	 ra, and the
induced negative Laplace pressure p = γ (1/rmin − 1/ra) tends to expand the neck as
depicted in figure 10(b). Further in time, both rmin and ra start to decrease during the
first shrinkage stage. For Γ = 0, the two curvature radii are almost equal at t = 1.85,
but rmin > ra when t > 1.5, and this leads to the second neck expansion as shown in
figure 10(b). Finally, at t = 2.5, rmin 	 ra is responsible for the complete coalescence.
However, for Γ = 0.01, we find rmin < ra during most of the shrinkage stage so that the
positive Laplace pressure squeezes the neck towards pinch-off at t = 1.75.

963 A39-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.334


Electrohydrodynamic-induced partial coalescence

ra

rmin

Oh = 0.03
Γ = 0

Oh = 0.03

Γ = 0.01

Azimuthal radius of curvature rmin
Axial radius of  curvature ra

First expansion: rmin � ra (t = 0.05) 

First shrinkage: rmin < ra (t = 1.85) 

First shrinkage: rmin > ra (t = 1.75) 0.5 1.0 1.5 2.0

0.25

0

0.50

0.75

1.00
Γ = 0

r

t

Pinch-
off

0.5 1.0 1.5 2.0 2.5 3.00

0.25

0.50

0.75

1.00

r

t

Coales-
cence

First
expansion

First
expansion

Second
expansion

First
shrinkage

First
shrinkage

Second
shrinkaget = 1.85

rmin > ra 

t = 1.75
rmin < ra 

Upper

Γ = 0

Γ = 0.01

(b)

(a)

(d )

(c)

Figure 10. (a) Schematic of the neck region during the early coalescence process, with rmin denoting the
radius of curvature in the azimuthal direction and ra denoting the radius of curvature in the axial direction.
(b) Schematic of the neck region during the expansion and shrinkage stages for different Γ . Comparison
between the temporal evolutions of rmin and ra during the whole coalescence processes for Oh = 0.03 with
(c) Γ = 0 and (d) Γ = 0.01.

Figures 10(c) and 10(d) show that the sign of rmin − ra determines the outcomes of
droplet–interface coalescence: rmin − ra > 0 for complete coalescence and rmin − ra < 0
for partial coalescence. However, from the results in figures 5(a) and 8(a) we know that
rmin will be enhanced during the final shrinkage stage as Γ increases, and it seems to
favour complete coalescence. Actually, the electric field promotes the partial coalescence
by increasing the axial curvature radius ra, which is attributed to the vertical elongation
of the droplet driven by the electric force as depicted in figure 10(b). To verify this, we
conduct extra simulations by omitting the electric stresses added on the upper part (for
the definition, see figure 10a) of the droplet interface. Figure 11 displays the temporal
evolutions of the minimum neck radius and the maximum height for three cases with
Oh = 0.03. It is clearly seen that when the upper electric stresses are omitted, the electric
field does not promote the vertical motion of the droplet, and this gives rise to the final
complete coalescence even in the presence of an electric field. Moreover, neck shrinkage
is suppressed under the remaining electric force in the neck region. For this reason, we can
conclude that the vertical elongation of the droplet is indeed responsible for the occurrence
of partial coalescence.
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Figure 11. Temporal evolutions of (a) the minimum neck radius and (b) the maximum height of the droplet
during the coalescence processes for Oh = 0.03. The red dashed line represents the case omitting the upper
electric stresses.

4.2. Critical Ohnesorge number for partial coalescence
We now know that the occurrence of partial coalescence is determined by the interplay
between the viscous effect and the electric field, i.e. the dimensionless Ohnesorge number
Oh and the electric Bond number Γ . For the electric-field-free case, the critical condition
for partial coalescence has been clarified by Blanchette & Bigioni (2009). They determined
the critical Ohnesorge number as a linear function of the Bond number if the density
and viscosity differences of the two liquids are ignored. In this study, we focus on the
liquid–air system and neglect the effect of gravity; thus the critical Ohnesorge number
Ohc is independent in the absence of an electric field, which is reported to be 0.029 here
based on our simulations.

Before determining the critical Ohnesorge number Ohc in the presence of an electric
field, we first display the final shapes of cases where pinch-off occurs. Figure 12 shows the
interface shapes at pinch-off for a wide range of Oh and Γ . It is clearly seen that the droplet
is elongated to deform into a prolate spindle shape with a sharp bottom as the external
electric field increases. However, with increasing Ohnesorge number, the secondary
droplet tends to be spherical with a thin thread connecting it to the interface. The thin
thread is also observed in figure 8 and it may deform into a much smaller satellite droplet
after pinch-off. Figure 12 also depicts the drop deformation aspect ratio D as a function of
Oh and Γ . The Taylor deformation parameter is defined as D = (L − W)/(L + W), where
L and W are the vertical length and horizontal width of the deformed droplet, respectively.
Here D = 0 represents a spherical droplet. Figure 12 shows that larger deformation occurs
with higher Γ and lower Oh. Moreover, as Oh increases to the critical value for partial
coalescence, the aspect ratio D decreases to ∼0.1 for all electric-field-laden cases.

