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Abstract. We discuss weak disjointness of homomorphisms of minimal transforma-
tion groups and use the techniques involved to deepen our knowledge of the
equicontinuous structure relation.

0. Introduction and notation
A topological transformation group (ttg) is a triple #? = (T, X, IT), where T is a T2

topological group, X is a compact T2, (CT2), space and 7r:TxX->Xisa continuous
map such that n(e, x) = x and ir(s, ir(t, x)) = ir(st, x). I.e. T acts as a continuous
group of homeomorphisms on X. We shall fix T and suppress the action symbol.

Let c£ be a ttg, x e X, then Tx (Tx) denotes the orbit (-closure) of x in X and a
subset A £ X is called invariant iff Ta c A for every a e A A ttg %£ is called minimal
iff X contains no proper closed invariant subsets, 3£ is called ergodic iff every
invariant open subset of X is dense. An example of an ergodic ttg is a point-transitive
ttg, which is a ttg with a dense orbit. A ttg is minimal iff every orbit is dense.

For (our fixed) T there exists a universal point-transitive ttg 5 T̂, such that T can
densely and equivariantly be embedded in ST. The multiplication on T can be
extended to a multiplication on ST, then 5T is a closed semigroup with continuous
right translations. The universal minimal ttg HJJ = (T, M) for T is isomorphic to every
minimal left ideal in ST and so M is a closed semigroup with continuous right
translations. Hence the collection J-=J(M) of idempotents in M is non-empty.
Moreover, {vM\veJ} is a partition of M and every vM is a group with unit
element v.

The sets ST and M act on X as semigroups and Tx = STx, while for a minimal
ttg 3f we have Tx = Mx for every x e X. Let x be an almost periodic point in X, i.e.
Tx is minimal, then denote the non-empty set {vej\vx = x} by Jx. Note, that for a
ttg 3f, 7X is the collection of almost periodic points in X.

Proximality is another dynamical concept that can be described by the action of
ST. Two points x, and x2 are called proximal iff
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Let °UX be the unique uniform structure of X, then

P = D { r a | a e % x }

is the collection of proximal pairs in X, the proximal relation; if P = X x X then 3?
is called proximal. It turns out that x, and x2 are proximal in % iff vxx = vx2 for
some idempotent v e ST iff there is a minimal left ideal / in ST such that px, = px2

for every pel.
Let 2X be the collection of non-empty closed subsets of X endowed with the

Vietoris topology [13]. Note that a base for the Vietoris topology on 2X is formed
by the sets

<[ / , , . . . , Un):= | A e 2 x | A c | J Ut and A n t / , ^ 0 foreveryii ,

where I/, is open in X. Then 2*:={T, 2X, n) defined by ir(t, D) := 7r[{f} XD] is a
ttg again, and ST acts on 2X too. To avoid ambiguity we denote the action of ST

on 2X by the circle operation as follows. Let p e ST, then for D e 2X define
p°D:=lim2

x ttD for any net {*,}, in T with *,-»/>. Moreover

p«D = {x e X|there are d, e D with x = lim t4t),

for any net r, -* p in T. If F c ST, D e 2X then we define

A homomorphism ofttgs<j>:$£^> ^ is a continuous map <j>: X -» Y of the phase spaces
of the ttgs such that <l>(tx) = t<f>(x) for all teT, x e X. Define

then Y = X/R^ The map # is called proximal iff R+zP iff

Let <f>:2?^3£ and i/>:<3/->3? be surjective homomorphisms of ttgs, then <j> and ifi
are called disjoint iff R^ := {(x, _y) | $(*) = </'(>')} is minimal, notation <f> J_ i/»; <f> and
t/> are called weakly disjoint iff i ? ^ is ergodic, notation (p — i//.

In §2 we shall relate weak disjointness of homomorphisms of ttgs to that of their
maximally equicontinuous factors. A homomorphism of ttgs is called equicontinuous
or almost periodic iff for every a e °UX there is a /3 € aUx such that TanR^s /3. Let

be the regionally proximal relation and define the equicontinuous structure relation
E$ to be the smallest closed invariant equivalence relation that contains Q^. Then
<f> •.!%-><<!/ is almost periodic iff Q^, = AX. If <£:£?f-» °U is a homomorphism of ttgs,
then 0: ̂ / E ,̂ -» <2/ is the maximal equicontinuous factor of <f> (also called the maximal
(uniformly) almost periodic factor of </>).

Before we can discuss the material in § 2 we need to collect some results concerning
the equicontinuous structure relation of certain types of homomorphisms of minimal
ttgs, which will be done in § 1. Most of the results in § 1 are known, but the results
in 1.9d and 1.16b seem to be new.

In § 3 we refine our knowledge about the regionally proximal relation being an
equivalence relation. We prove that in several cases (RIC, Be, RIM see § 1 for
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definitions) we have

£* = <?* = n {intRiTa n J?J a e %x} ( = Q j ) .

Note that it was already known that E+ = Q^ for open Be extensions [2], Be
extensions [15] and open RIM extensions [16].

In § 4 we return to the transitivity of the regionally proximal relation and translate
some of the ' # -ideas' as revealed in § 3 to the idea of regional proximality of second
order.

A more detailed discussion about ttgs may be found in [3] and, with more
notational resemblance, [10] and [15]; for a function-algebraic approach see [5].

We would like to thank J. de Vries for his many valuable suggestions, and T. S.
McWoulander for his communications.

1. Some generalities
Let X be a CT2 space and let W{X) be the collection of regular Borel probability
measures on X provided with the weak star topology; i.e. a net {/n.}. in Wl{X)
converges to /JL e 2JJ(X) iff \fd\Xi converges to $fd(i for all real valued continuous
functions / on X. Then 3JJ(X) is a CT2 space in which X is embedded by the
mapping x>-»5x, where 8X is the dirac measure at x. If <f> •.%?-*?!/ is a continuous
map between CT2 spaces, then 4> induces a continuous map 3K(</>): W{X)-*Tl(Y)
which extends <f>. Note, that 3ft(</>) is surjective (injective) (homeomorphic) iff <j> is.

Let 3f be a ttg for T. For te T and fieWliX) define t(ieWl(X) by tti{A) =
/x(f~'A); or, what is the same, \fd{t^) = \ftdyi, where ft:X-*U is defined by
ft{x)=f(tx). Also one could say tfi:=Tt(ir')(iJ,), where v':= x>->fcc:X->X. One
can show that

is continuous. So 2R(#f) is a ttg for T. If <f>: %^ <& is a homomorphism of ttgs, then
3ft(</>): m(%) + m(<&) is a homomorphism of ttgs.

A surjective homomorphism <f>:%?-> <W of ttgs is said to have a relatively invariant
measure {<j> has a RIM, </> is a RIM extension) if there exists a continuous
homomorphism A: ̂ - • ^ ( i i f ) of ttgs such that

is just the (dirac) embedding. In other words: $ is a RIM extension iff for every
ye Y there is a Aye2R(X) with supp \y<= <f>~(y) and the map y^>\y: W^WliX) is
a homomorphism of ttgs; this map A is called a section for <j>. If <j> is a RIM extension,
then, a point x e X is called a supprim point if for some section A for <f> we have
xesupp A^,(x). In particular, <£:#f-*{*} has a RIM iff Sf has an invariant measure
iff 37i(3f) has a fixed point. In case $£ is minimal it follows easily that every point
of X is a supprim point. Another example of a RIM extension is an almost periodic
homomorphism of minimal ttgs, which has a unique section and every point is a
supprim point. For more details on RIM extensions see [9]. RIM extensions of
minimal ttgs turn out to behave nicely with respect to the interpolation of maximal
almost periodic factors, i.e. with respect to the equicontinuous structure relation.
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(1.1) THEOREM ([11,2.2]). Let <£:#f-*<& be a RIM extension, then <j> is open in the
supprim points.

In [11] a technique is developed to investigate the equicontinuous structure relation
for RIM extensions. The most important results are 1.2 and its consequences 1.3
and 1.4 below.

(1.2) THEOREM. Let <£:#?-» ^ be a homomorphism of minimal ttgs, and let </>: £Sf-» <3/
be a RIM extension with section A (££ not necessarily minimal). Let xe X and let V
be an open set in Z. Then

(1.3) COROLLARY. Let </>: $f-» <H be a RIM extension of minimal ttgs with section A.
Then for every xeX with xesuppA^( x) we have the equality E4>[x]= Q^[x]. In
particular, if a minimal ttg 8? has an invariant measure then Ex - Qx.

(1.4) COROLLARY. Let </>: #f-» <& be a RIM extension of minimal ttgs. Then

£* = <?<*> ° ̂  = **° <?<*,= {(x,, x2) e K j (ux,, ux2) e Q* for some u e J}.

Two other types of extensions that behave nicely with respect to the equicontinuous

structure relation are the Be extensions and the RIC extensions.
Let <f>:%!-> 2£ and <p: <&-> 2£ be surjective homomorphisms of ttgs (not necessarily

minimal). Then the pair (<f>, ifi) is said to satisfy the generalized Bronstein condition
(gBc) if JR+t = R+t,; i.e. if the almost periodic points are dense in RM. If JR^ = Z?̂
then 4> is said to satisfy the Bronstein condition (Be); we shall also say that <f> is a
Be map or a Be extension. We say that <f> satisfies the n-fold Bronstein condition for
certain n e ftJ whenever

Rl := {(*„ . . . , xn) e X"|*(x,) = • • • = <MxJ}

has a dense subset of almost periodic points (notation: <f> is n-Bc). So <j> is a Be
map iff <j> is 2-Bc.

