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Abstract
We give conditions for a uniruled variety of dimension at least 2 to be nonsolid. This study provides further evidence
to a conjecture by Abban and Okada on the solidity of Fano 3-folds. To complement our results we write explicit
birational links from Fano 3-folds of high codimension embedded in weighted projective spaces.
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1. Introduction

We work over the field of complex numbers. Let W be a smooth projective variety where 𝐾𝑊 is not
pseudo-effective. Then, the minimal model program yields a birational model of V of W with a fibre
structure 𝜎 : 𝑉 → 𝑆 of relative Picard rank 1 where V has mild singularities and −𝐾𝑉 is relatively
ample, called a Mori fibre space (see [6, Corollary 1.3.3]). The birational classification of Mori fibre
spaces can be divided into two classes: Those that are birational to a strict fibration, and those that are
not. The notion that encodes this nature is the one of solidity (cf [4, Definition 1.4]). We extend their
definition to the following.

Definition 1.1. We say that a uniruled variety of dimension at least two is birationally solid if it is not
birational to a strict Mori fibre space, that is, to a Mori fibre space 𝜎 : 𝑉 → 𝑆 where dim 𝑆 > 0.

Birational solidity implies irrationality in a strong sense. In this paper, we establish sufficient con-
ditions for a uniruled variety X to admit a birational map to a strict Mori fibre space. Indeed, for X a
normal projective variety such that −𝐾𝑋 is Q-Cartier and big, X is uniruled (see Lemma 2.1 below).
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2 L. Campo1 and T. Duarte Guerreiro

Table 1. Families for which ℎ0 (𝑋, 𝐴) ≥ 2..

ID ℎ0 (𝑋, 𝐴)

#40360 2
#40370 2
#40371 2
#40399 2

ID ℎ0 (𝑋, 𝐴)

#40400 2
#40407 2
#40663 3
#40671 3

ID ℎ0 (𝑋, 𝐴)

#40672 3
#40933 5
#41028 8

Theorem 1 (= Theorem 2.2). Let X be a normal Cohen–Macaulay projective variety and 𝐾𝑋 be Q-
Cartier. Suppose that −(𝐾𝑋 + 𝑙 𝐴) is big, where 𝑙 � lcm (𝑚0, 𝑚1) for some𝑚0, 𝑚1 positive integers, and
𝐴 ∈ Cl(𝑋) is an ample Q-Cartier Weil divisor. If there are two sections 𝑠𝑖 ∈ 𝐻0 (𝑋, 𝑚𝑖𝐴) for 𝑖 = 0, 1
which are independent in the graded ring 𝑅(𝑋, 𝐴) �

⊕
𝑚≥0 𝐻

0(𝑋, 𝑚𝐴), then X is nonsolid.

Let X be Fano d-fold with terminal Q-factorial singularities and A a generator of Cl(𝑋). Then
−𝐾𝑋 = 𝜄𝑋 𝐴 and 𝜄𝑋 is called the Fano index of X. We consider X to be polarised by A, that is,
together with an embedding given by the ring of sections 𝑅(𝑋, 𝐴). For each d, this produces a list of
thousands of candidate Fano d-folds embedded in weighted projective spaces. As a result of our main
theorem, we prove that Fano varieties tend to stabilise into strict Mori fibrations as its Fano index
increases.

Corollary 1 (= Corollary 2.3). Let X be a Q-factorial terminal Fano d-fold, with 𝑑 ≥ 3, and 𝐴 ∈ Cl(𝑋)
a generator of the class group of X. Consider the embedding given by the ring of sections of A

𝑋 ↩→ P(𝑎0, . . . , 𝑎𝑁 ).

Suppose that lcm(𝑎𝑖 , 𝑎 𝑗 ) < 𝜄𝑋 for some 𝑖, 𝑗 ≤ 𝑁 . Then, X is nonsolid.

The list of Fano d-folds has only been produced for up to 𝑑 = 3, and already in this case there are
dozens of thousands of candidate Fano 3-folds. Although Corollary 2.3 can be widely applied, it does
not detect all Fano 3-folds which are nonsolid, (for instance, because the Fano index is too small) and
an explicit analysis is needed to complete the picture.

Concerning those families with Fano index 1 and at most terminal cyclic quotient singularities, there
are many birational rigidity results (see [15, 29] for complete intersections, [4] for Pfaffian Fano 3-folds,
and [30] for codimension 4 Fano 3-folds). The situation changes completely for higher Fano index where
it has been shown that each is birationally nonrigid and most of them, if not all, are nonsolid (cf [1, 21]).
In higher codimension, the situation seems to stabilise in the sense that every such Fano is thought to
be birational to a strict Mori fibration.

The explicit construction of Fano 3-folds in codimension 4 and Fano index 2 has been achieved by
[19] first and then by [13]; in this paper, we refer to the latter (see Section 3 for details). We get the
following result.

Theorem 1.2. Let X be a quasi-smooth Q-factorial terminal Fano 3-fold with −𝐾𝑋 ∼ 2𝐴, where A is a
generator of Cl(𝑋). Suppose that the embedding given by the ring of sections of A is in codimension 4.
Then X is birationally nonrigid. Moreover, if X is not in the families #39890, #39928 and #39660, then
there is at least one deformation family of X that is nonsolid.

In Table 1, we list the families of codimension 4 and Fano index 2 Fano 3-folds that fall in the
description of Corollary 2.3, identified by their Graded Ring Database ID (GRDB, [8]). We explicitly
examine the remaining families in Section 4, thus proving 1.2.

Our case study also highlights an interesting phenomenon (end of Case II.a below), already occurring
in [21, Section 4.4], that is: In one instance (#39660), the birational link terminates with a divisorial
contraction to a 3-fold embedded in a fake weighted projective space ([11, 24]). Moreover, we are
able to compute the Picard rank of the two families #40671 and #40672 that behave à la Ducat [22]
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(Section 4.3), which is equal to 2 in both cases. Indeed, this method can be applied in the computation
of the Picard rank of certain Fano varieties.

Our work gives evidence to following conjecture

Conjecture 1.3. Suppose X is a Fano d-fold. If 𝜄𝑋 is high enough, then X is nonsolid.

2. Nonsolidity

In this section, we prove our main Theorem 2.2 and Corollary 2.3. The proof of Theorem 1.2 is instead
contained in Subsection 4.2.1. The authors learnt afterwards about the existence of a more general
version of Lemma 2.1 (cf [28, Lemma 3.18]); the following version is nonetheless kept for reference.

Lemma 2.1. Let X be a normal projective variety and D an effectiveQ-divisor on X such that −(𝐾𝑋 +𝐷)
is Q-Cartier and big. Then X is uniruled.

Proof. We take a resolution of singularities 𝜓 : 𝑋 ′ → 𝑋 and write

𝐾𝑋 ′ + 𝐷 ′ ∼Q 𝜓
∗(𝐾𝑋 + 𝐷) + 𝐸,

where E is 𝜓-exceptional and 𝜓∗𝐷
′ = 𝐷. Suppose that X is not uniruled. Then 𝑋 ′ is not uniruled

and by [7, Corollary 0.3], 𝐾𝑋 ′ is pseudo-effective. Therefore, 𝐾𝑋 ∼Q 𝜓∗𝐾𝑋 ′ is pseudo-effective which
contradicts the fact that −𝐾𝑋 is big. We conclude that X is uniruled. �

Theorem 2.2. Let X be a normal Cohen–Macaulay projective variety and 𝐾𝑋 be Q-Cartier. Suppose
that −(𝐾𝑋 + 𝑙 𝐴) is big, where 𝑙 � lcm (𝑚0, 𝑚1) for some 𝑚0, 𝑚1 positive integers, and 𝐴 ∈ Cl(𝑋)
is an ample Q-Cartier Weil divisor. If there are two sections 𝑠𝑖 ∈ 𝐻0 (𝑋, 𝑚𝑖𝐴) for 𝑖 = 0, 1 which are
independent in the graded ring 𝑅(𝑋, 𝐴) �

⊕
𝑚≥0 𝐻

0(𝑋, 𝑚𝐴), then X is nonsolid.

Proof. Since 𝑠0 and 𝑠1 are independent in 𝑅(𝑋, 𝐴), the linear system |𝑙 𝐴| contains a pencil. Let
𝜋 : 𝑋 � P1 be the map given by the sections 𝑠0 and 𝑠1, and call F the generic fibre of 𝜋.

Let 𝜈 : 𝐹𝜈 → 𝐹 be the normalisation of F. By subadjunction (see Lemma [25, Corollary 5.1.9]),
there is an effective Q-divisor D such that

𝐾𝐹 𝜈 + 𝐷 ∼Q 𝜈
∗((𝐾𝑋 + 𝐹) |𝐹 ) ∼Q 𝜈

∗((𝐾𝑋 + 𝑙 𝐴) |𝐹 ) .

Since −(𝐾𝑋 + 𝑙 𝐴) is a big Q-Cartier divisor it follows that −(𝐾𝐹 𝜈 +𝐷) is big and Q-Cartier. By Lemma
2.1, it follows that 𝐹𝜈 is uniruled. Resolving the indeterminacy of 𝜋, we get a commutative diagram,

𝑋

𝑋 P1,

𝜓 𝜑

𝜋

where 𝑋 is a smooth projective variety and 𝜑 is onto. Let 𝐹 be the proper transform of 𝐹𝜈 on 𝑋 . Then, 𝐹
is uniruled and we can run a 𝐾𝑋 -MMP on 𝑋 over P1. This is a (finite) sequence of divisorial contractions
and small modifications 𝜒, fitting into the diagram

𝑋

𝑌

P1 𝐵,

𝜒

𝜑

𝜑′

𝜎

https://doi.org/10.1017/fms.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.66


4 L. Campo1 and T. Duarte Guerreiro

where 𝜑′ : 𝑌 → 𝐵 is a Mori fibre space where dim 𝐵 > 0 and 𝜎 is a surjective morphism with connected
fibres. �

Corollary 2.3. Let X be a Q-factorial terminal Fano d-fold, with 𝑑 ≥ 3, and 𝐴 ∈ Cl(𝑋) a generator of
the class group of X. Consider the embedding given by the ring of sections of A

𝑋 ↩→ P(𝑎0, . . . , 𝑎𝑁 ).

Suppose that lcm(𝑎𝑖 , 𝑎 𝑗 ) < 𝜄𝑋 for some 𝑖, 𝑗 ≤ 𝑁 . Then, X is nonsolid.
Proof. Consider the map 𝜋 : 𝑋 � P1 (𝑎𝑖 , 𝑎 𝑗 ) which is the restriction of the projection

P(𝑎0, . . . , 𝑎𝑁 ) � P1 (𝑎𝑖 , 𝑎 𝑗 ).

