PRIMITIVE ORE EXTENSIONS

by D. A. JORDAN

(Received 19 September, 1975)
Introduction. Apart from simple Ore extensions such as the Weyl algebras, the best known example of a primitive Ore extension is the universal enveloping algebra $U(g)$ of the 2-dimensional solvable Lie algebra g over a field k of characteristic zero, see [4, p. 22]. $U(g)$ is a polynomial algebra over k in two indeterminates x and y with multiplication subject to the relation $x y-y x=y$, and may be regarded either as an Ore extension of $k[x]$ by the k-automorphism which maps x to $x-1$ or as an Ore extension of $k[y]$ by the derivation $y d / d y$. The argument suggested in [4, p. 22] to prove the primitivity of $U(g)$ can easily be generalised [6] to show that, if α is an automorphism of the ring R then the following conditions are sufficient for $R[x, \alpha]$ to be primitive: (i) no power $\alpha^{s}, s \geqq 1$, of α is inner; (ii) the only ideals of R invariant under α are 0 and R. These conditions are necessary and sufficient for the simplicity of the skew Laurent polynomial ring $R\left[x, x^{-1}, \alpha\right]$ but are not necessary for the primitivity of $R[x, \alpha]$ (the ordinary polynomial ring $D[x]$ over a division ring D not algebraic over its centre is easily seen to be primitive).

In the case of Ore extensions by derivations the arguments given in [3, p. 353] can be adapted to prove that, if the ring R contains the rationals and if δ is a derivation on R, then $R[x, \delta]$ is simple if and only if δ is outer and the only ideals of R invariant under δ are 0 and R [6]. The object of this paper is to find conditions which are satisfied by the above example $R=k[y], \delta=y d / d y$ and which are sufficient for $R[x, \delta]$ to be primitive. After notation and background information are established in $\S 1$, two such conditions are found in $\S 2$ and these are shown to be logically independent. The results are then applied to two other problems involving Ore extensions, namely those of when an Ore extension is a fully bounded ring ($\$ 3$) and a Jacobson ring (\$4).

1. Throughout this paper R will denote a right noetherian ring with $1, \delta$ will be a derivation on R and S will be the Ore extension $R[x, \delta]$, i.e. S is a ring of polynomials over R in an indeterminate x with multiplication subject to the relation

$$
x r=r x+\delta(r) \text { for all } r \in R
$$

R is said to be a Ritt ring if R contains the field of rational numbers as a subring and is said to have no Z-torsion if for all $r \in R$ and positive integers $n, n r=0$ if and only if $r=0$.

An ideal I of R is said to be a δ-ideal of R if $\delta(I) \subseteq I$. A δ-ideal I of R is δ-prime if for all δ-ideals A, B of $R, A B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$.

Proposition 1. If R is a Ritt ring then the δ-prime ideals of R are precisely those prime ideals of R which are δ-ideals.

Proof. See [5, Lemma 2.1 and Theorem 2.2].
We denote the nilpotent radicals of R and S by $N(R)$ and $N(S)$ respectively and their
Glasgow Math. J. 18 (1977) 93-97.

Jacobson radicals by $J(R)$ and $J(S)$. If I is an ideal of R we denote by $N(I)$ (resp. $J(I)$) the ideal of R such that $N(I) / I=N(R / I)$ (resp. $J(I) / I=J(R / I))$. $\mathscr{C}_{R}(I)$ will denote the set $\{c \in R \mid[c+I]$ is a regular element of $R / I\}$.

Proposition 2. $J(S)=\left(\bigcap_{i=0}^{\infty} \delta^{-i}(N(R))\right) S$. If R has no \mathbf{Z}-torsion then $J(S)=N(R) S$.
Proof. See [5, Lemma 2.1 and Corollary 2.7].
2. Following [1] δ will be said to be rigid on R if the mapping θ from the set of ideals of S to the set of δ-ideals of R, defined by $\theta(I)=I \cap R$ for all ideals I of S, is a bijection. δ will be said to be stiff on R if $\operatorname{In} R \neq 0$ for all non-zero ideals I of S. In [1, §4.8] it is shown that, if R is a Ritt ring and there exists a central element z of R such that $\delta(z)$ is a unit, then δ is rigid on R. The proof is adapted below to prove the corresponding result on stiff derivations.

Lemma 1. Let R be a ring with no Z-torsion. If there exists a central element z of R such that $\delta(z) \in \mathscr{C}_{R}(0)$ then δ is stiff on R.

Proof. Let $I(\neq 0)$ be an ideal of S and

$$
f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \quad\left(a_{i} \in R, 0 \leqq i \leqq n, a_{n} \neq 0\right),
$$

be of minimal degree among the non-zero polynomials in I. Suppose that $n>0$. Then

$$
f(x) z-z f(x)=n \dot{\delta}(z) a_{n} x^{n-1}+g(x),
$$

where the degree of $g(x)$ is less than $n-1$. Hence, by the minimality of $n, n \delta(z) a_{n}=0$, which gives a contradiction since R has no Z-torsion, $\delta(z) \in \mathscr{C}_{R}(0)$ and $a_{n} \neq 0$. Thus $n=0$, $I \cap R \neq 0$ and δ is stiff on R.