A homomorphism </>: #f-» 2£ of minimal ttgs is called a RIC extension iff 4>"(z) =
u°u<j>^{z) for every zzZ and for every u e Jz (RIC stands for Relatively InContract-
ible). Note that a RIC extension is an open extension ([10, X.I.1]). Examples of
RIC extensions are almost periodic, distal, and open point distal maps.

The proof of the next lemma is straightforward and will be omitted.

(1.5) LEMMA. Let X be minimal. Consider the diagram of surjective homomorphisms:

The following statements are equivalent:
(a) <f> and ifi satisfy gBc;
(b) R^ = T({x} x M(/»"~(£(x)) for some xe X and some ueJx;
(c) R^ = T{{x} xui/f<"</)(x)) for every xe X and every u e Jx.
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Two other useful remarks concerning dense sets of almost periodic points are:

(1.6) REMARK. (Hypotheses as in 1.5.) Let ueJ. Then <f> and i/r satisfy gBc iff

ip'~ij>(x) = Jx°inlf'~<f>(x) for every xeX.

In particular, <f> is a Be extension iff<j>^^{x) = Jx°u<t>"<t>(x) for every x<=X.

Proof. The ' i f part is obvious.
Conversely, let x e X and y e ^<f>(x). Then, by 1.5c, (x, y) = lim u{ux, uyt) where

uyt&u^4>{ux) = wji"4>{x). After passing to a suitable subnet let p = lim r.MeM
Then it follows that

y = limtiuyiep°inl/'~<l>(x) and px = x.

For veJ with vp = p we have vejx and

y €p°u^i"4>{x) = p°up'1 upi/'<~</>(x) c v°upil/*~<f>(x)c v°u\fj^<f>{px) = v°uil/"<f>(x).

So ye v°utlf"<f>{x)S:Jx°uili't~<l>(x). •

(1.7) REMARK. Let (/>:#?-» ^ be a homomorphism ofttgs with <& minimal and d£having
a dense subset of almost periodic points. Then <j> is semi-open (i.e., for every non-empty
open Uc X, <f>[U] has a non-empty interior in Y).
Proof. The remark is well known for 3f minimal. Let % have a dense subset of
almost periodic points and let UzX be open and non-empty. Then Un Z J£ 0 for
some minimal orbit closure Z in X. As <t>[UnZ] has a non-empty interior in Y
the remark follows. D

For the following denote by (w</>^(z))n the cartesian n-power of utf>^{z); and by
2% the 'relativized hyper ttg', defined as a subttg of 2X by

2£ := {A 6 2X14>[A] is a singleton}.

The simple proof of the following lemma is 'eft to the reader.

(1.8) LEMMA. Let <f>:X->2£bea homomorphism of minimal ttgs.
(a) <{> is n-Bc iffRl = clX" [T.(w</>"(z))n] for every z 6 Z and every u e Jz.

(b) If 4> is n- Be for all neN, then for every zeZ and every ueJz the set

\J{t{xu ...,xn}\Xie u(t>~(z), neN,teT}<=2%

is dense in 2$.

(1.9) THEOREM. Let $:#?-» 2? be a homomorphism of minimal ttgs. The following
statements are equivalent:

(a) </> is a RIC extension;
(b) <f> -L </f for every proximal extension i/r 'S' -» 3? of minimal ttgs;
(c) <£ and i/f satisfy gBc /or every t/>: "3/ -» 3f wifn 'S/ having a dense subset of almost

periodic points;
(d) </> is open and n-Bc /or every «eN.

Proo/ (a) and (b) are equivalent by [10, X.I.3].
(a) =» (c) Let U x VnR^ be a non-empty (basic) open set in R^. As <j> is open

and \l> is semi-open (1.7),

Vf
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is a non-empty open subset of Z and <f>[U'] = \\i[ V']> where U':= Un $*"[ W~\ and
V':= Vnil>*-[W].

Let ye V be an almost periodic point, say y = vy for certain veJ, and let
x e U'n<f>*~((i(vy). As <f> is RIC, x e v°v<f>^ip(vy) so x = lim tjVXj for some net t,-* v
and VXJ e (j)^ip(vy). Hence (x, y) = lim t,(vXi, vy), and for certain i0

Consequently R^ has a dense subset of almost periodic points.
(c)=»(d) Follows by induction from the observation that J ^ ^ ' s R ^ , , where

•q: m I -> 2E is the restriction of <t>": %n -> 2£n.
(d)=>(a) Let z e Z and ueJz. By 1.8b, there are sets f,{x',,..., x'n) with x]e

u</>*~(z) which in 2 j converge to <t>"(z). As

^{x1,, . . . , x'n} = tiU{x\,..., x(
n}c tiu°u4>~{z),

it follows that

<t>"(z) = lim tt{x\,..., x'n.} c Hm ttu o w< )̂*"(z) = p°u<f>"(z),

where p = lim <jW e M (after passing to a suitable subnet). But, clearly, p°u<j>"{z) c
<t>"(pz), so z = />z and z = Mp~'z. By openness of <f> we know that <f>^(z) =
Mp~'°</)<~(z), so

4>^{z) = up~l°ct>"(z)c up'1°p°u4>"{z) = u°U(j>"(z).

Obviously, U°M<£"~(Z)£ <£"~(Z), which shows that ^ < " (Z) = M ° U ^ " ( Z ) . •

There are several ways to study the equicontinuous structure relation for Be
extensions:

(i) Elementary, using some trickery with syndetic sets and the uniform structure.
In [2, th 3], it was proved that E$ = Q^ for open Be extensions <£ of minimal ttgs,
so certainly for RIC extensions. A suitable 'shadow diagram' ([7]) finishes the
general Be case.

(ii) Using our knowledge about (open) RIM extensions ([11], [16]) and a(nother)
shadow diagram ([9]).

(iii) The method of the g-topologies ([8], [4], [7] and [15]).

With help of the g-topologies one tries to imitate the properties of a compact group
action. We shall briefly describe the g-topologies and some of their properties,
resulting in a first description of the equicontinuous structure relation (1.16, 1.17).
Our approach will be based upon [15] which will also serve as a general reference.

First we shall specify a certain neighbourhood base for u in M (for the usual
topology). Let V be a subset of T such that u€int S r C1ST [V], and let h(V):=
C1ST [V\nM. Then define

V(u):={teT\tueintMh(V)}.

Clearly, V(u) is open in T, but in general V and V(u) do not coincide. However,
the collection of subsets V of T for which V and V(w) are the same can be used
to define a neighbourhood base for u in M, as follows.
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(1.10) LEMMA. The collection {h (V) | V = V( u) c T, u e intSr C1ST [ V]} forms a neigh-
bourhood base for u in M.

Let f b e a ttg. We shall define a topology g(#f, w) on uX = {xeX\ux = x} by
specifying a neighbourhood base for every x = ux in uX. So let x e uX. A typical
neighbourhood of x in (uX, %{%, M)) will be a set of the form

[U, VjnuX with[U,V]:=\J{t~lU\t<=V},

where U is a neighbourhood of x in X (usual topology) and V is an open subset
of T such that weintST clSr [V] and V=V(u). The union of those neighbourhood
bases forms a base for the ¥;{%!, w)-topology on uX.

(1.11) Properties, (a) The 2K^> w)-topology can be denned by the closure operator
A ( A ) ( A X )

(b) (uX, $•(#?, u)) is a compact T, topological space;
(c) Aa:x>-»ax:(uX, S(#?, u))-*(uX,$($?, w)) is a homeomorphism for every

a e uM;
(d) A^IXI-^UX^UX, S(3f, w))^(t;X, %{%, v)) is a homeomorphism for every veJ.

A special case is (uM, %{Tl, u)). With the t?(3K, u)-topology MM is a group with a
compact Ti underlying space and not only the left translations are homeomorphisms
(1.11b) but also the right translations and the inversion are. This space (uM, S(3K, "))
is some sort of prototype for the ^-topologies; i.e. we can consider the ^-topologies
as quotients of the ^(Tl, u)-topology.

(1.12) THEOREM. Let <£:#f-»(3' be a homomorphism of minimal ttgs and define the

map <(>u by
<f>u - <t>lx-.(ux, s(ar, «))-* («v, S(»,«)) .

Then
(a) (f>u is a homeomorphism iff $ is proximal;
(b) <f>u is a closed continuous surjection;
(c) <f>u is open.

Proof, (a) [15, 2.5.8].
(b) [15, 2.5.7].
(c) It is well known (e.g. [10, X.3.2]) that there are proximal maps a and T and

a RIC extension <£' such that T°<J>' = <f>°o; ([EGS diagram]). From (a) it follows
that it suffices to show that <f>'u is (5-open; or better, it follows that we only have to
prove the statement for RIC extensions.

Let <f> be a RIC extension, xe uX and let [U, V]n uX be an %{$£, w)-neighbour-
hood of X in uX with V= V(u) open in T and U is a neighbourhood of X in X.
As (f> is open, it will follow that $u is open. First note that

4>u\LU, V ] n u X ] c « [ / , V}]n<f>[uX] = [<t,[U], V]nuY.