[𝑥0 : . . . : 𝑥𝑁 ] ↦→ [𝑥𝑖 : 𝑥 𝑗 ] .

The generic fibre F is a hypersurface in X given by

𝐹 : (𝑥𝑙/𝑎𝑖𝑖 + 𝜆𝑥
𝑙/𝑎 𝑗

𝑗 = 0) ⊂ 𝑋,

and therefore, 𝐹 ∼ 𝑙𝐻. Then 𝐾𝑋 + 𝐹 is Q-Cartier and

−(𝐾𝑋 + 𝐹) ∼ (𝜄𝑋 − 𝑙)𝐻

is ample. By Theorem 2.2, it follows that X is nonsolid. �

Corollary 2.3 generalises, and retrieves, the result of Abban–Cheltsov–Park [1, Theorem 1.2] for
Fano 3-fold hypersurfaces.

3. Case study: Fano 3-folds in codimension 4 and index 2

In this section, we want to discuss a specialisation of Corollary 2.3 when 𝑁 = 7 and 𝜄𝑋 = 2 when the
dimension of X is 3. Corollary 2.3 does not give an explicit description of the birational map between X
and the strict Mori fibre space 𝑌 → 𝑆. In this context, we explicitly recover such birational map using
the Sarkisov program. As an immediate consequence, we have the following corollary.
Corollary 3.1. Let X be a family in Table 1. Then X is not solid.

However, there are further 23 Fano 3-folds of index 2 and codimension 4 in the GRDB that are not
included in Table 1. In Theorem 1.2, we claim that, except for three of such Fano 3-folds, at least one
deformation family for each of the remaining 20 is nonsolid.

We prove Theorem 1.2 by studying the birational links initiated by blowing up a Type I centre (or
a Type II2 centre for families #39569 and #39607) in each of the 23 families, as in Subsection 3.2 and
Section 4. Such analysis of these birational links relies on the explicit description of index 2 Fano 3-folds
in codimension 4.

Several approaches to their explicit construction can be found in the literature. Prokhorov and Reid
[36] build one family in codimension 4 via a divisorial extraction of a specific curve in P4 and running the
Sarkisov Program starting with such extraction. In [22], Ducat generalises their construction, recovering
the family of Prokhorov–Reid and finding two new deformation families in codimension 4 having the
same Hilbert series (cf [9, Section 3]. Of the latter two families, we study only one in this paper (the
other can be treated in a similar manner, although we do not include it here for brevity reasons); in
particular, we retrieve the birational links of [36, 22] (see Subsection 4.2).

To Coughlan and Ducat [19] it is due a different approach to constructing Fano 3-folds that relies on
rank 2 cluster algebras.

More recently, Campo [13] has constructed a total of 52 families of codimension 4 Fano 3-folds of
index 2 by means of equivariant unprojections, some of which correspond to the same Hilbert series, also
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in accordance to [22, 19]. We mostly refer to this approach in the rest of this paper. In Subsection 3.1,
we give a brief overview of the construction in [13].

3.1. Construction

Let �̄� ⊂ 𝑤P7 be a quasi-smooth codimension 4Q-Fano 3-fold and �̄� ⊂ 𝑤P6 a codimension 3Q-Fano 3-
fold, both of index 𝜄 = 1, and suppose that �̄� is obtained as Type I unprojection of Z at a divisor 𝐷 � 𝑤P2

embedded as a complete intersection inside �̄� (for a detailed study of Type I unprojections; see [27, 35,
32, 9]). For W a set of seven positive nonzero integers, call 𝑥0, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑠 the coordinates of
𝑤P7 = P7 (1,𝑊), and consider 𝛾 the Z/2Z-action on 𝑤P7 that changes sign to the coordinate of 𝑥0 of
weight 1, that is,

𝛾 : (𝑥0, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑠) ↦→ (−𝑥0, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑠) . (3.1)

Here, the divisor D is defined by the ideal 𝐼𝐷 � 〈𝑦1, . . . , 𝑦4〉. Provided that the equations of �̄� are
invariant under 𝛾, it is possible to perform the quotient of �̄� by 𝛾. The 3-fold 𝑋 � �̄�/𝛾 obtained as such
is Fano, has terminal singularities, is quasi-smooth, has an ambient space that is P7 (2,𝑊) and has index
𝜄 = 2 (cf [13, Lemmas 3.1, 3.2, 3.3, 3.4]). The coordinates of P7 (2,𝑊) are 𝜉, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑠,
where 𝜉 � 𝑥2

0. This construction can be summarised by the following diagram.

𝜄 = 1 �̄�

Z/2Z 𝛾

��

�̄�
unprojection��� � � � � �

𝜄 = 2 𝑋

. (3.2)

The key point is to find an appropriate index 1 double cover �̄� for X of index 2. The double cover is
ramified on the half elephant

��− 1
2𝐾𝑋

��, and the equations of X are inherited from the ones of �̄� (see [13,
Theorem 1.1]).

Recall from [9] that there are between two and four different deformation families for �̄� of index
1 sharing the same Hilbert series. They are derived from just as many so-called formats for the 5 × 5
antisymmetric graded matrix M whose five maximal Pfaffians determine the equations of �̄� . These
formats, defined by specific constraints on the polynomial entries of the matrix M (cf [9, Definition
2.2]), are called Tom and Jerry formats. Accordingly, �̄� is said to be either of Tom type or of Jerry
type (cf [12, Definition 2.2]). Not all the formats are compatible with the double-cover construction,
that is, not all formats descend to index 2. However, exactly one Tom format always does. A criterion to
determine which formats in index 1 become formats in index 2 via the double-cover construction can
be found in [13, Theorems 4.3, 5.1]; this exhausts all the Tom and Jerry formats.

When a Type I unprojection is employed, we only focus on �̄� of Tom type, which represent 32
families out of the 34 we study in this paper. In this context, �̄� is a general member in its Tom family,
provided the 𝛾-invariance. Thus, X is general under the above constraints.

A close analysis of the unprojection equations of �̄� , and therefore of X, gives crucial insights
on the behaviour of the birational links from X. The unprojection equations of �̄� are of the form
𝑠𝑦𝑖 = 𝑔𝑖 (𝑥0, 𝑥1, 𝑥2, 𝑦1, . . . , 𝑦4) for 1 ≤ 𝑖 ≤ 4 (cf [32, Theorem 4.3]). Consequently, four of the nine
equations defining X are of the form

𝑠𝑦𝑖 = 𝑔𝑖 (𝜉, 𝑥1, 𝑥2, 𝑦1, . . . , 𝑦4) for 1 ≤ 𝑖 ≤ 4 ;

with a little abuse of notation, we call them unprojection equations as well. The point p𝑠 ∈ 𝑋 is a Type
I centre ([9, Theorem 3.2] and [13, Lemma 3.4]). Note that the unprojection variable s appears linearly
in the unprojection equations of �̄� and X, hence the point p𝑠 ∈ 𝑋 is called a linear cyclic quotient
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singularity in [21, Definition 3.28]; we will occasionally use this nomenclature in the following. The
equations of X are therefore of the form(

Pf𝑖 = 𝑠𝑦 𝑗 − 𝑔 𝑗 = 0, 1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 4
)

for Pf𝑖 , 𝑔 𝑗 ∈ C[𝜉, 𝑥1, 𝑥2, 𝑦1, . . . , 𝑦4]. From [12, Lemma 3.5], we have that each unprojection equation of
the index 1 double cover �̄� contains at least one monomial only in the orbinates 𝑥0, 𝑥1, 𝑥2. The following
lemma is a consequence of the constraint of having �̄� invariant under the action 𝛾.

Lemma 3.2. Consider the four unprojection equations 𝑠𝑦𝑖 = 𝑔𝑖 of X for 1 ≤ 𝑖 ≤ 4, and sup-
pose that wt(𝑥1) is even. Then, there are at least three 𝑔𝑖 that are of the form 𝑔𝑖 = 𝑓𝑖 (𝜉, 𝑥1) +
ℎ𝑖 (𝜉, 𝑥1, 𝑥2, 𝑦1, . . . , 𝑦4).

Proof. Since 𝜄𝑋 = 2, for terminality reasons the basket of singularities of X consists only of cyclic quo-
tient singularities with odd order (cf [38, Lemma 1.2 (3)]). Consequently, the weight of the unprojection
variable s is always odd. By hypotheses, the weights of 𝜉 and 𝑥1 are even, so the orbinate 𝑥2 has odd
weight. By direct observation, at least three of the coordinates 𝑦1, . . . , 𝑦4 have odd weight. Note that, if
𝑠𝑦𝑖 for some 1 ≤ 𝑖 ≤ 4 has odd weight, the corresponding 𝑔𝑖 does not contain any pure monomial in
𝜉, 𝑥1; that is, wt(𝑦𝑖) must be odd for it to happen.

We briefly recall the notation of unprojection equations necessary to this proof; for the full details of
the construction, we refer to [32, Section 5.3] and [12, Appendix]. To fix ideas, suppose that the matrix
M is in Tom1 format; the proof for the other Tom formats is analogous. Such matrix is of the form

𝑀 =
����	
𝑝1 𝑝2 𝑝3 𝑝4

𝑞1 𝑞2 𝑞3
𝑞4 𝑞5

𝑞6


����
for 𝑝𝑖 ∉ 𝐼𝐷 and 𝑞𝑖 ∈ 𝐼𝐷 homogeneous polynomials in the given degrees of M. Without loss of generality,
we can fill the entries of M with linear monomials when the Tom constraints and the degree prescription
on M allow us to do so (for details, see [9, Section 6.2]). In this context, at least three of the 𝑞𝑖 can
be filled with one of the 𝑦1, . . . , 𝑦4. By homogeneity of the Pfaffians, at least two of the 𝑝𝑖 have even
degree; thus, 𝜉 and 𝑥1 can occupy those entries (not necessarily linearly). Define the matrices 𝑁 𝑗 as

𝑁 𝑗 =

�����	
𝑝1 𝑝2 𝑝3 𝑝4

𝛼
𝑗
23 𝛼

𝑗
24 𝛼

𝑗
25

𝛼
𝑗
34 𝛼

𝑗
35
𝛼
𝑗
45


�����
,

where 𝛼 𝑗𝑘𝑙 is the coefficient of 𝑦 𝑗 in 𝑞𝑘𝑙 . Let Q be the 4×4 matrix𝑄 =
(
Pf𝑖 (𝑁 𝑗 )

)
𝑖, 𝑗=1...4, where Pf𝑖 (𝑁 𝑗 )

is calculated by excluding the (𝑖 + 1)-th row and column of 𝑁 𝑗 for 𝑖 = 1, . . . 4. The polynomials 𝑔𝑖 in
the right-hand side of the unprojection equations are given by 𝑔𝑖 = 1