Definition. R is said to be δ-primitive if there exists a maximal right ideal M of R containing no non-zero δ-ideals of R.

Theorem 1. If R is δ-primitive and δ is stiff on R then $R[x, \delta]$ is primitive.
Proof. Let M be a maximal right ideal of R containing no non-zero δ-ideals. Let $I(\neq 0)$ be an ideal of S. Then $I \cap R$ is a non-zero δ-ideal of R and hence $(I \cap R)+M=R$. It follows that $I+M S=S$, so that $M S$ is comaximal with every non-zero ideal of S. Consequently S is primitive.

As observed in the introduction, ordinary polynomial rings over certain division rings are primitive. Thus the condition of Theorem 1 is not necessary for $R[x, \delta]$ to be primitive. We now obtain an alternative sufficient condition for the primitivity of $R[x, \delta]$.

We recall that a prime ring is said to be a G-ring if the intersection of its non-zero prime ideals is non-zero.

Definition. R is said to be a δG-ring if it is δ-prime and the intersection of its nonzero δ-prime ideals is non-zero.

Theorem 2. If R is $a \delta G$-ring and δ is stiff on R then $R[x, \delta]$ is primitive.

Proof. Let I denote the intersection of the non-zero δ-prime ideals of R and let P be a non-zero prime ideal of S. Then $P \cap R$ is a non-zero δ-prime ideal of R by [5, Lemma 1.3] and since δ is stiff on R. Thus $I \subseteq P \cap R$. In particular I is contained in every non-zero primitive ideal of S. Hence if S is not primitive then $0 \neq I \subseteq J(S)$. But $J(S)=0$ by Proposition 2 and hence S is primitive.

Examples 1 and 2 below show that the conditions of Theorems 1 and 2 are logically independent, even in the case where R is commutative with no Z-torsion, and hence that neither is necessary for an Ore extension of a commutative noetherian ring with no Z-torsion to be primitive.

Example 1. Let R be the power series ring $k[[y]]$ over a field k of characteristic 0 in an indeterminate y and δ be the derivation $y d / d y$. Then the only non-zero prime ideal of R is the maximal ideal $y R$ which is a δ-ideal. Hence, by Proposition $1, y R$ is the only nonzero δ-prime ideal of R and R is a δG-ring. Furthermore δ is stiff on R by Lemma 1 , since $\delta(y)=y \in \mathscr{C}_{R}(0)$. Thus $R[x, \delta]$ is primitive by Theorem 2. However R is not δ-primitive since the only maximal ideal of the commutative ring R is a δ-ideal. Thus the condition of Theorem 1 is not satisfied.

Example 2. Let $R=k(t)[y]$ be the polynomial ring in an indeterminate y over the field of rational functions in an indeterminate t over a field k of characteristic 0 . Let $\delta=t \partial / \partial t+$ $y \partial / \partial y$. Consider the maximal ideal $M=(y-1) R$ and suppose that there exists a non-zero δ-ideal I of R contained in M. I must be of the form

$$
(y-1)^{n} h(y) R, \text { where } \quad h(y) \in k(t)[y], n \geqq 1 \text { and }(y-1) \nmid h(y) .
$$

But

$$
\delta\left((y-1)^{n} h(y)\right)=(y-1)^{n} \delta(h(y))+n y(y-1)^{n-1} h(y)
$$

so that, since I is a δ-ideal, $n y(y-1)^{n-1} h(y) \in(y-1)^{n} R$, which contradicts $(y-1) \nsucc h(y)$. Thus M contains no non-zero δ-ideals of R and R is δ-primitive. Since $\delta(y)=y$ it follows, by Lemma 1 and Theorem 1 , that $R[x, \delta]$ is primitive. However R is not δG, since for each $\lambda \in k$ the maximal ideal $(y-\lambda t) R$ is a δ-ideal of R, so that the intersection of the non-zero δ-prime ideals of R must be zero. Thus the condition of Theorem 2 is not satisfied.

Example 3. It is easily seen that the polynomial ring $R=k[y]$ over a field k of characteristic 0 and the derivation $\delta=y d / d y$ satisfy the conditions of both Theorem 1 and Theorem 2. Clearly, δ is stiff by Lemma 1 and R is δ-primitive since the maximal ideal $(y-1) R$ contains no non-zero δ-ideals. Thus the condition of Theorem 1 is satisfied. That of Theorem 2 is also satisfied since δ is stiff and the only non-zero δ-prime ideal of R is $y R$.
3. A prime ring R is said to be right bounded if every essential right ideal of R contains a non-zero ideal of R. A ring R is said to be fully right bounded if every prime factor ring of R is right bounded. The results of $\$ 2$ are applied below to show that few Ore extensions of commutative rings are fully bounded.

Theorem 3. For a commutative noetherian Ritt ring R with derivation δ the following are equivalent:
(i) $R[x, \delta]$ is fully right bounded;
(ii) every primitive factor ring of $R[x, \delta]$ is simple artinian;
(iii) $\delta(R) \subseteq N(R)$;
(iv) every prime factor ring of $R[x, \delta]$ is commutative;
(v) every primitive factor ring of $R[x, \delta]$ is a field.