Let y=uye[<f>[U], V\nuY, then y = 0 ( r ' x ' ) for some te V and x'e U. As <f> is
RIC we have z:= r ' x ' e <j>"{y) = u°u<f)^{y). Let {rj, be a net in T with fj-»u and
let x, e utp"{y) be such that 2 = lim f,Xj. Since left multiplication with t is a homeo-
morphism we have «jX,-»tz = x' and tt^tu, hence tttu->tu. As f € V= V(M) we
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have tueintM (C1ST [V]nM), so tttueintM (C1ST [V\nM) eventually, hence ttte
V(u)= V eventually. Also Mfx,€ U eventually, so we can find some i0 such that
Miox«oe U an<* ttioe -̂ Th's shows that

so x^e[I/, V]nu4>"(y). Hence x^e[t/, V]nwX, while <f>(xh)=y and so it follows
that y G <£„[[£/, V]n MX], which implies

in the case where </> is a RIC extension. (Compare [7, Cor. 3.3.] for another approach.)

•
As every minimal ttg #f is a factor of 2J2, it follows from 1.12 that (uX, $(if, «)) is
an open, closed and continuous image of (uM, $(2ft, u)). So («M, g(3JJ, M)) plays
a central role in the observations about ^-topologies.

Let $f be a minimal ttg, x0 = ux0 e X. Then define the Ellis group ©(#?, A0) of 3? with
respect to x0 by

o) = {aeuM\axo = xo} (= uMnP;(x0)) .

Clearly, ®(#f, x0) is a subgroup of wM. As p^: a i-» ax0: S?J-> %? is a homomorphism
of minimal ttgs and (uX, %(%, u)) is T,, it follows from 1.12b that ©(^, x0) is

, w)-closed. Note that, by !.12a, <!>:%^<y is proximal iff ©(#, MX0) =

On the other hand, if F is an $(9K, M)-closed subgroup of uM, then there exists
a minimal ttg 91 (F) defined by

9l(F):={poF|/>eM}s2M,

such that F = ©(Sl(F), u°F), i.e. F is the Ellis group of 9l(F) with respect to u°F.

(1.13) The ttg 9l(F) is the universal minimal proximal extension of every minimal
ttg 3f with Ellis group F. So let xo=wxo€X be such that ®(#f, xo) = F, then
a:p°FWpxo-.'H(F)-*3£ is the maximally proximal extension of 2£. Note that every
extension i//: (&^%{F) is a RIC extension (use 1.9b and the universality of 2I(F)).

Let (f>:9£^> <& be a homomorphism of minimal ttgs, xe uX, y = <f>(x) and F = ®(^/, y).
Then «</>*"(_y) = Fx. Let 3JX denote the 3K^, w)-neighbourhood system of x in Fx.
Define ([15])

E(x) := £(x, 4, u) = D {cl^,u ) U\ U e ??x}.

For p^:pi->py:3K-> <3/ we have H(F):= F.(M, p ,̂ M) is the smallest $(3Jl, u)-closed
normal subgroup K of F such that F/ K is a CT2 topological group.

By 1.12, it follows easily that £(x) = H(F)x. It turns out that {E(x')\x'e Fx}
forms a partition of u<p^(x) and that F/H(F) acts on it as a CT2 topological group.
This is what we meant by imitating the compact group action (discussion after 1.9).
Paraphrazed, we may say that in H(F)x we collect all the non-equicontinuous
garbage for <f> in u<j>~(y), which might be illustrated by the following theorem ([6,
5.4, 6.3]).
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(1.14) THEOREM. Let <£:#?-» <3/ be a Be extension of minimal ttgs, xeuX and
F = &(%4>(x)). Then E^[x] = J<i>(x)H(F)x, (so

The next lemma is a slightly modified version of a crucial idea in [15].

(1.15) LEMMA. Let <j>:3S'-* <8f be a homomorphism of minimal ttgs, xeuX, F =
©("3/, <£(*))> and denote by 3lx the collection of %(%£, u)-neighbourhoods of x in
U(f>^ <f>(x) = Fx. Then

u°FxnJH(F)xcu°U for every U' = 31 x.

Proof. Let U be an open g(3?, u)-neighbourhood of x in Fx. Then 0 = {fe F\fx e U}
is an $(3ft, «)-open neighbourhood of u in F, so 0 n 0~' is an 3K3W, u)-neighbour-
hood of M in F, hence V' = (OnO~')x is an open $($?, w)-neighbourhood of x in
Fx and 1/gU. Note that V is symmetric in the sense that f o r / e F we have ./xe V
iff/~'xe V, and remark that clR(#,U)V is symmetric too.

Define A := intS(#>u) clS(ir>u) V̂  in the relative 3(3?, w)-topology on Fx. We claim
that

{A}u{gV|geF and gxicl^^y V}

is an %(%!, u)-opening covering of Fx, and prove it as follows:
Let fe F be such that fx£ A; i.e.

fx e Fx\A = cl3(*.iU) ( F x \ c l R ( a > ) V).

So we can find a net {/x}; with/x e Fx\cly(x,U) V̂  such that/x -*fx in the g(3f, u)-
topology. Since

A,-.: (Fx, g(af, u))-»(Fx, g(3f, «))

is a homeomorphism, /~ ' / x -»x in the f?(3f, «)-topology. As V/€3?x, there is an i0

with/"'/^xe Wand by symmetry of V, f^'fxe V. Hence fxef^V, where fhe F is such
that/^xe Fx\clR(a>)U) V, which establishes our claim.

By compactness, there are finitely many g, e F with g,xg clma.u ) V, say g , , . . . , gn,
such that

As {A} u {g,V| i € { 1 , . . . , «}} is a finite collection it follows that

u°Fx=u°(Av\J{gy\ie{\,...,n}}) = uoAuU{u°giV\i£{h ••-,"}}•
Now let x 'e7H(F)xn«°Fx, say x' = vpx for some veJ and peH(F). We shall
prove that x'= vpxi u°gy for every /e { 1 , . . . , «}. It then follows that

x'e «°Ac M°clS(.r>u) V = u°u(u° V)c. u° V,

which proves the theorem. Suppose vpxe u°gy, then

x = ux- up~xvpxe up'\u°gtV)c. up~l(u°upup~lg,V)

^ u(up~l°up°up'1 gy = u(u°up~lgy) = cl-Hx^up'1 gy.

As H(F) is a normal subgroup of F and g*€F we can find qeH(F) such that

up~Xgi = M, so
x e c lS ( a > ) g^V = g, clS(a;u) qV c g, cl3(«.,u) H(F) I/.
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clR(<ru) KForletue V,then VefflosoE(v)^c\mse,u) l/forevery
veV; as E(v) = H(F)v, H(F) ^ c c l S ( f | U ) V and consequently clB(r,u) H(F)Vc
cl»(*» V. This shows that xeg, clS(ar,U) V and so gj1 xecl^^^ V. By symmetry of
C1R(*» K gi^eclS ( r u ) W, which contradicts the choice of gf. D

Now we are ready for the main theorem of this section.

(1.16) THEOREM. Let <f>:%^<& be a homomorphism of minimal ttgs, xeuX and
F = Q6(%<(>(x)).

(a) If<j> is a R I C extension then E+[x]c U°U for every U e 3?x ( [15, 2.6.1]) .
(b ) If <f> is a Be extension then E^[x]c.Jx°U for every x'e<t>^<f>(x) and every

Ue3tx.

Proof. As the proof of (a) is similar to that of (b), we just prove (b).
(b) Let UeW* and let x ' e ^ X x ) = ̂ ^ ( x ' ) . By 1.6, <j

so from 1.14 it follows that

Let ze£ 0 [x] , say z€ v°FxnJH(F)x for certain veJx: Note that

v°Fx = v°uvFxs vu° vFx = v° vFx = v° vuFx<=v°uFx = v°Fx,

so v°Fx= v°vFx = v°vFvx and ze v°vFvxr\JvH(F)vx. Applying 1.15 to vx it
follows that

v° vFxn JvH(F)vxc v°vil.

As v°vU = v°uU = v°U (similar to v°Fx = v°vFx), we may conclude that

ze v°FxnJH(F)x = v°vFxnJvH(F)vx^ v°vU = v°U.

Consequently £^[x]s/x°L/. •

(1.17) COROLLARY. Let <fi: 8?-> Q be a Be extension. Then E$ = Q#.

Proof. Let xeX, and ueJx. By 1.16b with x' = x we know that E^[x\^.Jx°U for
every U e 3^x. Let a e tflx and let L/ be a neighbourhood of x in A" (usual topology)
such that UxUQa. By 1.10, there is a V=V(u) open in T such that Vxc [/.
Define ^:=[t/ , V]nu0"^(x) . Then

{x} x £„[*] c {x} x / x o \/ = Jx o ({X} x V).

As, clearly, {x} x Vc V~l • (Vx x U n /?,„) s Ta n R0, it follows that

Since a e %x was arbitrary, we have {x} x E#[X]G Q^, SO F^txjc Q^[x]. But x and
u e Jx were arbitrary in the discussion up to now, so it follows that E^ = Q^. •

We can do better than the corollary above as will be shown in 3.7.

2. Revitalized weak disjointness
In this section we relate weak disjointness of maps and that of their maximally
almost periodic factors. For that we need to keep control over open sets, which can
be done by means of a fair amount of openness in the maps involved.
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(2.1) LEMMA. Consider the following commutative diagram of surjective homomorph-
isms of ttgs:

and let 17: R^ -> Z be the obvious map (TJ(X, y) = 4>(x) = ip(y)).
(a) If one of <j>, ijj is open and the other is semi-open then rj is semi-open, and for

every non-empty open W c RM there are open sets U and V in X and Y with

0*UxVnR^cW and <f>[U]= I/J[V].