𝑝𝑖
�̂�𝑖 , where �̂�𝑖 is the 3 × 3 matrix

obtained deleting the i-th row and column of Q.
Since some of the polynomials 𝑞𝑖 are quasi-linear in the 𝑦𝑖 , the polynomials 𝑝𝑖 having even degrees

are multiplied by 1 at least twice in the Pfaffians of the matrices 𝑁 𝑗 (also note that the matrices we
consider have always weights as in [12, Equation (4.2) and (4.3)]). Thus, at least three entries of each
row of the 4×4 matrix Q contain a monomial purely in 𝜉, 𝑥1. So, at least two of these entries are included
in a 3 × 3 minor of Q. Then, by taking the determinant of �̂�𝑖 we have that 𝑔𝑖 has a monomial purely in
𝜉, 𝑥1 up to a 𝑝𝑖 factor, which gets simplified in the definiton of 𝑔𝑖 thanks to [32, Lemma 5.3]. At worst,
the two entries of �̂�𝑖 containing pure monomials in 𝜉, 𝑥1 are all concentrated in a 2 × 3 block (or two
1 × 3 blocks). This implies that only three of the 𝑔𝑖 have the desired monomials 𝑓𝑖 (𝜉, 𝑥1). Otherwise,
all 𝑔𝑖 contain 𝑓𝑖 (𝜉, 𝑥1). �
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By Lemma 3.2, we have that the four unprojection equations of X are of the form{
𝑠𝑦𝑖 = 𝑓𝑖 (𝜉, 𝑥1) + ℎ𝑖 (𝜉, 𝑥1, 𝑥2, 𝑦1 . . . , 𝑦4), 1 ≤ 𝑖 ≤ 3
𝑠𝑦4 = ℎ4 (𝜉, 𝑥1, 𝑥2, 𝑦1 . . . , 𝑦4),

(3.3)

where 𝑓𝑖 is not identically zero by quasi-smoothness of X and wt(𝑦4) is even.

Lemma 3.3. Suppose that wt(𝑦4) is even. Then, the polynomials 𝑓𝑖 (𝜉, 𝑥1) for 1 ≤ 𝑖 ≤ 3 are algebraically
independent.

Proof. We refer to the notation introduced in Lemma 3.2 and in equation (3.3). Consider the equations
of X in equation (3.3), and evaluate them at (𝑦𝑖 = 𝑥2 = 0) for 1 ≤ 𝑖 ≤ 4. Hence, we get the system of
polynomial equations 𝑓𝑖 (𝜉, 𝑥1) = 0 for 1 ≤ 𝑖 ≤ 3. Now, suppose that the 𝑓𝑖 (𝜉, 𝑥1) are not algebraically
independent: They therefore have a common solution, that is, a finite set of points in X. Such points are
quotient singularities with even order. This is not possible as X cannot have singularities with even order
(cf [38, Lemma 1.2 (3)]), as it would not be quasi-smooth. Thus, 𝑓𝑖 (𝜉, 𝑥1) for 1 ≤ 𝑖 ≤ 3 are algebraically
independent. �

The remaining two families (GRDB ID #39569 and #39607) that we investigate here are constructed
in a similar fashion as in diagram (3.2): In these cases, their respective double covers �̄� only have Type
II2 centres, or worse (see [34, Section 1], [33, Definition 2.2, Theorem 2.15] for Type II unprojections,
and [9, Section 3.6], [37] for Type II centres). Hence, the Tom and Jerry formats are not applicable as �̄�
is obtained via Type II2 unprojections from a Fano hypersurface: See [13, Section 7] for the construction
of these double covers.

Among the Hilbert series listed in the GRDB, there is also the smooth #41028; there are two
distinguished deformation families associated to this Hilbert series: These are the classical examples of
a divisor of bidegree (1, 1) in P2 × P2 ⊂ P8 and P1 × P1 × P1 ⊂ P7 (cf [9, Section 2]). These are rational
and therefore nonsolid. This confirms the statement of Theorem 2.2 also in the case of #41028.

3.2. Lift under the Kawamata blowup

We want to initiate a birational link by blowing up a cyclic quotient singularity on X. In order to
understand what the equations of the blowup Y are, we first explain how the sections in 𝐻0 (𝑋, 𝑚𝐴) lift
to Y under a Kawamata blowup of ps ∈ 𝑋 , for 𝑚 ≥ 1.

Recall that by [32, Theorem 4.3], [9, Theorem 3.2] and [13, Lemma 3.4], ps is a linear cyclic quotient
singularity of X as in [21, Definition 2.6.1]; locally, ps ∼

1
𝑎𝑠
(𝑎0, 𝑎1, 𝑎2). In the notation introduced in

Subsection 3.1, 𝑎0, 𝑎1, 𝑎2 are the weights of the orbinates 𝜉, 𝑥1, 𝑥2.
We can assume (cf [38, Lemma 1.2 (3)]) that 𝑎0 = 2 is equal to the Fano index of X. Moreover,

since ps is terminal, gcd(𝑎𝑠 , 𝑎0𝑎1𝑎2) = 1 and, in particular, there is 𝑘 ∈ Z such that 𝑘𝑎0 ≡ 1(mod 𝑎𝑠).
Denote by 𝑎 < 𝑎𝑠 the unique remainder of 𝑎 mod 𝑎𝑠 . Then,

ps ∼
1
𝑎𝑠

(1, 𝑘𝑎1, 𝑘𝑎2) ∼
1
𝑎𝑠

(1, 𝑘𝑎1, 𝑎𝑠 − 𝑘𝑎1) =
1
𝑎𝑠

(
1,
𝑎1
2
, 𝑎𝑠 −

𝑎1
2

)
.

Lemma 3.4. Let 𝜑 : 𝑌 → 𝑋 be the Kawamata blowup centred at ps. Then

𝑠 ∈ 𝐻0(𝑌,−𝑚1𝐾𝑌 + 𝑚2𝐸) for some 𝑚1, 𝑚2 > 0;
𝜉 ∈ 𝐻0 (𝑌,−𝐾𝑌 ), 𝑥1 ∈ 𝐻0(𝑌,−𝑚𝐾𝑌 ) for some 𝑚 > 0;
𝑧𝑖 ∈ 𝐻

0(𝑌,−𝑚𝑖𝐾𝑌 − 𝑛𝑖𝐸) for some 𝑚𝑖 , 𝑛𝑖 > 0,

where 𝑧𝑖 is one of 𝑥2, 𝑦1, 𝑦2, 𝑦3, 𝑦4.
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Proof. Recall that for the Kawamata blowup 𝜑 : 𝑌 → 𝑋 we have 𝐾𝑌 = 𝜑∗(𝐾𝑋 ) +
1
𝑟 𝐸 , where 1

𝑟 is its
discrepancy and r is the index of the cyclic quotient singularity. Let x be one of the sections above and
𝜈 be its vanishing order at E. Then,

𝑥 ∈ 𝐻0
(
𝑌,
𝑎𝑖
2
𝜑∗(−𝐾𝑋 ) − 𝜈𝐸

)
= 𝐻0

(
𝑌,
𝑎

2
(−𝐾𝑌 +

1
𝑎𝑠
𝐸) − 𝜈𝐸

)
= 𝐻0

(
𝑌,−

𝑎

2
𝐾𝑌 +

𝑎 − 2𝑎𝑠𝜈
2𝑎𝑠

𝐸

)
.

By the description of ps, it follows that 𝜉 vanishes at E with order 𝜈 = 1
𝑎𝑠

. Similarly, the vanishing
order of 𝑥1 and 𝑥2 at E is 𝜈 = 𝑎1

2𝑎𝑠 and 𝜈 = 2𝑎𝑠−𝑎1
2𝑎𝑠 . Hence,

𝜉 ∈ 𝐻0 (𝑌,−𝐾𝑌 ), 𝑥1 ∈ 𝐻0
(
𝑌,−

𝑎1
2
𝐾𝑌

)
, 𝑥2 ∈ 𝐻0

(
𝑌,−

𝑎2
2
𝐾𝑌 −

1
2
𝐸

)
.

On the other hand, 𝑠 ∈ 𝐻0 (𝑌, 𝑎𝑠2 𝜑
∗(−𝐾𝑋 )) = 𝐻0 (𝑌,− 𝑎𝑠2 𝐾𝑌 + 1

2𝐸).
Starting from equation (3.3), we compute the vanishing order of 𝑦𝑖 , 1 ≤ 𝑖 ≤ 3 at E. The monomials

of 𝑓𝑖 (𝜉, 𝑥1) are of the form 𝜉𝛼𝑥
𝛽
1 and if 𝑑𝑖 is the homogeneous degree of the equation 𝑠𝑦𝑖 − 𝑔𝑖 = 0, we

have 𝛼𝑎0 + 𝛽𝑎1 = 𝑑1. On the other hand such monomials vanish at E with order

𝛼 ·
1
𝑎𝑠

+ 𝛽 ·
𝑎1

2𝑎𝑠
=
𝑑𝑖

2𝑎𝑠
< 1 .

Hence, 𝜉𝛼𝑥𝛽1 is pulled back by 𝜑 to 𝜉𝛼𝑥𝛽1 𝑡
𝑑𝑖/2𝑎𝑠 , where 𝐸 � (𝑡 = 0) is the exceptional divisor. Since

𝑑𝑖
2𝑎𝑠 < 1, when saturating the ideal of Y with respect to t, we find that 𝜉𝛼𝑥𝛽1 𝑡

𝑑𝑖/2𝑎𝑠 becomes 𝜉𝛼𝑥𝛽1 .

Hence, 𝑠𝑦𝑖 − 𝑔𝑖 = 0 is a divisor in | − 𝑑𝑖
2 𝐾𝑌 | and we conclude that 𝑦𝑖 ∈ 𝐻0

(
𝑌,− 𝑑𝑖−𝑎𝑠2 𝐾𝑌 − 1

2𝐸
)
.

For 𝑦4, since 𝑠𝑦4 − ℎ4 = 0 contains no pure monomials in 𝜉, 𝑥1 we can only say that 𝑦4 vanishes at
E with order 𝜈 at least wt(𝑦4)+𝑎𝑠

2𝑎𝑠 ; therefore, wt(𝑦4)−2𝑎𝑠𝜈
2𝑎𝑠 ≤ − 1

2 with equality when the vanishing order is
exactly wt(𝑦4)+𝑎𝑠

2𝑎𝑠 . In other words,

𝑦4 ∈ 𝐻0
(
𝑌,−

wt(𝑦4)

2
𝐾𝑌 − 𝑚4𝐸

)
, 𝑚4 ≥

1
2
> 0 . �

The Lemma below follows from Lemma 3.4 and Lemma 3.2.

