
WEAK COMPACTNESS IN LOCALLY CONVEX SPACES
by I. TWEDDLE

(Received 1 August, 1967)

1. Introduction. In [2], R. C. James proved that a weakly closed subset A' of a real
Banach space is weakly compact if and only if each continuous linear form attains its sup-
remum on X. He also extended the result to the locally convex case, and, in [5], J. D. Pryce
gave a simplified proof of the general result that is recorded below for reference in the sequel.

THEOREM A. Let E be a real separated locally convex topological vector space with dual E'.
Let X be a subset of E such that

(i) X is a{E, E')-closed,

(ii) the closed convex envelope of X is T(£ , E')-complete.

Then X is o(E, E')-compact if and only if, for each x' eE', there exists an xeX such that

yeX

In this note, Theorem A is applied to give concise proofs of some results on weak compact-
ness. In § 3, a short proof of the theorem of Krein giving conditions for the weak compactness
of the closed convex envelope of a weakly compact set is derived. In § 4, a result on absolutely
convex weakly compact sets is established, which yields, as a corollary, a generalisation of
Rainwater's theorem on weak convergence of sequences. Finally, in § 5, a short proof of the
weak relative compactness of the range of a vector-valued measure in a quasi-complete space
is given.

Throughout, the term " locally convex topological vector space " is contracted to " locally
convex space ".

2. Complex spaces. It is well-known that, if £ is a complex locally convex space, E may
also be considered as a real space ER, and, in the separated case, if E'R is the real dual, the topo-
logies <x(£, E'), T(£, E') coincide with <r(£R, E'R), x(ER, E'R) respectively [4, p. 276]. This
allows the proofs of Theorems 1-3 below to be given only in the real case, where Theorem A
may be applied.

3. Krein's Theorem. Grothendieck has given an elegant proof of this result using
Lebesgue's theorem of dominated convergence, while Ptak and Namioka have given com-
binatorial proofs (for the first two proofs, see [4], pp. 327-333, for the third, see [3], pp. 157-
160).

Here Theorem A is employed to give a short proof.

THEOREM 1. (Krein) Let E be a separated locally convex space and let X be a a(E, £')-
compact subset ofE. Then the closed convex envelope Y of X is o(E, E')-compact if and only if
Y is T(£ , E')-complete (a condition which is automatically satisfied if E is quasi-complete).
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Proof. If Y is <r(£, £')-compact, it is a{E, £')-complete, and so T(£, £')-complete [7,
p. 105, Corollary].

Conversely, suppose that Y is T(£, £')-complete. Let x'eE', and let

a = inf <x, x'>, p = sup <x, x'>.
xeX xeX

There exists xeX, such that <x, x'> = /?, since X'\s o(E, £')-compact. Now the image of
Y by x' is [a, /?], and xeY. Hence

<x, x'> = sup <x, x'>.
xeY

The result now follows from Theorem A.

4. A result on absolutely convex compact sets. Let E be a separated locally convex space
with dual E', and let si be a family of subsets of E' such that

(i) every Xes& is CT(£", £")-compact and absolutely convex,

(ii) M X spans £'.

Let £ ' be the vector subspace of E' generated by the extremal points of the elements of si.
It follows, by the Krein-Milman Theorem [7, p. 138, Theorem 1], that (£, F') is a dual pair.

THEOREM 2. The same absolutely convex subsets of E are compact for the topologies
a(E, £') and a(E, F').

Proof. Let G' be the z(F', £)-completion of F'. G' may be considered as a vector sub-
space of the algebraic dual £* of £ [7, p. 101, Theorem 1 ]. Let Xe st, and let Y be the a(G', £)-
closed absolutely convex envelope of the set Z of extremal points of X. Then Y £ X, since X,
being a{E', £)-compact, is o(E*, £)-closed.

Now, on a compact convex set, a continuous linear form attains its supremum at an
extremal point of the set [4, p. 336, (9)], so that, for each xeE,

Thus

sup <x,x'> ^ sup <x,x'> = sup <x,x'> ^ sup <x,x'>.
x'eY x'eX x'eZ x'eY

sup <x,x'> = sup <x,x'> = <x,y'} for some / e Z g Y.
x'eY x'eX

It now follows, by Theorem A, that Y is CT(G', £)-compact, and so, by the Krein-Milman
Theorem, Y= X. Thus, since (J X spans £', we have F' c £' c G'.

Now the same absolutely convex sets of £ are compact for cr(£, £') and a(E, G') [7, p. 104,
Corollary 3]. Hence, by the above, these sets (and only these absolutely convex sets) are
compact for a(E, £').
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COROLLARY 1. Suppose that xn->0 under <x(£, £'), and that {xn} is a{E, E')-bounded.
Then if E is T(£, E')-seguentially complete, there is an absolutely convex a(E, E')-compact set
containing {xn}.