(b) If 7] and K are semi-open then K x i d y : R^-* Re^, is semi-open, and for every
open We R^ there are U and V as in (a).

Proof, (a) Without loss of generality let t/j be open and <j> semi-open and let W c R^
be a non-empty open set in R^. Let U' and V be open in X and Y such that

0^'xV'n^c W.

Then t/'n</><~i/'[V] is non-empty and open so by semi-openness of </>, O'-=
<l>[U'n<f>~4,[V']Y is non-empty and open. Define U:= U'<t>~[O] and V:= Vn
i/f^[O]. Then as is easily seen,

(i) O s ^ [ [ / ' ] n r t V ' ] c T | [ W ] , so 7] is semi-open;
(ii) 0 * UxVnR^c W and <£[£/] = <A[V]= O;

which proves (a).
(b) Let W be non-empty and open in R^, and let U and V be as in (a), with

O = 7)(U'xV'n R^)°. Semi-openness of K implies K[t/]V 0 , and as <{>[U] = •/<[V]
it follows that

hence K xidy is semi-open. •

In the following remark we collect some situations in which 17 is semi-open and
which are useful for our puposes. So consider the following diagram:

(2.2) Diagram

with 3£ and 2t minimal and <3/ not necessarily minimal.

(2.3) REMARK. Consider diagram 2.2. In each of the following cases rf.R^^-Z is
semi-open (and, by minimality of %£, also K x i d y : R^-* R$^ is semi-open).

(a) 4> and ty satisfy gBc;
(b) i/f is open;
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(c) <p is open and Y has a dense subset of almost periodic points;
(d) 4> is open, i/» is a RIM extension and Y has a dense subset of supprim points.

Proof, (a), (b) and (c) are obvious from 1.7 (and 2.1).
(d) As if/ is open in the supprim points, there is a dense subset of Y in which ip

is open, hence </» is semi-open. •

(2.4) THEOREM. Consider diagram 2.2 and let cf> and if/ satisfy one of the conditions
in 2.3. If for every non-empty (basic) open set UxVnR^ there is an open set
U=E4,[U] in X such that

then <f> — t// iff 0 — </».

Proof. As K x i d y [R^] = Re4n <p — ip implies 6 —1/».

Conversely, suppose 6 — if/. Let U x VnR^ be a non-empty (basic) open set in
R&, and let U be as in the assumption. Clearly, as K"K[U]= U, K[U] is open in
X/E+ and K[U]X Vn ReiP # 0 . So, by ergodicity of Re*, T(K[U~\XVn Re+) is
dense in Re^,. As K xidy is semi-open,

is dense in R^. Hence, as

(K xidYr[T(K[U] x VnRe<)]= T(Ux VnR^) £ T(U x Vn

it follows that R^ = T(U xVn R^). Consequently, R^ is ergodic. •
Now we shall look for situations in which the assumptions of 2.4 are satisfied. For
that we need the following lemmas.

(2.5) LEMMA. Consider diagram 2.2 and suppose that one of the conditions in 2.3 is
satisfied. If every non-empty (basic) open set U'x V'nR^ contains a point (x,y)
such that

then the assumption in 2.4 is satisfied.
Proof. We shall show that for a non-empty (basic) open set UxVnR^ with
<f>[U]= <I>[V] the set U= E*[LT]:= K"[K[[/]°] is such that

As one of the conditions in 2.3 is satisfied, the lemma follows.
Let I/and V be open in X and Y such that </>[U] = </>[V], define U:= K~[K[U]°]

and remark that UxVnR^7i0. Note that it is sufficient to show that for an
arbitrary non-empty (basic) open subset

we have t / 'x V n T(Ux VnRH,)*0. By assumption, there is a point (x,y)e
U'xV'n R^ such that
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As t / 'c U = K"[K[U]°] there is an x'e U such that
E^x]. But then

SO x'e

(x', y)eUx Vn E+[x] x{y}c U x V nT(U'xV nR^),

so l/x VnT(t/'x V 0^)5*0 and U'xV nT(U xVn R^)*0. D

(2.6) LEMMA. Consider diagram 2.2. Suppose i/> is a RIM extension, Y has a dense
subset of supprim points and <t> and tfi satisfy one of the conditions in 2.3. Then every
non-empty (basic) open set U x Vn R^ contains a point (x, y) such that

Proof. By 2.3 and 2.1a, we may assume that <f>[U] = *I/[V]. As the supprim points
are dense in Y, there is a section A for <j> and aye VnsuppA0 ( y ) . Let x e U be
such that <t>{x) = <l>(y). Then, b : 1.2,

E4,[x]x{y}c £^[x]x( Vnsupp A0(j)))s T({x} x F n i ! # ) c T(Ux VnR^).

n
(2.7) LEMMA. Consider diagram 2.2. Suppose <j> is a RIC extension and let (x,y) be
an almost periodic point. If UxVn R^ is a basic open neighbourhood of (x, y) in
R+,,,, then

Proof. Let ve J be such that v(x, y) = (x, y). By 1.10, there is an open set W= W(v)
in T such that Wye V. Define U:=[U, W]nv<t>"<l/(x). Then U is an g ( ^ , D)-
neighbourhood of x in c<t>"<f>(x). Let x 'e U, then x 'e t~l U for some f e W, so

(x', '(Uxtyn c T([/ x

Consequently, Ux{y}c T(UxVnR^) and so, by 1.16a,

Et[x]x{y}cv°(U X{y})c T(U XV n R+4,). D

(2.8) THEOREM. Consider diagram 2.2. /n eac/i of the following cases we have <j> — ip
iff 0^4>:

(a) (f> is a RIC extension, <f> and i/> satisfy gBc (or equivalently, Y has a dense
subset of almost periodic points);

(b) if/ is a RIM extension, Y has a dense subset of supprim points and one of the
conditions in 2.3 is satisfied.

Proof, (a) Follows from 2.7, 2.5 and 2.4.
(b) Follows from 2.6, 2.5 and 2.4. •

(2.9) In order to prove 2.11, the Be version of 2.8 (thus generalizing [15, 2.6.3]),
we consider a commutative 'double' diagram similar to the one constructed by Veech
in [15], as follows:
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Here H := ®(#f, x0) and K := &(% z0) are the Ellis groups of % and 2E with respect
to xo= ux0 and zo = uz0, <£':2l(H)-»9l(/O is the RIC extension denned by /><>//>-»
p°K, a and 17 are the maximally proximal extensions of 36 and 2£ (1.13). Then the
ttg Y' is a subttg of <3f xW(K) denned by

Y' = {(y,p°K)\yep°u^(x0)},

and the maps (/>': <W'-*'H(K) and T: <3/'-» <3/ are just the projections. The following
facts are easily verified:

(i) Y' is T-invariant and closed in Yx%(K);
(ii) Y' has a dense subset of almost periodic points;

(iii) T: <$/'-*<& is proximal and T is a surjection iff Y has a dense subset of almost
periodic points.
As o- and 77 are proximal and <f> and tj>' are Be extensions, it follows from 1.14
(remark between parenthesis) that f is proximal.

We shall need the following lemma about lifting of ergodicity.

(2.10) LEMMA. Let 4>: %?^ <3/ be a surjective proximal homomorphism of ttgs and let
3£ have a dense subset of almost periodic points. Then 3£ is ergodic iff "3/ is ergodic.

Proof. Clearly, if 3f is ergodic then 9 is ergodic.
Conversely, suppose that <3/ is ergodic. Let A e X with A=TA and A°5*0 and

let B:=X\A. Then B = TE and X = Av B. As

or <£[B] must have a non-empty interior in Y, and so, by ergodicity of "3/,
= y or <£[fl]= Y.

Suppose that <j>[A\= Y. Let xeX be an almost periodic point. Then for some
a e A, 4>(a) = <t>(x). As $ is proximal, a and x are proximal and by almost periodicity
of x we have that xeTacTA = A. Consequently, every almost periodic point in 3f
is in A, so X = A. Suppose that <t>[B] = Y, then similarly it follows that X = B, which
contradicts the assumption of A° ^ 0 . Hence X = A and 36 is ergodic. •

(2.11) THEOREM. Consider diagram 2.2 with <j> a Be extension and <j> and tp satisfying
gBc. T7ien <£ -1/» (#" 0 - ^.

Proo/ Construct the diagram in 2.9 and suppose that d — ij/.Xs 0' is a RIC extension
(1.13) and as (S/' has a dense subset of almost periodic points, R^^ has a dense
subset of almost periodic points (1.9). By 2.10, it follows from the proximality of
£ XT that Re'r is ergodic, so O' — ij/'. As <f>' is a RIC extension (1.13) and as <3/' has
a dense subset of almost periodic points, <f>' and </*' satisfy gBc (1.9). By 2.8a, <f>'—ip'.
Since <r x T [ / J ^ V ] = K ^ it follows that <f> - if/. D

A homomorphism of ttgs <j):8?^2£. is called n-weakly mixing iff R$ is ergodic. If <l>
is 2-weakly mixing then # is just called weafe/y mixing. If </> is n-weakly mixing for
every n e N , then <f> is called totally weakly mixing.

(2.12) THEOREM. Let <f>: 3d -* 2E be a homomorphism of minimal ttgs with E^ = R^,.
(a) If 4> is n-Bc then <j> is n-weakly mixing. In particular, if <t> is n-Bc for every

nsN {e.g. <f> is a RIC extension) then <j> is totally weakly mixing.
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(b) If<f> is an open RIM extension then <j> is totally weakly mixing.