Lemma 3.5. Let 𝑋 ⊂ 𝑤P7 be defined by the equations (Pf𝑖 = 𝑠𝑦 𝑗 − 𝑔 𝑗 = 0, 1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 4),
where Pf𝑖 , 𝑔 𝑗 ∈ C[𝜉, 𝑥1, 𝑥2, 𝑦1, . . . , 𝑦4]. Then, the Kawamata blowup Y of X at ps ∈ 𝑋 is defined by
equations (Pf𝑖 = 𝑠𝑦 𝑗 − 𝑔 𝑗 = 0, 1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 4), with Pf𝑖 , 𝑔 𝑗 ∈ C[𝑡, 𝜉, 𝑥1, 𝑥2, 𝑦1, . . . , 𝑦4], where
𝑠𝑦 𝑗 − 𝑔 𝑗 ∈ | − 𝑚 𝑗𝐾𝑌 | for exactly three values of j and Pf𝑖 ∈ | − 𝑚𝑖𝐾𝑌 − 𝑛𝑖𝐸 |, with 𝑛𝑖 > 0.

4. Birational links and Mori dream spaces

We use the language of Mori dream spaces to study the birational links discussed later in this section.
We recall the definition of Mori dream space as in [23] and some of their properties within the context
of the Sarkisov program, as explained in [16, 3, 5, 10]. This section is devoted to give a theoretical
background to show that we can perform the 2-ray game for codimension 4 index 2 Fano 3-folds.
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Definition 4.1 [23, Definition 1.10]. A normal projective variety Z is a Mori dream space if the following
hold

◦ Z is Q-factorial and Pic(𝑍) is finitely generated;
◦ Nef (𝑍) is the affine hull of finitely many semiample line bundles;
◦ There exists a finite collection of small Q-factorial modifications 𝑓𝑖 : 𝑍 � 𝑍𝑖 such that each 𝑍𝑖

satisfies the previous point and Mov(𝑍) =
⋃
𝑓 ∗𝑖 (Nef (𝑍𝑖)).

Remark 4.2. As pointed out in [31, Remark 2.4], if we work over a field which is not the algebraic closure
of a finite field, then the condition that Pic(𝑍) is finitely generated is equivalent to Pic(𝑍)R � 𝑁1 (𝑍)R.

In characteristic zero, it is known that any klt pair (𝑍,Δ), where Z is Q-factorial and −(𝐾𝑍 + Δ) is
ample is a Mori dream space (see [6, Corollary 1.3.2]). Examples include weak Fano varieties.

We have the following lemma.

Lemma 4.3 [23, Proposition 1.11 (2)]. Let Z be a Mori dream space. Then, there are finitely many
birational contractions 𝑔𝑖 : 𝑍 � 𝑍𝑖 , where for each i, 𝑍𝑖 is a Mori dream space and

Eff (𝑍) =
⋃
𝑖

C𝑖 , C𝑖 = 𝑔∗𝑖 (Nef (𝑍𝑖)) + R+[𝐸1] + · · · + R+[𝐸𝑘 ],

where 𝐸1, . . . , 𝐸𝑘 are the prime divisors contracted by 𝑔𝑖 . If 𝑍𝑖 and 𝑍 𝑗 are in adjacent chambers, then
they are related by a small Q-factorial modification.

We have the following result.

Lemma 4.4 [3, Lemma 2.9]. Let X be a Q-Fano 3-fold and 𝜑 : 𝑌 → 𝑋 be a divisorial extraction. Then
𝜑 initiates a Sarkisov link if and only if the following hold:

1. Y is a Mori dream space;
2. If 𝜏 : 𝑌 � 𝑌 ′ is a small birational map and 𝑌 ′ is Q-factorial, then 𝑌 ′ is terminal;
3. [−𝐾𝑌 ] ∈ Int(Mov(𝑌 )).

It is not true that the blowup of a Mori dream space is a Mori dream space (see [14] for many
examples). However, the Kawamata blowup 𝜑 : 𝑌 → 𝑋 of a Q-Fano 3-fold centred at a linear cyclic
quotient singularity is at worst a weak Fano 3-fold with Q-factorial terminal singularities and [−𝐾𝑌 ] ∈
Int(Mov(𝑌 )). In this case, there are at least two contractions from Y. One is a Mori contraction 𝜑 : 𝑌 → 𝑋
and the other one is the small contraction associated to the linear system | − 𝐾𝑌 |. We prove that the
small Q-factorial modification associated to the latter is an isomorphism. The only small Q-factorial
modifications which are not isomorphisms are flips. This allows us to always remain in the Mori category
since the discrepancies increase (see [26, Lemma 3.38]).

Biratonal links and toric varieties.

Let T be a rank 2 toric variety (up to isomorphism) for which the toric blowup Φ : 𝑇 → P restricts to
the unique Kawamata blowup 𝑌 → 𝑋 centred at ps ∈ 𝑋 . Then, Cl(𝑇) = Z[Φ∗𝐻] + Z[𝐸], where H is
the generator of the class group of P and 𝐸 = Φ−1(ps) is the exceptional divisor. Notice that ps is not in
the support of H. Then, the Cox ring of T is

Cox(𝑇) =
⊕

(𝑚1 ,𝑚2) ∈Z2

𝐻0(𝑇, 𝑚1Φ
∗𝐻 + 𝑚2𝐸) .

Since T is toric, the Cox ring of T is isomorphic to a (bi)-graded polynomial ring, in this case,

Cox(𝑇) � C[𝑡, 𝜉, 𝑥1, 𝑥2, 𝑦1 . . . , 𝑦4, 𝑠],

https://doi.org/10.1017/fms.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.66


10 L. Campo1 and T. Duarte Guerreiro

Figure 1. A representation of the Mori chamber decomposition of T. The outermost rays generate the
cone of pseudo-effective divisors of T and in red it is represented the subcone of movable divisors of T.

where the grading comes from theC∗×C∗-action definingP andΦ, respectively. We denote byR+
[(
𝜔1
𝜔2

)]
the ray generated by a divisor D in the linear system

���O𝑇 ( 𝜔1
𝜔2

)���. Over 𝑁1(𝑇)R � R2, we can depict the
rays generated by the sections of Lemma 3.4 as in Figure 1. The movable and effective cones of T in
𝑁1 (𝑇)R are

Mov(𝑇) = R+[𝑀1] + R+[𝑀2] ⊂ Eff (𝑇) = R+[𝐸] + R+[𝐸
′] .

Notice that, since T is a normal simplicial toric variety, it follows from [20, Theorem 15.1.8 and Theorem
15.1.10], respectively, that both Eff (𝑇) and Mov(𝑇) are closed in the Euclidean topology. According to
Lemma 3.4, notice that the rays 𝐸, 𝑀1 and −𝐾𝑌 cannot coincide. On the other hand, it can happen that
some of the other rays do coincide.

We run several 2-ray games on T. We divide the construction of the elementary Sarkisov links in
two main cases, depending roughly on the Mori chamber decomposition of T in Figure 1, namely the
behaviour of its movable cone of divisors near the boundary of the effective cone of divisors of T. We
consider three cases:
1. Fibration: The class of 𝑀2 is linearly equivalent to a rational multiple of 𝐸 ′.
2. Divisorial Contraction: The class of 𝑀2 is not linearly equivalent to a rational multiple of 𝐸 ′.

Moreover, we contract the divisor 𝐸 ′:
(a) To a point: No generator class of the Cox ring of T is linearly equivalent to a rational multiple

of 𝑀2, or
(b) To a rational curve: There is one (and only one) generator class of the Cox ring of T which is

linearly equivalent to a rational multiple of 𝑀2.
The diagram below sets the notation used in the rest of the paper. Note that we only consider Fano

3-folds not in Table 1. In each case, we have a birational link at the level of toric varieties

𝑇 𝑇1 · · · 𝑇 ′

P F0 · · · F ′

Φ
𝛼0

𝜏0

𝛼1𝛽0

𝜏1 𝜏𝑛

Φ′

𝛽𝑛−1

and dimF ′ ≤ dim𝑇 ′, with equality if and only if we are in the second case. We restrict the diagram
above to the Kawamata blowup 𝜑 : 𝑌 ⊂ 𝑇 → 𝑋 ⊂ P in order to obtain a birational link between 3-folds.

It follows from [23, Proposition 2.11] that the birational contractions of a Mori dream space are
induced from toric geometry. By [23, Proposition 1.11], one can always carry out a classical Mori
program for any divisor on a Mori dream space Y. In particular, when 𝜌(𝑌 ) = 2 it is called a 2-ray game.
We refer the reader to [17] for the precise definition of 2-ray game.

The next three lemmas describe the nature of the restriction of the maps 𝜏, 𝜏𝑖 to the birational link
relative to 𝑋 ⊂ P.
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Lemma 4.5. The map 𝜏0 restricts to an isomorphism on Y.

Proof. In this proof, call 𝑧𝑖 all variables that are not 𝑡, 𝑠, 𝜉, 𝑥1. The small modification 𝜏0 : 𝑇 � 𝑇1 can
be decomposed as

𝑇
𝜏 ���������

𝛼0 ���
��

��
��

� 𝑇1

𝛽0����
��
��
�

F0 ,

where F0 � Proj
⊕

𝑚≥1 𝐻
0(𝑇, 𝑚O𝑇

( 2
1
)
), in coordinates the map 𝛼0 is

𝛼0 : 𝑇 → F0

(𝑡, 𝑠, 𝜉, 𝑥1, . . . 𝑧𝑖 . . .) ↦→ (𝜉, 𝑥1, . . . 𝑢 𝑗 . . .)

and 𝑢 𝑗 is some monomial which is a multiple of 𝑧𝑖 and of either t or s.
Notice that the irrelevant ideal of T is (𝑡, 𝑠) ∩ (𝜉, 𝑥1, . . . 𝑧𝑖 , . . .). Hence, 𝛼0 contracts the locus

(𝑧𝑖 = 0) ⊂ 𝑇 . This is indeed a small contraction since the ray R+
[(

2
1

)]
is in the interior of Mov(𝑇).

Now, we restrict this small contraction to Y. By Lemma 3.4, we know that 𝑧𝑖 are the sections in
𝐻0

(
𝑌,− 𝑎𝑖2 𝐾𝑌 − 𝑛𝑖𝐸

)
with 𝑛𝑖 > 0. On the other hand, by Lemma 3.5, the Pfaffian equations Pf 𝑗 must

vanish identically and the remaining equations are 𝑓 𝑗 (𝜉, 𝑥1) = 0 for 1 ≤ 𝑗 ≤ 3. However, this is empty
by Lemma 3.3. �

Remark 4.6. It is interesting to observe that the behaviour of the restriction of 𝜏0 as in Lemma 4.5 is not
a feature of the codimension of X but rather of its Fano index. When the index is 1, the map 𝜏 restricts to
a number of simultaneous Atyiah flops (see [12, Theorem 4.1] and [29]). On the other hand, for higher
indices it is an isomorphism (cf [21, Theorem 2.5.6]).