Based on the analysis above, it is concluded that the electric force promotes the vertical
elongation of the droplet, and overcomes the capillary and viscous forces, resulting in the
final pinch-off. In the critical state before pinch-off, the characteristic electric stress at the
droplet apex can be expressed by

FE ∼ 1
2ε0E2

0. (4.2)

The results in figure 12 enable us to assume the secondary droplet in the critical state to
be a spherical droplet with radius Rd. Thus the capillary pressure driving the inward flow
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Figure 12. Interface shapes of the droplet–interface coalescence processes at pinch-off for different Oh and
Γ . The rightmost shape of each row represents the case with critical Oh. Inset shows the deformation aspect
ratios D as a function of Oh and Γ .

can be given as

Fγ ∼ γ

Rd
(4.3)

and the resistive viscous stress scales as

Fv ∼ μ1Up

Rd
, (4.4)

where Up is the stretch velocity required for partial coalescence. We can determine the
transition from partial coalescence to complete coalescence by balancing the interfacial
stresses:

μ1Up

Rd
− 1

2
ε0E2

0 ∼ γ

Rd
. (4.5)

Following Hamlin et al. (2012), the apex velocity varies little during the coalescence and
is approximately equal to

√
γ /ρ1R0, which is the characteristic velocity scale of inertia.

Finally, substituting Up = √
γ /ρ1R0 in (4.5) and rearranging, we obtain

Oh − Γ
Rd

R0
∼ 1. (4.6)

Equation (4.6) prompts us to find the scale of Rd/R0 to determine the criterion for partial
coalescence. Hamlin et al. (2012) assumed that inertia balances the electric force when the
pinch-off occurs: QE0 ∼ ρ1U2

pR2
d, where Q is the charge remaining on the secondary

droplet. Using Q ∼ ε0E0R2
0, one can obtain the scaling Rd/R0 ∼ Γ 1/2. Thus, (4.6)

becomes
Oh − Γ 3/2 ∼ 1. (4.7)

Equation (4.7) demonstrates that Oh and Γ 3/2 have opposite effects on the coalescence
process. Therefore, it is reasonable to determine the critical Ohnesorge number Ohc as a
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Figure 13. Critical Ohnesorge number Ohc as a function of the modified electric Bond number with Γ ranging
from 0 to 0.03. Here the straight line represents the scaling prediction for Ohc beyond which partial coalescence
does not occur.

positive correlation of Γ 3/2. We then test this correlation against data from our numerical
simulations. In figure 13, Ohc is plotted as a function of Γ 3/2 and the straight line Ohc =
14.39Γ 3/2 + 0.029 is in excellent agreement with the simulations results. It proves that
this correlation can accurately capture the transition from partial coalescence to complete
coalescence in the presence of an electric field.

4.3. Size of secondary droplet
In this section, we turn our attention to the size of the secondary droplet. We first
display the pinch-off times for all cases. Figure 14(a) shows that the pinch-off time
increases with increasing Oh and increases sharply when approaching the critical state.
Our results in figure 4 demonstrate that the pinch-off time increases as Γ increases for
Oh = 0.02, indicating that the pinch-off has been delayed by the electric field. However,
figure 14(a) shows that increasing Γ leads to an overall reduction in the pinch-off time
when Oh reaches a critical value. We note that the trend becomes inverse once the partial
coalescence does not occur without the electric field. This can be attributed to the fact that
the effect of the electric field on neck shrinkage becomes much weaker as Oh reaches the
critical value; therefore, partial coalescence is only promoted by the upward force caused
by the electric field. As a result, the pinch-off time decreases due to the faster upward
motion with higher Γ .