Proof. Consider diagram 2.2 and note that E^, = R$ implies that 0 is an isomorphism.
So, under the conditions in 2.8 and 2.11, we have </> — «/> iff <3/ is ergodic. We shall
prove the statements by induction.

(a) First note that R% = R$ is ergodic (apply 2.11 to <f> and <fi). Assume /?£ is
ergodic for certain m with 2 < m < n. Then define i^:J?™-»Zasa restriction of <f>m.
By 2.11 and the observation that Re^ = R^, it follows that R^, is ergodic. So, as
RT' = R**, K+' is ergodic.

(b) As $? is minimal, the supprim points are dense in X, so R$ is ergodic (apply
to 2.8b to <f> and </>). Define \l>: R™ -» Z as a restriction of <j>m. Then Am is a section
for \}i (A a section for <f>). As </> is open, one sees readily that ip is open and that
the supprim points are dense in /?£. Suppose R™ is ergodic, then application of
2.8b to <f> and i/» shows ergodicity of R%+1. •

(2.13) -We shall now turn to a generalization of [14, 6.11] and [11, 1.9]. Consider
the following diagram of homomorphisms of minimal ttgs:

We are interested in the question of whether or not Qx — 6® implies (/> — <A, (the
converse is obviously true). First we shall show that 6X— Bm iff dxL 6®.

(2.14) LEMMA. Let <j>: #f-» 9 be a surjective homomorphism of ttgs. Let X'' c X be a
closed invariant subset of X such that:

(i) 0[X']=Y;
(ii) 4>\xr- X'-* Y is open.

If% is ergodic then X = Q^X'].

Proof. Let xeX and let x'eX' be such that <t>(x') = <p(x). As 3?is ergodic it follows
that x 'e Ta(x) for every a e % x ; so for every a e %x we have a(x') n Ta(x) # 0 .
For a e % x let xaea(x) and l o e T b e such that taxaea(x'). Then xa->x and
taxa -»x'; so ra^>(xa)-» <f>(x'). As <̂ >|x- is open, there are x'ae X' with <j>(x'a) = <^>(xa)
such that tax'a -> x'. For a suitable subnet let z = lim x'a. Then z € X' and (x, z) € Q$.
Hence x e Q^[z] and so X s Q,,,[X']. D

(2.15) THEOREM. Lef 4>:9£^> <3/ be an almost periodic extension with *% ergodic and
ty minimal. Then $£ is minimal.

Proof. Let X' be a minimal subset of X. As <f>\x- is almost periodic, <j>\X' is open.
From 2.14 it follows that X = Q+IX']. As <£ is almost periodic, Q^ = Ax, so X = X'.

•
(2.16) As 0£> and 0<a, are almost periodic extensions, Qx x d9:01 ex9^ -* 2£ is almost
periodic too. By minimality of 2£ and 2.15, it follows that 6X— 6^ implies 6X±. 6®.
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The other way around is trival. Note that with little extra effort ([1]) one can prove
the following:

T H E O R E M . Let cf> and if/ be HPI extensions of minimal ttgs such that <t> and ip satisfy
gBc, then (f> — \\i iff <f> 11/>. In particular this holds for distal maps <f> and I/J.

(2.17) THEOREM. Consider the diagram in 2.13. In each of the following cases we
have <j>^tlfiffex^e^ i f f e l ^ .

(a) <f> is a Be extension and <j> and ij/ satisfy gBc;
(b) <j> is a RIM extension and </> and xjt satisfy gBc
(c) <f> is a RIM extension and <f> or ifi is open.

Proof. Consider diagram 2.13. As almost periodic extensions of minimal ttgs are
open RIM extensions, it follows from 2.8b that 6X — t/> iff dx — d% iff <f> — 6®.

(a) Assume 8% — d®. Then, by the above, 6X— ip. Hence, by 2.11, <f> —1/».
(b) and (c) Assume 8X — d®. Then by the above 6%, — <f>. As <j> and \f> satisfy one

of the conditions in 2.3, it follows that if/ — <f> (apply 2.8b with </> and 4> interchanged.)
D

(2.18) COROLLARY. Let cf>: #f -»HE be a homomorphism of minimal ttgs with E$ = R^,.
If <f> is a RIC extension or an open RIM extension then <f> is weakly disjoint from
every homomorphism \\i: <3/-» 2T of minimal ttgs.

Proof. As E$ = R^ implies 8 is an isomorphism, this follows immediately from 2.8a
or 2.17c. •

3. A variation on regional proximality
In studying the equicontinuous structure of a ttg, the notion of the regionally
proximal relation is fundamental. It expresses how far the ttg is from being equicon-
tinuous ((uniform) almost periodic). For a deeper understanding of the bad
behaviour of certain points that keep the ttg from being equicontinuous, we need
a more detailed knowledge of how the regionally proximal relation is produced and
why transitivity occurs in the standard cases in which it does.

Let us recall that the regional proximal relation Qx is the set of points in X x X,
such that there exist nets (xh yt) -* (x, y) in X xX and {(,-},- in T such that *,(*,, _y,) -»
(z, z) for some zeX. Here all that is required is the existence of such a net {(*,, >»,)},
without regard to the way it approaches (x, y). Thus there might be 'few' such nets
for one pair in Qx and 'many' for another pair, which results in a difference in
dynamical behaviour of the pairs.

Now with the above discussion in mind, the meaning of the following notion is
clear. First we give a rough description. Let x and y be elements of the ttg #?; we
say that (x, y) is a sharply regionally proximal pair iff for every net {(x,, >»,)}, tending
to (x, y) there is a net {(xj, >>!)}, which is suitably close to the original net but which
has the property that there are tteT such that t,(x\,y't)->{z, z) for some zeX.
Therefore, the net {(x,, ̂ ,)}i provides a direction and {(x!, y!)}, is the one that makes
the pair (x, y) regionally proximal and that follows the direction if it is suitably
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close. Clearly, this notion has a relativized version, that is denned for a homomorph-
ism <j>: 2P-* 9 of ttgs. Now the rigorous definition follows.

Let <t>:aP^'& be a homomorphism of ttgs. We say that (x,, x2) e R^ is a sharply
regionally proximal pair iff given some net {(x\,x'2)}i in R^ converging to (x,,x2)
and given neighbourhoods t/ ' of (x\, x'2) in /?,,,, there exist (after passing to suitable
subnets) tt in T and (x\, x2) e I/1 such that tt(x\, x"2) -+(z,z) for some ze X. Denote
the collection of sharply regionally proximal pairs for 4> by Q*.

The following remark is another way to formulate the notion of sharp regional

proximality. The proof is straightforward, thus omitted.

(3.1) R E M A R K . Let <j>:%£^ <3/be a homomorphism of ttgs. Then

Q% =

(3.2) Examples. Let <£: ^f-» ^ be a homomorphism of ttgs.
(a) P* £ (?£ £ <?*; so if </> is proximal R* = P* = Q% = Q+= E*.
(b) If <£ is weakly mixing then R4> = Q% = Q4> = £*.
(c) If (j> is almost periodic then Ax = £^, = Q^ = Q* = P ,̂.

The following example shows that there are minimal ttgs for which Q # Q*'.
Moreover, it shows that if <f> and i/> are homomorphisms of minimal ttgs with
Qt = Qt and Q* = Q* then Q^ and Q*orf, may be different from each other.

(3.3) EXAMPLE. Let *& be the fourfold covering of the minimal proximal rotation. Then

Proof. Let T be the free group on two generators. Let X be the circle, define a: X -> X
by a{x) = x + o (a irrational) and define b: X -* X by b(x) = x2. Then a and b are
homeomorphisms of X, and 3f is a minimal proximal ttg for T(a, b), the minimal
proximal rotation. Let V be the circle and define the map c: Y-> Y by

c(y) :=
and </: y ^ y by

whenever k<4y<k + \ (fce{0,1,2,3}). Define the ttg <&:=(T(c,d), Y) and let
</>:<&^% be defined as <l>(y) = 4y (mod 1). Then <& (or better <f>) is the fourfold
covering of 3f.

Note that Pse=Q%=Qse = Ex = X xX; and that </> is almost periodic, so that

P« = (?* = <?* = £* = Ay.
Obviously, ® does not admit non-trivial almost periodic factors, in other words

E® = y x y. As c preserves distances, it is not difficult to see that {y, y') e (?«, iff the
distance (mod 1) between y and y' is smaller than or equal to \. So Q® # £».

If the distance between y and y' equals | , then we can approach (y, y') with pairs
with a distance greater than 3 (from the outside), which shows that (y, y')^Q%. So
Qv * Q%. •
An indication of the power of sharp regional proximality is given in the following
theorem, which hints at regional proximality of second order which will be discussed
in § 4.
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(3.4) THEOREM. Let <£: if-» 9 be a homomorphism of minimal ttgs.
(a) Let (x,, x2) e R*. IfT(x,,x2)n Q%*0 then we have (x,, x2) e <?£, and so

In particular, if Q& = Q% then Q^ contains the orbit closures that have a non-empty
intersection with Q$.