Lemma 4.7. Suppose that the map 𝜏𝑖 : 𝑇𝑖 � 𝑇𝑖+1 restricts to a small Q-factorial modification over a
point which is not an isomorphism. Then, it restricts to a flip.

Proof. By assumption, there are curves 𝐶𝑖 ⊂ 𝑌𝑖 and 𝐶𝑖+1 ⊂ 𝑌𝑖+1 such that the diagram

𝐶𝑖 ⊂ 𝑌𝑖
𝜏𝑖 ���������

𝛼𝑖
���

��
��

��
��

𝑌𝑖+1 ⊃ 𝐶𝑖+1

𝛽𝑖�����
���

���
�

F𝑖

is a small Q-factorial modification. Clearly, we have 𝐾𝑌𝑖 · 𝐶𝑖 < 0. Indeed, by Lemma 3.5, 𝐶𝑖 intersects
−𝐾𝑌𝑖 transversely since 𝐶𝑖 ∈ Bs| − 𝑚𝑖𝐾𝑌𝑖 − 𝑛𝑖𝐸 | for some 𝑚𝑖 , 𝑛𝑖 > 0; then, the claim follows. On the
other hand, there exists a divisor class

𝐿 ∼ −𝑚1𝐾𝑌 − 𝑚2𝐸 ∈ R+[𝐴𝑖] + R+[𝐸
′]

for which 𝐿 · 𝐶𝑖+1 > 0, where 𝐴𝑖 and 𝐸 ′ are as in Figure 1 (implying, in particular, 𝑚𝑖 > 0). Moreover,

𝐴𝑖 ∼ −𝑛1𝐾𝑌 − 𝑛2𝐸, 𝑛𝑖 > 0

and 𝐴𝑖 · 𝐶𝑖+1 = 0. Then, 𝑚2𝐴𝑖 − 𝑛2𝐿 ∼ (𝑚2𝑛1 − 𝑚1𝑛2) (−𝐾𝑌𝑖+1). Notice that 𝑚2𝑛1 − 𝑚1𝑛2 = 0 if and
only if 𝐴𝑖 ∼ 𝑚𝐿 for some nonzero 𝑚 ∈ Q, which is not possible since they have different intersections
with 𝐶𝑖+1. Additionally, 𝑚2𝑛1 − 𝑚1𝑛2 > 0 since L is in the cone R+[𝐴𝑖] + R+[𝐸 ′] but is not linearly
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Figure 2. The possible effective cones of T ending with a fibration to a rational curve 𝐵′ = ProjC[𝑧4, 𝑧5].
The variables 𝑧1, . . . , 𝑧5 are 𝑦1, . . . , 𝑦4, 𝑥2 up to permutation.

equivalent to any nonzero rational multiple of 𝐴𝑖 . In particular,

−𝐾𝑌𝑖+1 · 𝐶𝑖+1 =
1

𝑚2𝑛1 − 𝑚1𝑛2
(𝑚2𝐴𝑖 · 𝐶𝑖+1 − 𝑛2𝐿 · 𝐶𝑖+1) < 0

since 𝐴𝑖 and L were chosen so that 𝐴𝑖 · 𝐶𝑖+1 = 0 and 𝐿 · 𝐶𝑖+1 > 0. �

Lemma 4.8 [21, Lemma 2.5.7]. Let 𝜎 : 𝑋 � 𝑋 ′ be an elementary birational link between Q-Fano
3-folds initiated by a divisorial extraction 𝜑 : 𝐸 ⊂ 𝑌 → 𝑋 . Then, there is a birational map Ψ : 𝑌 �
𝑋 ′ which is the composition of small Q-factorial modifications followed by a divisorial contraction
𝜑′ : 𝐸 ′ ⊂ 𝑌 ′ → 𝑋 ′ with discrepancy

𝑎 =
𝑚2

𝑚1𝑛2 − 𝑚2𝑛1
,

where 𝑚𝑖 and 𝑛𝑖 are positive rational numbers such that 𝜑′∗ (−𝐾𝑋 ′ ) ∼ −𝑚1𝐾𝑌 − 𝑚2𝐸 and
𝐸 ′ ∼ −𝑛1𝐾𝑌 − 𝑛2𝐸 .

In practice, to successfully run this game we need to guarantee that each step 𝜏𝑖 : 𝑇𝑖 � 𝑇𝑖+1 of the
birational link contracts finitely many curves, with the exception of 𝜏𝑖 an isomorphism on 𝑌𝑖 ⊂ 𝑇𝑖 .
However, in each case it is possible to retrieve explicitly the loci contracted and extracted by the maps 𝜏𝑖 .

In the rest of this section, we will present several tables containing information about the links for
each family examined. We specify the Type I centre whose blowup initiates the link in cases where there
is more than one Type I centre; for instance, we write “#39993 1/5” instead of just “#39993” if the link
starts with the Kawamata blowup of a 1/5 singularity.

4.1. Case I: fibrations

In each case in Figure 2, whose notation we refer to, the movable cone of T is not strictly contained
in the effective cone of T. Indeed, the rays generated by 𝑧4 and 𝑧5 are both in 𝜕Mov(𝑇) and 𝜕 Eff (𝑇).
Hence, we have a diagram of toric varieties

𝑇 𝑇 ′

P F ′

Φ

𝜏

Φ′

𝜎

,

where Φ is a divisorial contraction, Φ′ is a fibration into F ′ � ProjC[𝑧4, 𝑧5] � P
1. The map 𝜏 is a small

Q-factorial modification. We restrict Φ : 𝑇 → P to be the unique Kawamata blowup 𝜑 : 𝐸 ⊂ 𝑌 → ps ∈
𝑋 . By Lemmas 4.5 and 4.7, the map 𝜏 |𝑌 : 𝑌 � 𝑌 ′ is an isomorphism followed by a finite sequence of
isomorphisms or flips. Referring to the notation in Figure 3, by assumption the rays R+[𝑧4] and R+[𝑧5]
are given by linearly dependent vectors 𝑣4 and 𝑣5 in Z2. Let B be the matrix whose columns are the
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Figure 3. The possible effective cones of T ending with a contraction of the divisor 𝐷𝑧5 : (𝑧5 = 0).
In cases II.a.1, II.a.2, II.a.3 the divisor 𝐷𝑧5 is contracted to the point F ′ = ProjC[𝑧4] and in cases
3d and 3e to the rational curve F ′ = ProjC[𝑧3, 𝑧4]. The variables 𝑧1, . . . , 𝑧5 are 𝑦1, . . . , 𝑦4, 𝑥2 up to
permutation. The exceptional divisor of the Kawamata blowup 𝜑 : 𝑌 → 𝑋 is 𝐸 : (𝑡 = 0).

vectors 𝑣4 and 𝑣5. Then, there is 𝐴 ∈ GL(2,Z) such that

𝐴 · 𝐵 =

(
𝑎 𝑏
0 0

)
.

Then, performing a row operation on the grading of 𝑇 ′ via the matrix A, 𝑇 ′ is isomorphic to a toric
variety with C∗ × C∗-action given by

𝑡 𝑠 𝜉 𝑥1 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

T’:
(
𝜅0 𝜅1 𝜅2 𝜅3 𝜅4 𝜅5 𝜅6 𝑎 𝑏

)
𝜆0 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 0 0

,

where the column vectors are ordered clockwise. The irrelevant ideal of 𝑇 ′ is (𝑡, 𝑠, 𝜉, 𝑥1, 𝑧1, 𝑧2, 𝑧3) ∩
(𝑧4, 𝑧5). The map Φ′ can be realised as

Φ′ : 𝑇 ′ −→ F ′

(𝑡, 𝑠, 𝜉, 𝑥1, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5) ↦−→ (𝑧4, 𝑧5)

and the fibre of Φ′ over each point is isomorphic to P(𝜆0, . . . , 𝜆6). The following Table 2 shows what
the restrictions of Φ′ to 𝑌 ′ are.

Example 4.9. Let 𝑋 ⊂ P � P(1, 2, 2, 3, 4, 5, 7, 5) be a quasi-smooth member of the family #39961,
with 𝑥2, 𝜉, 𝑦4, 𝑦1, 𝑥1, 𝑦2, 𝑦3, 𝑠 the homogeneous variables of P.

We take the toric blowup Φ : 𝑇 → P centred at ps = (0 : · · · : 0 : 1) ∈ P and restrict it to the
unique Kawamata blowup 𝜑 : 𝑌 → 𝑋 centred at ps. The point ps is a cyclic quotient singularity of type
1
5 (1, 2, 3) and local analytical variables 𝜉, 𝑥1, 𝑥2 called the orbinates. By Lemma 3.4, in order to restrict
Φ to the the Kawamata blowup of X at ps we need for T to have a certain bigrading: The one relative to
#39961 is listed in Table 2. In particular,

Mov(𝑇) = 〈
( 7

4
)
,
( 1

0
)
〉 ⊂ 〈

( 0
1
)
,
( 1

0
)
〉 = Eff (𝑇) ⊂ R2.
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Table 2. Elementary birational links to a fibration (cases in Table 1
excluded). The family #39607 is embedded in the weighted projective space
P7 (2, 3, 3, 4, 5, 5, 6, 7) with coordinates 𝜉 , 𝑢, 𝑧, 𝑦, 𝑣, 𝑠0 , 𝑠1 , 𝑠2..