Proof. For every x{E, £')-continuous seminorm p, there exists m > 0, such thatp(xn) ^ m
for all n. Then, if (An) e /x , the space of sequences (<!;„) of scalars such that

|
n = l

we have

I P(K*n) = Z | K |P(x») g m £ | An| <oo,
n = 1 n = 1 n = 1

so that, by the sequential completeness of E, the mapping

n = l

maps / t into £. Its transpose t' is defined by

ln = l

for all ( Q e / , , x ' e £ ' . Thus t'(x') = «*„, x ' » , and so, by the conditions on (*„), t' maps F'
into c0, the space of sequences of scalars that converge to zero. Thus / is continuous for the
topologies a{lu c0) and a(E, F').

Now, the unit ball B of lt is a{lu c0)-compact. Hence t(B) is an absolutely convex
<r(£, F')-compact set containing {xn}. But, by the theorem, t(B) is also a(E, £ ' ) - c o mpact .

COROLLARY 2. (Rainwater's theorem [6]) (xn) is a{E, E')-convergent to x0 in E if (and only
if) it is a{E, F')-convergent to x0, and {xn} is a{E, E')-bounded.

Proof. It may be assumed, without loss of generality, that E is x{E, £")-c°mplete, for, if
E is the T(E, £')"completion of E, the same absolutely convex subsets of E' are compact for the
topologies o{E', E) and a{E', E) [7, p. 104, Corollary 3], so that the family si also satisfies the
conditions (i) and (ii) in the dual pair (E, E').

Then xn—xo-*0 under <j(E, F'), and {xn — x0} is a(E, 2s')-bounded, so that, by Corollary
1, {xn — x0} is a(E, £')-relatively compact. Suppose that (xn) is not o(E, £ ' ) " c o n v e r g e n t to x0.
Then there is a a{E, £')-neighbourhood U of the origin, and a subsequence (xn(k)), such that,
for all k, xn(k)—x0$U. But xnW—x0 -* 0 under a(E, F'), and F' separates the points of E.
Thus the origin can be the only a(E, £')-cluster point of (*„(,,) —x0), which gives a contradiction.

5. The range of a vector-valued measure. Let £ be a separated locally convex space with
topology t] and dual £ ' . Let S be a set, and Ji a <7-ring of subsets of S. A function m defined
on M and taking values in E, is called a vector-valued measure if, for every sequence (Xn) of
mutually disjoint elements of M,

n = l / n = l
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the series being unconditionally convergent (i.e. summable) in E under n. It can be shown, by
the Pettis-Orlicz Theorem, that m is then a vector-valued measure for all topologies of the dual
pair (£ ,£ ' ) •

Let R = {m(X): XeJt}, the range of m, and, for every XeJl, let

R{X) = {m(y): YeM, Ys X).

In [1], R. G. Bartle, N. Dunford and J. Schwartz showed that if E is a Banach space, and
Jl a <x-algebra, then R is a(E, £")-relatively compact. This is generalised in Theorem 3. First
is required the following

PROPOSITION. Suppose that the closed convex envelope of R is x(E, E')-complete, and let ^
be some topology of the dual pair (E, £"). Then in order that R be ^-relatively compact, it is
(necessary and) sufficient that R(X) be {.-relatively compact for all X&M.

Proof. Let (m(Xn)) be any sequence in R. Then, since

X= {)XneJt,
n = l

R(X) is a ^-relatively compact set containing {m(Xn)}. Hence (m(Xn)) has a ^-cluster point
in E. The result now follows by Eberlein's theorem [7, p. 110, Corollary, and 4, p. 316, (1')].

THEOREM 3. If the closed convex envelope ofR is r(E, E')-complete, R is o(E, E')-relatively
compact.

Proof. By the Proposition, it is sufficient to show that R(X) is a(E, £')-relatively compact
for all XeJt.

Let x'eE'. Then x ' o m is a finite signed measure on (S,Jt)- Let XeJt and let
X = Xx u X2 be a Hahn decomposition of X with respect to x' o m, so that x' o m is non-
negative on Xi, ( —x')om is non-negative on X2, and X1c\X2 = 1b [8, p. 32, (14.1)].

Let R(X) denote the a(E, £">dosure of R(X); then

sup <x, x'} = sup <x, x'> = sup x' o m(Y) = x' 0 m ^ ) = <m(A'1), x'>.

Thus by Theorem A, R(X) is a(E, £")-comPact> from which the result follows.

Remark. It is well-known that R is always bounded; in fact the proof is implicit in the
above. Thus the completeness requirements of the Proposition and of Theorem 3 are auto-
matically satisfied if E is quasi-complete.

I wish to thank both Professor A. P. Robertson and Dr. Wendy Robertson for many useful
discussions leading to the presentation of this note.
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