(b) Let (x,, x2) e Q% and let {{x\, x2)}, be a net in R^ converging to (x,, x2). Choose
{(,-},- in T and (for a suitable subnet) let (z,, z2) = lim /,(x',, x2). Then (z,, z2) e CV

(c) 7/7. Q j c Q* (e.g. Qi is closed, in particular if Q* = Q%) then

Proof, (a) If T ( x , , x 2 ) n . Q £ * 0 then T(x,, x2)nintRrf> (7a n R*) * 0 for every
a e <%x> and so

T(x, ,x 2 )nint R . (Tan

But then it follows that (x,, x2) e intRi (Tan i?^) for every a e % x and consequently

(b) Let a e °UX. As (x,, x2) £ intRit (TanR^,), there is an i(a) such that (x1,, x2) e
intRi (Ta nRj,) for every i > /(a) . But then also f,(xi,x2)eintR i (Tan R,,,) for every
i > j(a) and so

(z,, z2) = lim f,-(x'i, x2) £ Ta n i?^.

As a was arbitrary it follows that

(z,, z2) e H {?« n ^ | a e °UX} = Q*.

(c) Let (x,, x2) e P^ and (x2, x3) e Q%. Let / be a minimal left ideal in ST such
that pxi -px2 for every /> e 7 and let v € JX3{I). Then

t)(x,, x3) = (ux,, x3) = (vx2, x3) = v(x2, x3) eJQ^^Q*.

By (a), it follows that (x,, x3) € Q%. Hence Q% ° P* £ Q J. Clearly, Q* S <?S ° ^*, so
Qt°P* = Q%- In a similar way it follows that P<l>°Ql = Q%. •

Before we can use some results of the preceding section in order to understand the
equality E<t, = Q4> = Q%, we need the following lemma.

(3.5) LEMMA. Let (f>: % -» <& be a homomorphism of minimal ttgs and let /<: $*-»• HP/Ej,
be the quotient map and 6:3£/' E$ -> *$/ the maximal almost periodic factor of<j>. Denote
the collection of non-empty open sets in X/Ej, by 0. Then

Proof. Let U e € and (x, , x2) e E$. Then for some teT we have r»c(x,) = tK(x2) e U

and so

(x, , x 2 ) e K*-[r"' [ / ] x K ~ [ r l U]nR^c T(K~[U]XK~[U]n /?,„).

Hence

x/<-[ ̂ ] n i? J I f/e ^} s n {TRTfJI^TTrJIn^J I L/e (?}.
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On the other hand,

So

\ = E < t > . D

(3.6) THEOREM. Let<j>:3£^> ^ be ahomomorphism of minimal ttgsandletK.'SC^ 9£/E$
be the quotient map and 6: SC/ E^ -* "3/ the maximal almost periodic factor of <f>. Then
the following statements are equivalent:

(a) E^Q^Ql;
(b) for every a e °UX there is a non-empty open set V in X such that V = E^[ V] and

(c) for every open set U in X there is a non-empty open set V in X such that
V=E+[V]and

Proof, (b) => (c) As 2?is minimal, T(UxU) is an open set containing the diagonal
for every open U in X. Hence a := T( U x U) e °UX.

(c) => (b) For every ae°Ux there is a p e <UX with /3 = /3~' and 0 2 c «. Then

J3(x)x)3(x)n^cffn^

for every x e X. Fix xe X and set U•= j8(x); then T(U * Un R+) ̂  Ta n R+.
(b) =£> (a) Let a e %x. By assumption, there is a non-empty open set V in X with

V=E<t,[\r\ = K°~K[ V] and V x V n R + c TanR+. As K[ V] is open in X / E ^ it follows
from 3.5 that

E*<=T(K~
So

and as T( V x V n £^) is an open set in R^,, E$ s intRi ( T a n R 0 ) . As a e % x was
arbitrary, it follows that E^cQ^cQ^c E+.

(a) =» (b) Let "F be the collection of non-empty open sets V in X with V = E&1 V].
Suppose there is an a € %x with

for. every VeV. Define

then JK{ V) is closed and non-empty for every Ve V. As T is closed under finite
intersections and invariant under T, it follows that {%(V)\Ve¥} has the finite
intersection property. Hence

By 3.5, Kc E4 and by construction KnQ% = 0, which contradicts assumption (a).

•
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(3.7) THEOREM. Let #Tand <H be minimal ttgs. If<j>:%!^ <3/ is an open RIM extension
or a Be extension then E^, = Q<> = Q'l.

Proof. First we shall show that E<s> = Q$ = Q% if <j> and <j> satisfy the conditions in
lemma 2.5. We do this as follows:

Let U be a non-empty open set in X. By 2.5, there is a non-empty open set U
with U = E<I>[U] such that U = K^[K[Uf] (for 0[t/] =</>[[/]) and

Again by 2.5 and by the facts that <f>[0~\= <j>[Un U] and U = K~[K[Un U]°] it
follows that

Hence U xUn R^^TiU *UnR,,,) and the theorem follows from 3.6. By 2.6, we
know already that an open RIM extension satisfies the conditions in lemma 2.5,
which proves the theorem for the open RIM case.

Suppose that <f> is a Be extension. Let [/ ,x[/2n R# be a non-empty (basic) open
set in R$ and let (x,, x2) 6 U]xU2nR<l, be an almost periodic point; say (x,, x2) =
u(xu x2) for some usJ. We shall show that

Let Vbe an open set in Twith V= V(u) and Vx2s U2 (1.10). Define U:=[UU V]n
u0<"<^(x1), then U is an %(3£, u^neighbourhood of x, in M</>*"< (̂X1). Consider an
arbitrary x'e U; say x'= t~lz for some te V and z=Ux. Then

so (*', x2) e T( C/, x U2 n i?^). Hence
t/x{x2}c

By 1.16b, £,[*,]£ V17 , so

Therefore </> and <£ satisfy the conditions in lemma 2.5. This proves the Be case.

•
(3.8) COROLLARY. For an amenable group T and any minimal ttg X for T we have

E%= Qse= Q$e-

The truth of 3.7 is the consequence of certain incompressibilities. As those incom-
pressibilities are preserved under factors, it is natural to ask whether the property
£* = Q* = Q% is preserved under factors too. To that end we consider the following
diagram of homomorphisms of minimal ttgs:

• < &
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(3.9) THEOREM. Consider the diagram following 3.8. If ip is open then Q+ = Q%
implies Qe = Q*. In particular, ifip is open then E4, = Q<t> = Q% implies Ee = Qe = Qt-

Proof. If ip is open then if/ xip\Ri: R$ -* Re is an open homomorphism of ttgs, since
ij/Xtl/:XxX->ZxZ is open and R^ = {ip x^)^[i?e]. Let a e 1 l z ; then there is a
Pe°Ux such that ip x (/»[/?] c a, hence

T- ij/XiplpnR^c Ta n Re.

Since Qg^tpx ^ [QJ ([12, 3.2), we have, assuming that Q# = Q%

Qe = it>x i[,[Q%] c r̂ x ^[ in t R

As </* xifi\Rii is open

Qe S intRe {ill x ij,[Tp n

Hence it follows that

Q8 £ intR(, (T.A x ̂ [j8 n KJ) s intR(P (Ta n J?e).
As ae^Uz was arbitrary, it follows that QeQQt; so Qe = Qt- (In particular, if
£^ = Q̂ , then, by [12, 3.2, 3.3], it follows that Ee = Qe.) •

(3.10) THEOREM. Consider the diagram following 3.8. If Q4, = (<P x tp)~[Qe] then
(?« = <?J imp/ics Qe = Qt.

Proof. Let /3 e °UZ and let a € °UX be such that i/» x i/»[a]c )3. Then

n # J s ri/»Xi/>[a]ni?ee T/3 n Re.

Suppose Qj, = Q% then

n /?0) = J ^ \ c l ^ (/?*\(Ta n

As <?* = (iA x fA)"Q9 = (ipx r̂)*"(̂  x 0)[QJ it follows that

] ^ A [ J \ / A[R 4 ( ^ \ ( n
s i?9\clR(,
= intRe (^ x ̂ [Ta r> «^]) s intRe (Tip x t/»[a]n He) c intRe (Ty8 n Re).

As )3 was arbitrary this shows that QecQ*. •

(3.11) REMARK. Consider the diagram following 3.8. IfE^, = Q^ and if R$ c Q

Proof. Note that i/» xl/»[Q<>] = Qe, hence Q^^(>p xipriQel Let (x,,x2)e
(i/( x i/»)*"[Qe]. Then there is a (z,, z2) 6 Q# such that <// x ̂ (z,, z2) = i/> x i//(x,, x2). But
then (Xi, z,) e /Ĵ , and also (x2, z2) € R^,. Hence

(xl,x2)eRllloQit>oRilicQl,

and so (x,,x2)££^ = Q^. •

By now we are able to prove that the equality E^ = Q^ = Q* is preserved under
factors.

(3.12) THEOREM. Consider the diagram following 3.8. If E^, = Q4> = Q^ then Ee =
Q, = Qt
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Proof. Note that E^ = Q^ implies that Ee = Qe. Now consider the following diagram
of homomorphisms of minimal ttgs.