ID Centre 𝑇 ′ 𝑑𝑃𝑘/F ′

#39993 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦1 𝑦2 𝑦3 𝑥2 𝑦4
0 5 2 4 3 3 3 1 2
1 3 1 2 1 1 1 0 0


�� 𝑑𝑃4/P(1, 2)

#39991 1/7 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦2 𝑦3 𝑥2 𝑦1 𝑦4
0 7 2 4 3 3 3 1 2
1 4 1 2 1 1 1 0 0


�� 𝑑𝑃4/P(1, 2)

#39970 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑥2 𝑦4
0 5 2 4 5 3 3 1 2
1 3 1 2 2 1 1 0 0


�� 𝑑𝑃3/P(1, 2)

#39969 1/7 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦1 𝑦4
0 7 2 4 5 3 3 1 2
1 4 1 2 2 1 1 0 0


�� 𝑑𝑃3/P(1, 2)

#39968 1/11 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦1 𝑦4
0 11 2 8 5 3 3 1 2
1 6 1 4 2 1 1 0 0


�� 𝑑𝑃3/P(1, 2)

#39961 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑥2 𝑦4
0 5 2 4 7 5 3 1 2
1 3 1 2 3 2 1 0 0


�� 𝑑𝑃2/P(1, 2)

#39607 1/5 (II2) ��	
𝑡 𝑠0 𝜉 𝑦 𝑠1 𝑠2 𝑣 𝑢 𝑧
1 3 1 2 3 3 2 1 1
3 4 1 2 3 2 1 0 0


�� 𝑑𝑃1/P
1

#39578 1/7 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦1 𝑦4
1 4 1 2 3 2 2 1 2
3 5 1 2 2 1 1 0 0


�� 𝑑𝑃2/P(1, 2)

#39576 1/9 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦1 𝑦4
1 5 1 2 3 2 2 1 2
3 6 1 2 2 1 1 0 0


�� 𝑑𝑃2/P(1, 2)

Now, we run the 2-ray game on T following the movable cone in Case I.b of Figure 2, and then we
restrict it to Y. After saturation with respect to the new variable t, the equations defining𝑌 := Φ−1

∗ 𝑋 ⊂ 𝑇
are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥2𝜉𝑦1 − 𝑦
2
1 − 𝑦4𝑥1 + 𝑥2𝑦2 = 0

−𝑥7
2𝑡

3 − 𝑥3
2𝜉

2𝑡 − 𝑥2𝜉
3 + 𝑥2

2𝜉𝑦1𝑡 + 𝑥2𝜉𝑥1 − 𝑥
2
2𝑦2𝑡 − 𝑦1𝑥1 + 𝑦4𝑠 = 0

𝜉3𝑦4 − 𝑦
4
4𝑡

3 + 𝑥2𝜉𝑦2 − 𝑦1𝑦2 + 𝑥2𝑦3 = 0
𝑥2

2𝜉
3𝑡 + 𝑥2𝑦

2
4𝑦1𝑡

3 + 𝑥2
2𝜉𝑥1𝑡 + 𝑥

2
2𝑦4𝑥1𝑡

2 − 𝑥2
1 − 𝑦1𝑠 = 0

𝑥6
2𝑦1𝑡

3 − 𝑥2𝑦
4
4𝑡

4 + 𝜉3𝑦1 − 𝑦
3
4𝑦1𝑡

3 − 𝑥2𝑦
2
4𝑥1𝑡

2 + 𝑥2
2𝑦3𝑡 + 𝑥1𝑦2 = 0

𝑥5
2𝑦4𝑦1𝑡

3 − 𝑦5
4𝑡

4 − 𝑦3
4𝑥1𝑡

2 + 𝑥2𝑦4𝑦3𝑡 + 𝑦
2
2 − 𝑦1𝑦3 = 0

𝑥7
2𝑦1𝑡

4 − 𝑥6
2𝑥1𝑡

3 + 𝑥2
2𝜉

4𝑡 − 𝑥2
2𝑦

4
4𝑡

5 − 𝑥2𝑦
3
4𝑦1𝑡

4 + 𝑥2
2𝜉𝑦4𝑥1𝑡

2

−𝑥2
2𝑦

2
4𝑥1𝑡

3 − 𝜉3𝑥1 + 𝑦
3
4𝑥1𝑡

3 − 𝑥2𝑦4𝑦1𝑥1𝑡
2 − 𝑥2𝑦

2
4𝑦2𝑡

3 + 𝑥3
2𝑦3𝑡

2 + 𝑦2𝑠 = 0
𝑥5

2𝑦4𝑥1𝑡
3 − 𝑥6

2𝑦2𝑡
3 − 𝑥2𝜉𝑦

4
4𝑡

4 + 𝑦4
4𝑦1𝑡

4 − 𝑥2𝜉𝑦
2
4𝑥1𝑡

2

+𝑦2
4𝑦1𝑥1𝑡

2 − 𝜉3𝑦2 + 𝑦
3
4𝑦2𝑡

3 + 𝑥2
2𝜉𝑦3𝑡 − 𝑥2𝑦1𝑦3𝑡 − 𝑥1𝑦3 = 0

−𝑥6
2𝜉

3𝑡3 + 𝑥6
2𝑦

3
4𝑡

6 − 𝑥6
2𝜉𝑥1𝑡

3 + 𝑥2
2𝜉

2𝑦3
4𝑡

4 + 𝑥5
2𝑦1𝑥1𝑡

3 − 𝜉6 + 𝜉3𝑦3
4𝑡

3 − 𝑥2𝜉𝑦
3
4𝑦1𝑡

4

+𝑥2
2𝜉

2𝑦4𝑥1𝑡
2 − 𝑦4

4𝑥1𝑡
4 − 𝑥2𝜉𝑦4𝑦1𝑥1𝑡

2 − 𝑥2𝜉𝑦
2
4𝑦2𝑡

3 + 𝑥2𝑦
3
4𝑦2𝑡

4

−𝑦2
4𝑥

2
1𝑡

2 + 𝑦2
4𝑦1𝑦2𝑡

3 + 𝑥2𝑦4𝑥1𝑦2𝑡
2 + 𝑥2𝑥1𝑦3𝑡 − 𝑦3𝑠 = 0.

These consist of the five maximal Pfaffians Pf𝑖 = 0 together with the four unprojection equa-
tions 𝑠𝑦 𝑗 − 𝑔 𝑗 = 0. Also, Y is inside the rank 2 toric variety T whose irrelavant ideal is (𝑡, 𝑠) ∩
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(𝜉, 𝑥1, 𝑦3, 𝑦2, 𝑦1, 𝑥2, 𝑦4). By Lemma 4.5, the map 𝜏0 : 𝑇 � 𝑇1 restricts to an isomorphism on Y and there-
fore we can assume𝑌 ⊂ 𝑇1, where 𝑇1 has irrelevant ideal 𝐼1 = (𝑡, 𝑠, 𝜉, 𝑥1) ∩ (𝑦3, 𝑦2, 𝑦1, 𝑥2, 𝑦4). Crossing
the 𝑦3-wall contracts the locusV(𝑦2, 𝑦1, 𝑥2, 𝑦4) ⊂ 𝑇1. Its restriction to𝑌1 isV(𝑦3, 𝑦2, 𝑦1, 𝑥2, 𝑦4) ⊂ V(𝐼1),
where 𝐼1 is the ideal defining𝑌1 ⊂ 𝑇1. Hence, the contraction happens away from𝑌1, so 𝜏1 restricts to an
isomorphism𝑌1 � 𝑌2. Just as before we just set𝑌1 � 𝑌2 ⊂ 𝑇2, where 𝐼2 = (𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3)∩(𝑦2, 𝑦1, 𝑥2, 𝑦4).
Crossing the 𝑦2-wall restricts to a contraction of 𝐶2 � (𝑦1 = 𝑥2 = 𝑦4 = 0) |𝑌2 � P(7, 1) and an extrac-
tion of 𝐶3 � (𝑡 = 𝑠 = 𝜉 = 𝑥1 = 0) |𝑌3 � P(1, 5). Hence, the map 𝜏2 corresponds to a toric flip over a
point, denoted by (−7,−1, 1, 5) and 𝑌3 ⊂ 𝑇3 with irrelevant ideal 𝐼3 = (𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑦2) ∩ (𝑦1, 𝑥2, 𝑦4).
The map 𝜏3 restricts to

(𝑥2 = 𝑦4 = 0) |𝑌3 = (𝑦1 = 𝑥2 = 𝑦4 = 0) ⊂ V(𝐼3),

where 𝐼3 is the ideal defining 𝑌3 ⊂ 𝑇3. Therefore, the small contraction 𝜏3 : 𝑇3 � 𝑇4 happens away from
𝑌3. Finally, we have a map 𝜑′ : 𝑌4 → F ′ = ProjC[𝑥2, 𝑦4]. A generic fibre is a surface S given by

𝑡𝜉3 + 𝑡2𝑦2 + 𝑡𝜉𝑦2 − 𝑦
2
2 + 𝑡

2𝜉𝑦1 − 𝜉
3𝑦1 − 𝑡𝑦2𝑦1 − 𝜉𝑦1𝑦2 − 𝑡

2𝑦2
1 + 𝑦2𝑦

2
1 = 0

inside P(1𝑡 , 1𝜉 , 1𝑦1 , 2𝑦2 ). Hence, S is a del Pezzo surface of degree 2. Therefore, we have the diagram

𝑌 𝑌1 𝑌2 𝑌3 𝑌4

𝑋 F2 P(1𝑥2 , 2𝑦4),

𝜑

� �

𝛼2

(−7,−1,1,5)

𝛽2

�

𝜑′

where 𝜑′ : 𝑌4 → P(1𝑥2 , 2𝑦4) is a del Pezzo fibration of degree two.

4.2. Case II: divisorial contractions

In each case in Figure 3, whose notation we refer to, the movable cone of T is strictly contained in the
effective cone of T. Hence, we have a diagram of toric varieties

𝑇 𝑇 ′

P F ′

Φ

𝜏

Φ′

𝜎

,

whereΦ andΦ′ are divisorial contractions and 𝜏 is a smallQ-factorial modification. As usual, we restrict
Φ : 𝑇 → P to be the unique Kawamata blowup 𝜑 : 𝐸 ⊂ 𝑌 → ps ∈ 𝑋 . By Lemmas 4.5 and 4.7, the map
𝜏 |𝑌 : 𝑌 � 𝑌 ′ is an isomorphism followed by a finite sequence of isomorphisms or flips. Referring to the
notation in Figure 3, by assumption the raysR+[𝑧4] andR+[𝑧5] are given by linearly independent vectors
𝑣4 and 𝑣5 in Z2. Let −𝑑 ≠ 0 be the determinant of the matrix B whose columns are 𝑣4 and 𝑣5; without
loss of generality, we can assume that 𝑑 > 0 (cf [2, Lemma 2.4]). Then, there is 𝐴 ∈ GL(2,Z) such
that

𝐴 · 𝐵 =

(
0 −𝑑
𝑑 0

)
.
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Table 3. We list the restriction Φ′ |𝑌 ′ = 𝜑′ and the model to which 𝜑′ contracts to. In each case, 𝜑′

is a weighted blowup with weights 1
𝑟 (𝑎1 , . . . , 𝑎𝑙) with 𝑟 ≥ 1. For case #39890, 𝜑′ is a contraction

to a hyperquotient singularity; in the other instances, 𝜑′ is a contraction to a Gorenstein point. The
family #39569 is embedded in the weighted projective space P7 (2, 3, 5, 6, 7, 7, 8, 9) with coordinates
𝜉 , 𝑧, 𝑢, 𝑦, 𝑣, 𝑠0 , 𝑠1 , 𝑠2..