Obviously, the ratio of the secondary droplet radius to that of the original droplet
depends on both Oh and Γ . In our simulations, we calculate Rd using Rd = (3Vd/4π)1/3,
where Vd = ∫ hmax

zneck
πr2 dz represents the volume of the secondary droplet. The studies of

Hamlin et al. (2012) indicate that Rd/R0 ∼ Γ 1/2. However, we find this scaling usually
holds in cases with high Ohnesorge numbers, where the secondary droplet tends to be
spherical. In most cases, the secondary droplet is not spherical except in the critical state
as depicted in figure 12.
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size ratio Rd/R0 versus the scaling prediction using the same data as in (a). Here Oh ranges from 0.005 to the
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Following Aryafar & Kavehpour (2006), we consider the volume of the secondary
droplet to be the escaped volume of the original droplet during coalescence, resulting
in (

Rd

R0

)3

= Vd

V0
∼ V0 − Qvt

V0
, (4.8)

where Qv is the average flow rate of the liquid into the reservoir, t is the coalescence
time and V0 is the volume of the original droplet. We assume the average flow rate is the
average cross-sectional area versus the characteristic velocity: Qv = πR2

0
√

γ /ρ1R0. The
coalescence time t can be considered to be the combination of the inertial and viscous
time scales, giving

t = a

√
ρ1R3

0
γ

+ b
μ1R0

γ
, (4.9)

where a and b are scaling constants. Substituting (4.9) into (4.8) produces

Rd

R0
=

(
1 − 3

4
a − 3

4
bOh

)1/3

. (4.10)

Equation (4.10) describes the size of the secondary droplet without the electric field. To
incorporate the effect of the electric field on the scaling, we can follow the same method
as introduced in § 4.2. Replacing the Ohnesorge number in (4.10) with the combination
of Oh and Γ 3/2, and using our simulation results to fit the constants, the size ratio finally
becomes a function of both the Ohnesorge number and the electric Bond number:

Rd

R0
= [0.22 − 2.5(Oh − 9.53Γ 3/2)]1/3. (4.11)

All of the secondary droplet sizes from figure 14(a) are replotted in figure 14(b) versus
(4.11). We see that the scaling prediction performs well over a wide range. Examination of
figure 14(b) suggests that the size range of the secondary droplet expands with an increase
of the electric field. This enables us to produce droplets of desired sizes, which could be
useful in microfluidic applications.
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5. Conclusion

In the present study, we have numerically investigated the effect of an external electric
field on the axisymmetric coalescence between a droplet and a liquid–air interface. A
leaky-dielectric model is fully coupled to Navier–Stokes equations in which the Maxwell
stresses are directly imposed across the liquid–air interface. The numerical method has
been validated against the experimental observation from Aryafar & Kavehpour (2009).
We observe that both the initial neck expansion and the eventual neck shrinkage are
suppressed by the electric field. The former is due to the contribution of compressive
electric stresses in the neck region during the early coalescence, whereas the latter is
induced by the outward electric stresses, resulting in the suppression of the final pinch-off.
These effects become weaker as the Ohnesorge number Oh increases. For smaller Oh,
increasing the electric field delays the pinch-off. However, as Oh reaches a critical value
above which partial coalescence does not occur, increasing the electric field leads to an
overall reduction in the pinch-off time. We have also shown that if the electric field
is strong enough, tip streaming will occur at the apex of the droplet before its bottom
pinch-off.

Moreover, we find that an increase in electric field strength favours the occurrence of
partial coalescence. We demonstrate that this is attributed to the vertical elongation of the
droplet caused by the electric force. As a result, the axial curvature radius is increased,
and the induced positive Laplace pressure squeezes the neck towards pinch-off. Using
the scaling analysis, we report a critical Ohnesorge number Ohc = 14.39Γ 3/2 + 0.029 to
quantify the transition from partial coalescence to complete coalescence in the presence of
an electric field, where Γ is the dimensionless electric Bond number. Moreover, the ratio
of the size of the secondary droplet to that of the original droplet has been determined
through our numerical results, which could be useful in microfluidic applications where
droplets of desired sizes are needed.
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Appendix. Influence of initial cone on coalescence

On account of showing the influence of the initial cone on the coalescence process,
figure 15 reports the temporal evolutions of the minimum neck radius, the maximum height
and the neck shape for the two cases where the initial interfaces of the reservoir are planar
or conical. Here Oh = 0.02 and Γ = 0.03. Initially, the setting of the cone shape is similar
to the experimental observation of Mousavichoubeh et al. (2011a) with an angle of about
4◦. We find that the cone primarily affects neck expansion during the initial stage. This is
attributed to the downward pulling force induced by the conical interface. In contrast, the
droplet height and neck shape are only slightly altered by the presence of the initial cone.
Since the initial cone is not decisive in the coalescence dynamics, we assume that initial
interfaces are all planar in our simulations.
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Figure 15. Temporal evolutions of (a) the minimum neck radius, (b) the maximum height and (c) the neck
shape of the droplet during the coalescence processes with planar and conical interfaces. Here, Oh = 0.02 and
Γ = 0.03.
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