Let K : #f-» 3!/ Qj, and A: 2£ -> 2£/ Qe be the quotient maps. Since i/» x >p[Q^,] = Qe there
exists a unique homomorphism /t: #f/ (),,,-» <3// Qe such that \°ip = (J.°K. AS a = /3 ° /U.,

/u. is almost periodic. Let x e u X , z'-=ip(x) and note that (K(X) , z)e #MA. Define
W:= T ( K ( X ) , Z), then W is a minimal subset of R^x (for JxzJK(x)nJz) and W
projects onto X/ Q$ and Z by TT, and TT2 respectively. It is an elementary exercise
to show that TT2 is an almost periodic map (/A is almost periodic!), so TT2 is open.
Define x- °W^ % by x = «° ^i and let f: ^-> "T be defined by f (x) = (K(X), z). Then
cj>=X°£- As, clearly, R(Q RK = Q^ it follows from 3.11 that Q$ = (£ x £)*~[QJ. Hence
by 3.10, we know that Qx = Q*. As x = 0°ir2

 an^ T2 is open it follows from 3.9 that
Qe = Qt, which proves the theorem. •

In 3.7 we have seen that E^, = Q^ = Q* in the case of open RIM extensions and of
Be extensions. Is the equality of those three relations a coincidence? We shall see
that it is not; at least, we shall see that in several situations the equality of Q& and
Q% implies E4, = Q$ = Q%. Whether or not transitivity of Q^ implies Qj, = Q% is
unknown. First we introduce some notation:

Let <$>:'$£-*<%) be a homomorphism of minimal ttgs. Let (x1? x2) e R^ and p 6 ST-
Then define

p*(x , ,x 2 ) :=n{ /> 0 V\ V is a neighbourhood of (x,, x2) in R^}.
Clearly, p *(x,, x2) = D{p°(Ulx U2nlR4>)\ l/fe Vx_} (we denote the neighbourhood
system of x in X by Tx). Note that there is some ambiguity in the notation as we
do not specify the map. As we use it only in the situation of one specific homomorph-
ism </> and never with respect to X x X , no serious problem will arise, (compare
with the definition of * at the beginning of § 4).

(3.13) THEOREM. Let cj>: 3f-» <& be a homomorphism of ttgs (not necessarily minimal)
and let (x,, x2) e R^. Then (x,, x2) € Q^ iff there is a minimal left ideal I in ST with

P*(xl,x2)nkX7*0 for every pel.

Proof. Let (x,, x2) e Q^,. Then there are nets {(x1,, x2)}, and {f,}, in R^, and T such
that(x',, x2)-»(x,, x2)and (.(x1,, x2)-»(x, x) for some x e X . Without loss of generality
we may assume that the net {*,}, converges to some p e ST. Let V be a neighbourhood
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of (x,, x2) in R4. Then there is an i0 such that (x1,, x2) e V for every i > i0. Hence

(x, x) = lim {(,-(*',, x2) 11 a i0} e lim tiV = p° V.

As V was arbitrary, (x, x)ep*(x,,x2) and so p*(x!, x2)n Ax # 0 .
Conversely, suppose that for some peST we have p*(xu x2)n Ax 5^0, say

(x,x)e/>*(x,,x2). For a e ^ x ,

and ( ( a n ^ ) ° , K̂ > is a neighbourhood of p°(a(x,) xa(x2)n R^) in 2R*. Let
be a net in T with f( -» /> in ST. Then

^p°(a(x1)xa(x2)ni?< i) in 2R*.
So there is an 1' such that

„ X a(x2) n K0) n (a n K,,,)0 * 0 .

Hence ^(aCx,) Xa(x2)n/?^,)nan i?̂ , 5^0 and we can find ta'-= Ua in T and
(x°, x2)€ a(x,) xa(x2)nJ?<(> such that fa(x", x2)e a n R&. Doing this for every
a € %x, we obtain nets {ta}aecux in T and {(xf, x2 )} a e % x in /?,,, such that

(x°, xj)^(x,,x2) and fa(x", x")-*(x, x).

Consequently, (x,, x2)e Q#. What we have proved by now is

(x,,x2)eQ^, iff p*(x, ,x2)nAx ^ 0 for some pe ST,

hence the 'if part of the theorem is proved.
Let (xh x2) e Q$ and define

S := {p € 5T \p * (x,, x2) n Ax * 0} .

By the above, S ^ 0 and, clearly, S is T-invariant. We shall show that S is closed;
hence it follows that S contains a minimal left ideal, which proves the theorem.

For each neighbourhood V of (x,, x2) in R$ the mapping p>-*p° V is continuous,
hence the mapping

V'-P>-^r){po V\ V neighbourhood of (x,,x2) in R^}:ST^2R*

is upper semi continuous. Since Ax is closed and as S is the pre-image under ^ of
the closed subset {Ae2R*\An Ax # 0 } of 2R*, it follows that S is closed. •

The following remark in fact repeats and extends 3.4a and b.

(3.14) REMARK. Let $ : #f-» <& be a homomorphism of ttgs and let (x1; x2) e R^.
(a) / / (x,, x2) e Q%, then p* (x,, x2) c Q^ for every p e ST.
(b) Ifp * (x,, x2) r\Q%*0 for some p e ST, then (x,, x2) e Q*.

Proof, (a) Let a e °UX, then (x,, x2)e intR^ (TanR^,). So there are open neighbour-
hoods [/, e TXl and t/2 e TX2 such that

(x,,x2)et/,

For every p e ST it follows that

p*(xl,x2)cpo(ul x C / 2 n ^ ) c T- intR_

As a was arbitrary, p * (x,, x2) c Q^ for every /> e ST.
(b) Suppose p*(X|, x2)n Q*^0. Let {/,-},- be a net in T with f, -»/? and let
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a^e'Ux be such that /3 c a. Then

xj8(x2)n Jl*)nint,,. (Tan

and as (intR^ {Ta n/?0), R^) is an open neighbourhood of the element p°(/3(xi) x
p(x2)nR<,) of 2R\ while

it follows that eventually

t,{p(xi) x j8(x2) n J^) n i n t ^ (Ta n #*) * 0 .

But then ^(x,)xj3(x2)nTanR<,? i0, and as is easily seen (x,, x2) e Ta n R#.
Consequently, (x,, x2) e Q .̂ •

(3.15) LEMMA. Let </>:%?-> ^ be a homomorphism ofttgs and suppose that Q^ = Q*.
Let (x, y) e Q<, and (y, z) e Q^. If <f> is open in xeX, then (x, z) 6 Q^.

Proof. By 3.13, we can find a minimal left ideal / in ST, p e I and a z'e X such that
(z', z')ep*(y, z). Let ae°lix and let Uxz a(x), Uy^a(y) and UZQ a(z) be open
neighbourhoods of x, y and z in X, such that

n

(no further conditions on Uz). As </> is open in x, we may assume that Uy is such
that <l>[Uy]c <f>[Ux]. Since

we can find nets {/,}, in T and {{yh z,)}, in UyxU2n R$ such that p = lim t, and
(z', z') = lim *jC>*w 2i)- Let x, e Ux be such that <£(*.) = <f>(yj). Then, for every i,

(x,, y,) eUxxUynRt and (x,, z,) eUxxUzn R^.

Let x^ := lim ^x, (after passing to a suitable subnet). Then
(x'a,z') = \imti(xi,yi)

and

So for every a e °UX we can define in this way an element x'a e X. Let x' = lim
(after passing to a suitable subnet). Then

(x', z') = lim (x'p, z') e T a n J ^ for every ae°Ux;

hence (x', z') eQ^= Q£. And

(x', z') = lim(x^,z')ep°(a(x)xa(z)nJR<<>) for every a € %x.

As p*(x, z)=n{/>°(«(x)x«(z) i '^«) |ae%<:}, it follows that (x', z')ep*(x, z)
and so that p*(x, z)n Q% # 0 . By 3.14b, it follows that (x, z)eQ<t>. •

(3.16) THEOREM. Let <£:$T-»<3/ be a homomorphism of minimal ttgs, such that <f> is
open in some point x e X. Then Q$ = Q% implies E^ = Q^,.

Proof. Let (x,, x2) e Q$ and (x2, x3) e Q^ and let p e M be such that x = pxt. Then
{x,px2)=p{xu x2)eQ,f, and (px2>px3)e Q0; so, by 3.15, it follows that (x,px3)e Q^.
Let veJXl, then

(x,, vx3) = vp~\x, px3) £ Qj,.
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As (vx}, x3) e P* we have (x,, x3) e P^Q*. So, by 3.4c, (x,, x3) € Q^. Hence <?*<> <?* £
Qt and Q ,̂ is an equivalence relation. •

(3.17) COROLLARY, (a) //"<£:#?-» <& is a RIM extension or if<t> is a homomorphism
of metric minimal ttgs, then Q+ = (?£ implies E^, = Q4> = Q%\ (use [3, 3.12.18]).

(b) If % is a minimal ttg then Qx = Q% implies Ese=Qse = Q%.

It is not known whether or not Q^ = Q% implies E$ = Q,,, without further restrictions
on <j>. We shall now give some.other conditions on <f> that are sufficient to deduce
E+ = <?„ from <?„ = Q%.

(3.18) THEOREM. Consider the diagram following 3.8, and suppose that i/> is proximal.
In each of the following two cases we have Q^, = Q* implies E^, = Q<I> = Q%.

(a) 0 is open;
(b) Ee = Qe°P»; e.g. 0 is a RIM extension.

Proof. If i/» is proximal, then

and so, if Q+ = Q*, it follows from 3.4c that (i/> x </»r[<?g]c Q0. Hence, by 3.10,
Q0 = Q% implies Qe = Qt- But then, in both cases (a) and (b), it follows that Ee = Qe

(cf. 3.6 and 3.4c respectively), As i/> is proximal and as

<A x «A[£*] = Ee = Qe = 4> x ty[Q+\

it follows that £ ^ s P<t,°Q<t,°P<l,. But, again by 3.4c, this gives

(3.19) T H E O R E M . Let <(>: %£-* <& be a homomorphism of minimal ttgs and let <j> = 0° xfj.