ID Centre 𝑇 ′ 𝜑′ 𝑋 ′ ⊂ F ′

#39569 1/7 (II2) ��	
𝑡 𝑠0 𝜉 𝑦 𝑠1 𝑠2 𝑣 𝑢 𝑧
5 6 1 3 4 2 1 0 −1
3 5 1 3 4 3 2 1 0


�� (5, 1, 3, 1) 𝑋 ′
6,6 ⊂ P(12, 2, 33)

#39660 1/17 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦1 𝑦4
3 10 1 6 2 1 1 0 −2
1 9 1 6 3 2 2 1 0


�� 1
2 (1, 1, 1) 𝑋 ′

4,5 ⊂ P(13 , 22 , 3)/μ2

#39890 1/11 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑦4 𝑥2
8 15 2 10 5 3 1 0 −3
1 6 1 5 4 3 2 3 0


�� 1
3 (2, 10, 5, 3, 1) 𝑋 ′ ⊂ P(12 , 2, 32 , 4, 5, 6)

#39906 1/7 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑦4 𝑥2
4 9 2 6 5 3 1 0 −1
1 4 1 3 3 2 1 1 0


�� (2, 5, 3, 1) 𝑋 ′ ⊂ P(14 , 2, 3, 4)

#39912 1/11 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦4 𝑦1
4 13 2 6 3 3 1 0 −1
1 6 1 3 2 2 1 1 0


�� (2, 3, 3, 1) 𝑋 ′ ⊂ P(14, 22 , 3)

#39913 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑦4 𝑥2
4 9 2 6 3 3 1 0 −1
1 4 1 3 2 2 1 1 0


�� (2, 3, 3, 1) 𝑋 ′ ⊂ P(13 , 22 , 3, 4)

#39928 1/13 ��	
𝑡 𝑠 𝜉 𝑥1 𝑥2 𝑦3 𝑦2 𝑦4 𝑦1
4 15 2 4 7 3 1 0 −1
1 7 1 2 4 2 1 1 0


�� (2, 4, 7, 3, 1) 𝑋 ′
3,4 ⊂ P(14, 22)

#39929 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑦4 𝑥2
4 7 2 4 7 3 1 0 −1
1 3 1 2 4 2 1 1 0


�� (4, 2, 7, 3, 1) 𝑋 ′ ⊂ P(14, 22 , 3)

#39934 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑦4 𝑥2
4 7 2 4 3 3 1 0 −1
1 3 1 2 2 2 1 1 0


�� (2, 3, 3, 1) 𝑋 ′ ⊂ P(14, 23 , 3)

After a row operation on the grading of 𝑇 ′ via the matrix A, 𝑇 ′ is isomorphic to a toric variety with
C∗ × C∗-action given by

𝑡 𝑠 𝜉 𝑥1 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

T’:
(
𝜅0 𝜅1 𝜅2 𝜅3 𝜅4 𝜅5 𝜅6 0 −𝑑

)
𝜆0 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝑑 0

, (4.1)

where every 2× 2 minor is nonpositive. In cases II.a, the irrelevant ideal of 𝑇 ′ is (𝑡, 𝑠, 𝜉, 𝑥1, 𝑧1, 𝑧2, 𝑧3) ∩
(𝑧4, 𝑧5), and (𝑡, 𝑠, 𝜉, 𝑥1, 𝑧1, 𝑧2) ∩ (𝑧3, 𝑧4, 𝑧5) in cases II.b.

Cases II.a. Divisorial contractions to a point.
We have 𝜅6 ≠ 0 by assumption. The map Φ′ is given by the sections multiples of 𝐷𝑧4 (in the notation
of [10, Section 4.1.7]) and is a divisorial contraction to a point in F ′. This can be realised as

Φ′ : 𝑇 ′ −→ F ′

(𝑡, 𝑠, 𝜉, 𝑥1, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5) ↦−→ (𝑡𝑧
𝜅0
𝑑

5 , 𝑠𝑧
𝜅1
𝑑

5 , 𝜉𝑧
𝜅2
𝑑

5 , 𝑥1𝑧
𝜅3
𝑑

5 , 𝑧1𝑧
𝜅4
𝑑

5 , 𝑧2𝑧
𝜅5
𝑑

5 , 𝑧3𝑧
𝜅6
𝑑

5 , 𝑧4) .

Assume X is not the family #39660. Then, F ′ = P(𝜆0, . . . , 𝜆6, 𝑑) and Φ′ contracts the divisor 𝐸 ′ : (𝑧5 =
0) � P(𝜅0, . . . , 𝜅6) to the point p = (0 : · · · : 0 : 1) ∈ F ′. In particular, p is smooth whenever 𝑑 = 1.
The contraction Φ′ restricts to a weighted blowup 𝜑′ : 𝑌 ′ → 𝑋 ′ as in Table 3.
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The following explicit example illustrates a link that terminates with a 3-fold in a fake weighted
projective space.

Example 4.10. Consider the deformation family with ID #39660 in Tom format. This is 𝑋 ⊂ P �
P(2, 2, 3, 5, 5, 7, 12, 17) with homogeneous coordinates 𝜉, 𝑦4, 𝑦1, 𝑥2, 𝑦2, 𝑦3, 𝑥1, 𝑠. By Lemma 3.4, we
know that the weighted blowup of ps = (0 : . . . : 0 : 1) ∈ P restricts to the Kawamata blowup
𝜑 : 𝑌 ⊂ 𝑇 → 𝑋 ⊂ P provided that the bigrading of T is

𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑥2 𝑦2 𝑦1 𝑦4

T:
(

3 10 1 6 2 1 1 0 −2
)

1 9 1 6 3 2 2 1 0

up to multiplication by a matrix in GL(2,Z) (see [2, Lemma 2.4 and Example 2.13]). We have a sequence
of smallQ-factorial modifications 𝜏 : 𝑇 � 𝑇 ′ where 𝑇 ′ has the same Cox ring as T but whose irrelevant
ideal is (𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑥2, 𝑦2) ∩ (𝑦1, 𝑦4). Let 𝑇 𝑦4 be the same rank 2 toric variety as 𝑇 ′, except that 𝑦4 has
bidegree (−1, 0) instead of (−2, 0). Then, there is a map 𝑞 : 𝑇 𝑦4 → 𝑇 ′ given by 𝑦4 ↦→ 𝑦2

4 and 𝑇 𝑦4 can be
seen as a double cover of 𝑇 ′. On the other hand, 𝑇 ′ = ProjC[𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑥2, 𝑦2, 𝑦1, 𝑦4]

μ2 , where μ2 is
the multiplicative cyclic group of order 2 acting on C[𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑥2, 𝑦2, 𝑦1, 𝑦4] via

𝜖 · (𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑥2, 𝑦2, 𝑦1, 𝑦4) = (𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑥2, 𝑦2, 𝑦1, 𝜖 𝑦4) .

Hence, q is the quotient map of 𝑇 𝑦4 under this group action. Consider the map

Φ𝑦4 : 𝑇 𝑦4 −→ P(1, 9, 1, 6, 3, 2, 2, 1)

(𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑥2, 𝑦2, 𝑦1, 𝑦4) ↦−→ (𝑡𝑦3
4, 𝑠𝑦

10
4 , 𝜉𝑦4, 𝑥1𝑦

6
4, 𝑦3𝑦

2
4, 𝑥2𝑦4, 𝑦2𝑦4, 𝑦1) .

This is the map given by the sections multiples of 𝐻0 (𝑇 𝑦4 ,O𝑇 𝑦4 (0, 1)) and it corresponds to a divisorial
contraction to a point in P(1, 9, 1, 6, 3, 2, 2, 1). Since Φ𝑦4 is an isomorphism away from the locus
(𝑦4 = 0), the action on 𝑇 𝑦4 is carried through to P(1, 9, 1, 6, 3, 2, 2, 1).

The action at each point of this weighted projective space is then given by

𝜖 · (𝑡 : 𝑠 : 𝜉 : 𝑥1 : 𝑦3 : 𝑥2 : 𝑦2 : 𝑦1 : 𝑦4) = (𝜖𝑡 : 𝑠 : 𝜖𝜉 : 𝑥1 : 𝑦3 : 𝜖𝑥2 : 𝜖 𝑦2 : 𝑦1)

= (𝑡 : 𝜖 𝑠 : 𝜉 : 𝑥1 : 𝜖 𝑦3 : 𝜖𝑥2 : 𝜖 𝑦2 : 𝜖 𝑦1) .

Then, Φ𝑦4 descends to a divisorial contraction of quotient spaces

Φ′ : 𝑇 ′ = 𝑇 𝑦4/μ2 → P(1, 9, 1, 6, 3, 2, 2, 1)/μ2 .

Let 𝑌 ′ be the image of 𝜏 restricted to Y. The map Φ′ restricts to a divisorial contraction 𝜑′ : 𝑌 ′ → 𝑋 ′

to the point py1 ∼ 1
2 (1, 1, 1) ∈ 𝑋 ′ in the complete intersection of a quartic and a quintic 𝑋 ′ ⊂

P(1, 1, 3, 2, 2, 1)/μ2 with homogeneous variables 𝑡, 𝜉, 𝑦3, 𝑥2, 𝑦2, 𝑦1 which is given by the equations{
𝑡4 + 𝑡𝜉3 − 𝑦3𝑦1 − 𝑦

2
2 = 0

𝑡𝑥2
2 + 𝑡𝑦

4
1 − 𝜉

5 − 𝜉2𝑥2𝑦1 + 𝑦3𝑦2 = 0 .

Note that 𝑋 ′ is invariant under the action of μ2. By Lemma 4.8, the map 𝜑′ has discrepancy 1
2 and its

exceptional divisor is isomorphic to P2. Hence, 𝜑′ is the Kawamata blowup centred at py1 ∈ 𝑋 ′.

Cases II.b. Divisorial contractions to a rational curve.
By assumption, 𝜅6 = 0 in the grading of𝑇 ′ in equation (4.1). The map Φ′ is given by the sections that are
multiples of the divisor (𝑧4 = 0), and is a divisorial contraction to the rational curve Γ′ := ProjC[𝜆6, 𝑑].
By Lemma 3.5, Φ′ restricts to a divisorial contraction to a curve at the level of 3-folds. By terminality,
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Table 4. We list the restriction Φ′ |𝑌 ′ = 𝜑′ and the model to which 𝜑′ contracts to.
In each case, 𝜑′ is a contraction to a curve Γ′ inside a Fano 3-fold 𝑋 ′..