Proof. It is sufficient to prove $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow$ (iii) \Rightarrow (iv) \Rightarrow (i). The proof that (iv) $\Rightarrow(\mathrm{v}) \Rightarrow$ (ii) is trivial.
(i) \Rightarrow (ii). Let T be a primitive factor ring of $R . T$, being primitive bounded, has a maximal right ideal M which is not essential. Then there exists a right ideal N of T such that $T=M \oplus N$. Since $N \simeq T / M, N$ is a minimal right ideal of T. It follows by [2, Lemma 1.1] that T is simple artinian.
(ii) \Rightarrow (iii). Suppose that $\delta(R) \nsubseteq N(R)$. Then, by Proposition $2, \delta(R) \nsubseteq J(S)$, so there exist a primitive ideal P of S and $r \in R$ such that $\delta(r) \notin P \cap R$. By [5, Lemma 1.3] and Proposition $1, R /(P \cap R)$ is a domain and hence, by Lemma 1, the derivation δ induced on $R /(P \cap R)$ is stiff. It follows that $P=(P \cap R) S$ and that $\frac{S}{P} \simeq \frac{R}{P \cap R}[x, \bar{\delta}]$. But $\frac{R}{P \cap R}[x, \delta]$ cannot be artinian, which contradicts the hypothesis of (ii).
(iii) \Rightarrow (iv). Let P be a prime ideal of S. Then, by [5, Lemma 1.3] and Proposition 1, $P \cap R$ is a prime ideal of R, so that $\delta(R) \subseteq N(R) \subseteq P \cap R$ and the derivation δ induced on $R /(P \cap R)$ by δ is zero. Hence $\frac{S}{(P \cap R) S} \simeq \frac{R}{P \cap R}[x]$ is commutative and S / P, being a factor ring of $S /(P \cap R) S$, is also commutative.
(iv) \Rightarrow (i). This is immediate.
4. A ring R is said to be Jacobson if every prime ideal of R is the intersection of primitives or, equivalently, if $N(I)=J(I)$ for every ideal I of R. In [5] it is shown that, for an Ore extension $R[x, \delta]$ of a right noetherian ring R to be a Jacobson ring it is sufficient, but not necessary, for R to be Jacobson. The condition that R be Jacobson may be weakened to the following (see [5, proof of Theorem 4.1(ii)]):

$$
\begin{equation*}
N(I)=J(I) \text { for every } \delta \text {-ideal } I \text { of } R . \tag{*}
\end{equation*}
$$

The ring of Example 1 shows that even condition $\left(^{*}\right)$ on R and δ is not necessary for $R[x, \delta]$ to be Jacobson. Retaining the notation of Example 1, let P be a prime ideal of S. If $P \neq 0$ then $P \cap R \neq 0$ since δ is stiff on R. It follows that $P \cap R=M=y R$. But

$$
\frac{S}{P} \simeq \frac{S /(P \cap R) S}{P /(P \cap R) S} \quad \text { and } \quad \frac{S}{(P \cap R) S} \simeq \frac{R}{P \cap R}[x]=k[x]
$$

since the derivation induced on $R /(P \cap R)=R / M=k$ by δ is zero. Thus S / P is a prime factor ring of the Jacobson ring $k[x]$ and hence is semiprimitive. If $P=0$ then P is primitive by Example 1. It follows that S is Jacobson. To see that $\left({ }^{*}\right)$ is not satisfied by R and δ consider the case $I=0$.

Finally we record the following generalisation of [5, Theorem 4.1(ii)].

Theorem 4. Let R be a right noetherian Ritt ring and δ be a derivation on R such that $\delta(r)$ is a unit for some central element r of R. Then $R[x, \delta]$ is a Jacobson ring.

Proof. From the remarks preceding Lemma 1, every prime ideal P of S satisfies $P=(P \cap R) S$ and hence $\frac{S}{P} \simeq \frac{R}{P \cap R}[x, \bar{\delta}]$ where $\bar{\delta}$ is the induced derivation. By [5, Corollary 2.7] $J(S / P)=N(R / P \cap R) S / P=0$. Thus S is Jacobson.

REFERENCES

1. W. Borho, P. Gabriel and R. Rentschler, Primideale in Einhullenden aufösbarer Lie Algebren, Lecture Notes in Mathematics No. 357 (Springer-Verlag, 1973).
2. D. Eisenbud and J. C. Robson, Modules over Dedekind prime rings, J. Algebra 16 (1970), 67-85.
3. C. Faith, Algebra: Rings, modules and categories I (Springer-Verlag, 1973).
4. N. Jacobson, Structure of rings (Amer. Math. Soc. Colloquium Publications, rev. edition, 1964).
5. D. A. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math. Soc. (2), 10 (1975), 281-291.
6. D. A. Jordan, Ph.D. thesis, University of Leeds (1975).

Department of Pure Mathematics
University of Sheffield
Sheffield S10 2TN