Suppose i/f is open, R^, c Q^ and /ef J5e = Qe» Pe. Then Q* = Q* implies E<j> = Q4> = Q*.

Proof. As ili is open, Q* = Q% implies Qe = Qt by 3.9. Hence, by 3.4c, it follows that

Ee = Qe°Pe = Qt ° Pe = Of = Qe-

Also, by the openness of if/ we have that t/» x i/r: / i^ -» i?e is an open map. We shall
show that Qj, = (i/> x (/>)*"[Qe], hence that Q ,̂ is an equivalence relation.

Let (X|,x2)€(«/»xl/()"t0e]; then (z,, z2):= i/( Xi/»(x,, x2)e Qe. So there are nets
{{z\, z2)}, in /?9 and {«,}, in T such that (z\, z\)^(zu z2) and t,(z\, z\)^(zu z,). As
(x,, x2) e (i/> x I/J)"(ZU z2) and as the map i/» x i/>: i?^ -» Re is open, we can find (x\, x2)
in i?^ such that \p Xi/>(x',, x2) = (z',, z2) and (xl, x2)-»(x,,x2). After passing to a
suitable subnet let (x,, x2) = lim f,(x',, x2). Then

i/»(xi) = lim tjij/(x\) = lim f,z| = z, = lim f,z2 = lim /.^(xj) = &(x2),

hence (xi, x2) e R^, and therefore (x,, x2) eQ^ = Qt- By 3.4b, it follows that (x,, x2) e

Q0. Consequently, (i// xi/»)"[<?9]£ Q+ and as, clearly, Q+s^x^)*"[Qe], it follows

# = (^x^nO.]- •

4. Regional proximality of second order
Let 3f be a ttg. It is not difficult to see that a pair ( x , , x 2 ) e X x X is regionally
proximal if we can find suitable pairs in the neighbourhood of (x,,x2) such that
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after suitable T-translations they tend to a proximal pair. If we could find pairs in
the neighbourhood of (x,, x2) that after suitable T-translations tend to a regionally
proximal pair, we could say that the pair (x,, x2) is regionally regionally proximal.
We call it regionally proximal of second order.

Let % be a ttg and let AgX. Then define

D(A,%):=U{p*A\peST},

where p * A is defined as

p*A--(~]{poV\Az V and V open in X}.

We remark that the * defined in § 3 is in complete agreement with this definition,
after noting that p*a.= p*{a}.

(4.1) REMARK. Let % be a ttg and let A g X Then
(a) D{A,S£) is T-invariant;
(b) D(A, %) = D(tA, %) for every teT;
(c) if A is closed then D(A, $f) = U {D({a}, %) \ a e A};
(d) if A is closed then D(A, S£) is closed.

Proof, (a) Let x e D(A, X) and let p e ST be such that xep*A. Then x€p° V for
every open V in X with A c V. Hence tx e tp ° V for such V and tx e tp * A £ D( A, #f).

(b) Note thatpo V = /«"' °tV for every VcX, p € 5 T and teT. As

{W\W<=X open, (A<= W} = {tV\VcX open, A c V}

for every teT, it follows that p*A = pt~x*tA.
(c) Obviously, D({a}, 3£) s D(A, # ) for every a € A
Conversely, let xe D(A, 2£) and let p e ST be such that x e /> * A. Let a € °U.X be

an open index. Then there are a , , . . . , an in A such that

Va:=(J {«(<*<) I i e{ l , . . . ,n}}

is an open neighbourhood of A (in X). So xep°Va, and as

we can find aa e{a,,\ie{\, . . . ,«}} such that xep°a (a a ) . In this way we obtain a
point aa in A for every open index a e %x. Let a := lim {aa\ a e 1} for a suitable
subnet J c <%x. We shall prove that xep*{a).

Let V s X be open and let {a} c V. Then there are /3 and -y in / such that /3(a) c V
and 7° y c /}. Let 5 e / with S c y such that as ey{a). Then

and

so xep°8(as)^p°f3(a)'=po V; hence xep*{a}. As a e A = / 4 it follows that

(d) Let {x,),- be a convergent net in D(A, ^f) and let x = limx,. By (c), we may
find nets {a,}, and {p,}, in A and ST such that x, e p, * {aj. Let p = lim pt and a = lim a,
after passing to suitable subnets. We shall prove that xep*{a}.

Let Vc X be open with {a}c V. Then {a,}c V for all i> i'( V). Hence

x, € Pi * {a,} s p, ° V for all i a i( V).
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But then it follows that

x = lim x, elim2* (/>,° V) =p° V.

As V was arbitrary, it follows that x€p*{a}, hence xe D(A, 36). •

The proof of the following remark is straightforward and will be omitted.

(4.2) REMARK. For a ttg %?, xeX and aeX the following statements are equivalent:
(a) xep*a for some p e ST, in other words x e D({a}, 9£);
(b) for every Va e Vm and every Vx e Tx there is a teT such that tVanVx9

£0;
( c ) there is a net {a;}, in X with a, -* a, and there are f, in T with x = lim <,a,;
(d) a e q * x for some q e ST, in other words a e D({x}, $£).

Note that this shows that for peST and x e X we have p*xs Qx[px].
(4.3) EXAMPLES. Let 9£ be a ttg and let (f>:^-* <& be a homomorphism ofttgs. Then

(a)
(b)
(c)
(d) D{Ql, <%*) = Qt, hence Q* = Q% implies D(Q+, ®*) = <?„.

Proof, (a) Follows immediately from (b).
(b) Using 4.1c and 4.2 this follows easily from 3.13.
(c) Let 6:<%l'£,*,-» <!>[%] be the maximal almost periodic factor of (f> and let

«:3f-»3f/' E$ be the quotient map. Then it is easily seen that

K x K[D(E+ « , ) ] s D(AX/Eit, K x K[98*]) £ Qe.

As 6 is an almost periodic extension, K X/c[D(£<fr, S?^)]c Ax/Ei; hence D(E^, S?,j,)£

£*.
(d) Clearly, Q* = D(AX, 9t+) s D(Q%, » J .
Conversely, as Q* s intRi (Ta n Z? )̂ for every a € %x, we have

So p*Qt^Q<)> and D J Q j . ^ s ^ •
The next theorem and its proof resemble 3.15 and 3.16.

(4.4) THEOREM. Let <j>: %-* "3/ be a homomorphism of ttgs. If for every x, e X there
is an xe X with Txn Tx, ¥• 0 , such that <t>(x) is an almost periodic point and <f> is
open in x, then E<)> = Q4,iff D( Q+, ^ ) = <?*.

Proof. If E+ = Q ,̂ then, by 4.3, it follows that D(Q^,, &<,) = Q*.
Conversely, suppose that D(Q^,, 38^) = CV Let (x,, x2) e Q# and (x2, x3) € Q$, and

assume (/> is open in x,. We shall prove that (x,, x3)e Q^,. Let {(x'2, x'3)}t and {f,},
be nets in R^, and T such that

(x2, X3)-»(x2, x3) and t,(x2, X3)^(w, w) for some t e e X

As </>(x2) -* <f>(x2) = <i>{xi) and as <f> is open in x,, there are z{ € <f>~<f>(x'2) such that
z ( ^x , . Define 2 = lim t,Zi (after passing to a suitable subnet). Then

(z/, x2)•* (x,, x2) and f,(zh x2)-* (z, w).

As (x,, x2) G (? ,̂ it follows that

(z, w) e /»* (x,, x2) c D({(x,, x2)}, » J
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where p = lim t,,e ST (after passing to a suitable subnet). As (z,, x3)-»(x,, x3) and
ti(zh x3)-> (z, w), it follows that

(x,, x3)€ q*(z, w ) c D({(z, w)}, S?^)c D{Q+, <%,») = Q0,

where g = lim f~'e ^T- (after passing to a suitable subnet). Now assume that <f> is
not open in x{. By assumption, we may find x e X such that Txn Tx{ ^ 0 and <f>
is open in x, while <f>(x)e Y is an almost periodic point. For an almost periodic
point zeTxn Tx{ let / and K be minimal left ideals in ST such that z = px and
z = qx, for some pel and some qeK. Let ue / < M x ) ( / ) . Then we = ujT'gx,, and

(ux, vp~lqx2) = w/T'gCx,, x2) € Q+

and

(vp~lqx2, vp^qx^eQ*.

As (x ,Dx)eP^ we have (x, £p~'qee2)e Q<t>°P^ and it is easily seen that Q^t°P<t>Q
D(Qt, &*) = CV By the above, (x, vp~lqx3)eQ^, and so

tp"1q(xI,x3) = (tip"lgx1, vp~lqx3) = (vx, vp~lqx3) = v(x, vp~lqx3)e Q+.

But then

(x,, x3)e D({{vp-'qxu vp-xqx3)}, M^^DiQ*, ^) = Q4,,

which shows the transitivity of Q^,. D

(4.5) COROLLARY. Let 0:<3f-» <& be a homomorphism ofttgs.
(a) If<j> is open then E^ = Q+ iffD{Q^ 0t^) = Q+. In particular, for every ttg % we

have Ex=QxiffD{ Qx, %x%)= Qx.
(b) If% is a metric ergodic ttg and if® is minimal, then E,,, = Q+ iffD( Q^, ^ = Q*.

Proof, (a) This follows immediately from the first part of the proof of 4.4.
(b) If X is metric, there is a residual set of points in which <f> is open, also there

is a residual set of transitive points. As "3/ is mimimal, the assumptions of 4.4 are
satisfied. •
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