ID Centre 𝑇 ′ Γ′ ⊂ 𝑋 ′ ⊂ F ′

#39557 1/11 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑥2 𝑦4
5 8 1 3 2 1 0 0 −1
8 15 2 6 5 3 1 1 0


�� P1 ⊂ 𝑋 ′
10 ⊂ P(1, 1, 2, 3, 5)

#39605 1/13 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑥2 𝑦4
3 8 1 5 2 1 0 0 −1
4 15 2 10 5 3 1 1 0


�� P1 ⊂ 𝑋 ′
6,8 ⊂ P(1, 1, 2, 3, 4, 5)

#39675 1/9 ��	
𝑡 𝑠 𝜉 𝑥1 𝑥2 𝑦3 𝑦1 𝑦2 𝑦4
3 6 1 1 2 1 0 0 −1
4 11 2 2 5 3 1 1 0


�� P1 ⊂ 𝑋 ′
6,6 ⊂ P(1, 1, 2, 2, 3, 5)

#39678 1/5 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦2 𝑦3 𝑥2 𝑦1 𝑦4
3 4 1 1 1 1 0 0 −1
4 7 2 2 3 3 1 1 0


�� P1 ⊂ 𝑋 ′
4,6 ⊂ P(1, 1, 2, 2, 3, 3)

#39676 1/7 ��	
𝑡 𝑠 𝜉 𝑥1 𝑥2 𝑦3 𝑦2 𝑦1 𝑦4
3 5 1 1 1 1 0 0 −1
4 9 2 2 3 3 1 1 0


�� P1 ⊂ 𝑋 ′
4,6 ⊂ P(1, 1, 2, 2, 3, 3)

#39898 1/9 ��	
𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦2 𝑦1 𝑦4 𝑥2
3 6 1 4 2 1 0 0 −1
1 5 1 4 3 2 1 2 0


�� P1 (1, 2) ⊂ 𝑋 ′ ⊂ P(13, 22 , 3, 4, 5)

it follows that gcd(𝜆6, 𝑑) = 1 since, otherwise, the curve Γ′ would be a line of singularities. In fact, by
looking at each case we can see that 𝑑 = 1. The map Φ′ is then

Φ′ : 𝑇 ′ −→ F ′

(𝑡, 𝑠, 𝜉, 𝑥1, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5) ↦−→ (𝑡𝑧𝜅0
5 , 𝑠𝑧

𝜅1
5 , 𝜉𝑧

𝜅2
5 , 𝑥1𝑧

𝜅3
5 , 𝑧1𝑧

𝜅4
5 , 𝑧2𝑧

𝜅5
5 , 𝑧3, 𝑧4) .

Hence, the divisor (𝑧5 = 0) ⊂ 𝑇 ′ which is isomorphic to P(𝜅0, . . . , 𝜅5) is contracted to Γ′ ⊂

P(𝜆0, . . . , 𝜆6, 1). In Table 4, we summarise the details regarding all cases falling into II.b.

Divisorial contractions to curves with nonrational components.
Here, we look in more detail at the case in which the birational link terminates with a divisorial
contraction to a noncomplete intersection curve. The families falling into this description are #40663,
#40671, #40672 and #40993. Notice that the families #40663 and #40993 have been treated in [22, Table
1] and are referred to as A.3 and A.2, respectively. In that paper, Ducat constructs these two families via
simple Sarkisov links initiated by blowing up a curve Γ on a rational 3-fold.

It turns out that these are not the only codimension 4 and index 2 Fano 3-folds which can be obtained
in this way. Here, we rely on the construction of X as in Section 3 and show that #40671 and #40672
are rational via a reversed procedure to the one in [22]. These two examples are interesting also because
the Sarkisov link at the toric level ends with a fibration while its restriction to the 3-folds ends with
a divisorial contraction to a nonrational curve. Moreover, we compute the Picard rank of #40671 and
#40672.

#40672.
Let 𝑋 ⊂ P � P(1, 1, 1, 2, 2, 2, 3, 3) with homogeneous coordinates 𝑦1, 𝑦2, 𝑥2, 𝜉, 𝑦4, 𝑥1, 𝑦3, 𝑠 be a quasi-
smooth member of the family #40672 as in Section 3 and [13].

After the Kawamata blowup of the point ps ∼ 1
3 (1, 1, 2) and the isomorphism 𝜏0 in the birational

link, we have

𝑡 𝑠 𝜉 𝑥1 𝑦3 𝑦1 𝑦2 𝑥2 𝑦4

T1:
(
−3 −3 −1 −1 0 1 1 1 2

)
1 2 1 1 1 0 0 0 0

.

https://doi.org/10.1017/fms.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.66


Forum of Mathematics, Sigma 19

The small Q-factorial modification 𝜏1 contracts P(3, 3, 1, 1) ⊂ 𝑇1 to a point and extracts P(1, 1, 1, 2) ⊂
𝑇2, where 𝑇2 has the same Cox ring as 𝑇1 but irrelevant ideal (𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3) ∩ (𝑦1, 𝑦2, 𝑥2, 𝑦4). This
restricts to the flip

𝐶1 ⊂ 𝑌1 𝑌2 ⊃ 𝐶2

py3 ,
𝛼1 𝛽1

where𝐶1 : (𝑡 + 𝑠+2𝑥3
1 = 𝜉 −𝑥1 = 0) ⊂ P(3, 3, 1, 1), that is,𝐶1 � P(3𝑡 , 1𝑥1) and𝐶2 : (𝑦1 +𝑥2 = 𝑦2 +𝑥2 =

0) ⊂ P(1, 1, 1, 2), that is 𝐶2 � P(1𝑥2 , 2𝑦4). Also, −𝐾𝑌1 ∼ (𝜉 = 0) ⊂ 𝑌1 and 𝐸 ∼ (𝑡 = 0) ⊂ 𝑌1.
It is clear that −𝐾𝑌1 ·𝐶1 = 1

3 . On the other hand, we have −𝐾𝑌2 ∼ 𝐷𝑦3 −𝐷𝑥2 . Hence, −𝐾𝑌2 ·𝐶2 = − 1
2 .

Consider the map Φ′

Φ′ : 𝑇2 → P(1, 1, 1, 2)
(𝑡, 𝑠, 𝜉, 𝑥1, 𝑦3, 𝑦1, 𝑦2, 𝑥2, 𝑦4) ↦→ (𝑦1, 𝑦2, 𝑥2, 𝑦4) .

Then Φ′ is a fibration whose fibres are isomorphic to P(1, 2, 1, 1, 1). Consider the two consecutive
projections 𝑋 � 𝑋 ′ � 𝑋 ′′, where 𝑋 � 𝑋 ′ is the projection away from p𝑠 ∈ 𝑋 and 𝑋 ′ � 𝑋 ′′ is the
projection away from p𝑦3 ∈ 𝑋 ′. The equations of 𝑋 ′′ are given explicitly by

��	
−𝑦1 𝑦2 𝑦2

2𝑥2 + 𝑦1𝑥
2
2 − 𝑥2𝑦4

𝑦4 − 𝑦
2
1 − 𝑦1𝑦2 − 𝑦1𝑥2 − 𝑦2𝑥2 −𝑦4 −𝑦4

1 + 𝑦
3
1𝑦2 + 𝑦

2
2𝑦4 + 𝑦1𝑥2𝑦4 − 𝑦

2
4


����	
𝑥1
𝜉
1


�� =
(
0
0

)
.

Let Γ ⊂ P(1, 1, 1, 2) be defined by the three 2×2 minors of the matrix above. The curve Γ has generically
two irreducible and reduced components, which can be easily checked on Magma: One is rational, and
the other has genus 4. We have that Φ′ |𝑌2 is a divisorial contraction to Γ ⊂ P(1, 1, 1, 2). Since Γ has two
irreducible components, 𝜌𝑋 = 2.

#40671.
This case is completely analogous to the previous one. We give the 2 × 3 matrix whose 2 × 2 minors
define Γ ⊂ P(1, 1, 1, 2). This is

��	
𝑦1 −𝑦2 −𝑦3𝑦4

−𝑦2𝑦3 −𝑦2
1 + 𝑦2𝑦3 −𝑦1𝑦

3
3 + 𝑦

4
2 + 𝑦

2
4


�� .
The curve Γ has one rational irreducible component, and another irreducible component with genus

5. As before, 𝜌𝑋 = 2.

4.2.1. Wrapping up: conclusion of nonsolidity proof
We finalise the proof of nonsolidity for the families whose link terminates with a divisorial contraction.

We prove that all models 𝑋 ′ in Tables 3 and 4 admit a structure of a strict Mori fibre space, with the
possible exception of two.

Lemma 4.11. Let X be a family in Table 4. Then X is nonsolid.

Proof. We consider the projection 𝜋 : 𝑋 ′ � P1 in each case. Then, the generic fibre 𝑆 ⊂ 𝑋 ′ is a
surface for which −𝐾𝑆 ∼ O𝑆 (1) by adjunction since 𝑋 ′ has Fano index 2. The conclusion follows from
Corollary 2.3. �

We show next that the families #39890 and #39928 in Table 3 admit singular birational models
in a family whose general member is a quasi-smooth complete intersection of a cubic and a quartic
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𝑋 ′
3,4 ⊂ P(1, 1, 1, 1, 2, 2). It was shown by Corti and Mella [18] that its general member is birigid. In

this case, we were not able to show that these are nonsolid: These are the nonbirationally rigid families
mentioned in Theorem 1.2.

Lemma 4.12. Let X be a quasi-smooth member of either family #39890 or #39928 in Table 3. Then X is
birational to a nonquasismooth complete intersection of a cubic and a quartic 𝑋 ′

3,4 ⊂ P(1, 1, 1, 1, 2, 2).

Example 4.13. Consider the singular complete intersection{
−𝑡𝜉𝑧2 + 𝑡𝑧

2
2 + 𝑡𝑧1 + 𝜉𝑢 + 𝑧1𝑦 + 𝑢𝑦 = 0

𝑡3𝜉 − 𝜉4 + 𝑡𝑦3 − 𝑡3𝑧2 − 𝑡𝜉𝑢 − 𝜉𝑧1𝑦 − 𝑡𝑢𝑦 + 𝑡𝑢𝑧2 − 𝑧
2
1 = 0

inside P(1, 1, 1, 1, 2, 2) with homogeneous variables 𝑡, 𝜉, 𝑦, 𝑧2, 𝑧1, 𝑢. Then, there is a weighted blowup
from the point pz2 that initiates a birational link to a quasismooth family in Tom format with ID #39928
(see Table 3).

Lemma 4.14. Let X be a quasi-smooth member of a family in Table 3 not treated in Lemma 4.12. Then,
the model 𝑋 ′ is birational to a del Pezzo fibration.

Proof. Notice that each model 𝑋 ′ in Table 3 has Fano index 1. General (quasi-smooth) members in each
of these families of 𝑋 ′ have been treated in [10], [29] and [12]. In particular, it was shown that these are
nonsolid. The same results extend to terminal families provided that the key monomials are still present
in the equations of 𝑋 ′, which is the case for each model. �
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