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Abstract

Using both a theoretical and an empirical approach, we have investigated the frequency of low redshift galaxy-galaxy
lensing systems in which the signature of 3D weak lensing might be directly detectable. We find good agreement between
these two approaches. Using data from the Galaxy and Mass Assembly redshift survey we estimate the frequency of
detectable weak lensing at low redshift. We find that below a redshift of z ~ 0.6, the probability of a galaxy being weakly
lensed by y > 0.02 is ~ 0.01. We have also investigated the feasibility of measuring the scatter in the M, — M, relation
using shear statistics. We estimate that for a shear measurement error of Ay = 0.02 (consistent with the sensitivity of the
Direct Shear Mapping technique), with a sample of ~50,000 spatially and spectrally resolved galaxies, the scatter in the
M, — M, relation could be measured. While there are currently no existing IFU surveys of this size, there are upcoming
surveys that will provide this data (e.g The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), surveys with

Hector, and the Square Kilometre Array (SKA)).
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1 INTRODUCTION

Weak gravitational lensing is a powerful probe of dark mat-
ter in the universe (e.g. Kaiser & Squires 1993). Following
initial investigations by Blain (2002) and Morales (2006),
de Burgh-Day et al. (2015) have developed a new method
to measure the weak lensing signal in individual galaxies
called Direct Shear Mapping (DSM). The primary scientific
application considered by de Burgh-Day et al. (2015) is the
measurement of mass and mass distribution in dark matter
halos around individual low-redshift galaxies. In particular,
since the dark matter halo properties can be measured for
individual galaxies, DSM will enable the measurement of
the dispersion in the galaxy luminous matter to dark matter
ratio, as a function of other galaxy observables.

The possibility of measuring individual galaxy dark matter
halo masses through DSM is an exciting prospect, however
the measurement itself is challenging, and potentially obser-
vationally expensive. We have consequently developed the
approach presented here for identifying the most robust can-
didates for such a measurement. We have also used this ap-
proach to investigate the possibility of measuring the scatter
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in the M,—M,, relation using shear statistics, and we estimate
the size of the statistical sample that would be required to
make this measurement.

In this paper, the probability of weak lensing shear has
been estimated as a function of the redshifts of the source
and lensing galaxies, and a catalogue of candidate galaxy
pairs is selected from the Galaxy and Mass Assembly Phase
1 Survey (GAMA 1) Data Release 2 (DR2) catalogue (Driver
et al. 2011, Liske et al., 2015). We also find that the dis-
tribution of shears in a galaxy sample is influenced by the
relationship between stellar mass and halo circular velocity,
and the scatter in this relation. With enough shear measure-
ments, it may be possible to constrain this relationship, and
to measure the scatter.

DSM uses spatially resolved velocity field information for
an object to obtain a shear measurement from the velocity
map. DSM assumes intrinsic rotational symmetry in the the
velocity map, and searches for departures from this symme-
try. This requires either radio data cubes or spatially resolved
optical spectroscopy. To identify prospective targets, it is de-
sirable to first obtain an estimate of the shear signal present
in a galaxy.
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While galaxy—galaxy lensing has been used to measure
halo masses in the past, those studies stack many galaxy—
galaxy pairs statistically, to obtain average halo masses
(Brainerd, Blandford, & Smail 1996; Hudson et al. 1998;
Wilson et al. 2001; Mandelbaum et al. 2006). In addition,
measurements of galaxy halo shapes have been made from
stacked galaxy—galaxy weak lensing measurements (Hoek-
stra, Yee, & Gladders 2004; van Ulitert et al. 2012).

To test our target selection algorithm, the weak-lensing
statistics of a sample of galaxies in the Galaxy and Mass
Assembly Data Release 2 (GAMA-DR2) catalogue were in-
vestigated, using the stellar mass estimates from Taylor et al.
(2011). The purpose of our lensing frequency algorithm is
to estimate of the distribution of shear signals present in a
dataset. This algorithm enables novel measurements to be
made, and will improve the success rate of any survey in-
tended to measure weak lensing via the DSM method.

The rest of this paper is organised as follows. In Section 2,
relevant weak lensing theory is described. In Section 3, a
theoretical estimate of the probability of weak lensing at low
redshift is made, following Mortlock & Webster (2000). In
Section 4, the inputs, structure, and outputs of the lensing
frequency algorithm are outlined. In Section 5, results of
the application of the algorithm to a dataset obtained from
GAMA-DR?2 are presented, along with an investigation of
the possibility of using shear statistics to measure the scat-
ter in the M,—M,, relation. Conclusions and a summary are
presented in Section 6. Throughout the paper, we assume
a flat Concordance cosmology, with 2, = 0.3, Q, = 0.7,
H, =70 kms~!Mpc~!, and h,, = H,/100 = 0.7.

2 WEAK LENSING

In this section, we will outline the relevant weak lensing
theory. Gravitational lensing is the deflection of light from
some source on its path to the observer by an intervening
mass. The deflection angle is given by

2. 4GE(E) §-§F

ate) = [ @ 2 i M
where G is the gravitational constant, X is the projected mass
distribution of the deflector, c is the speed of light, and £ is
the distance from the deflector (i.e. the impact parameter).
Since the angle of incidence of the light has been altered,
the source will appear to be in a different location to its true
position. The true position of the source can be found by
solving the lens equation

D ds

B=6— ) o, )
where 6 is the apparent angular separation of the deflector
and source, B is the true angular separation of the deflector
and source, D, is the angular diameter distance between the
deflector and source, and D, is the angular diameter distance
between the observer and source. The angular coordinates 8
and 0 can be related to the corresponding physical coordi-
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nates in the source and lens planes as

n=DySp

£=D%. 3)
In the case of a circularly symmetric lens, and perfect align-
ment between the observer, lens and source, the lens equation

can be solved to obtain the Einstein radius, a characteristic
length scale

g2 = 4TOM(< D)) Dy

s 4
c? D.D, @)

where M (< 6gD,) is the mass enclosed within the Einstein
radius, and D, is the observer—deflector angular diameter
distance.

In the weak lensing regime, the light from the source passes
well outside the Einstein radius, and the source is singly-
imaged. In this case, one can assume that so long as the length
scale of the source is much less than that of the deflector, then
the lensing will be linear. Thus, it can be represented by a
first-order Taylor expansion, allowing Equation (2) to be re-
expressed as a linear coordinate mapping between the lensed
and un-lensed coordinate systems

B=A0, (©)
where A is the Jacobian of transformation;
l—k—y -7
9 1 2

Azagz( —Y 1—/(—1—)/1). 6)

Here, « is the convergence, and y, and y, are the two com-
ponents of the shear vector ¥ = (y,, ¥,). Equation (6) can
be inverted to obtain

k=1-(A,+4,,)/2 (@)
vi=—A; —Ay)/2 (8)
Y, = —Ay = —Ap,. )

The shear vector y can be rewritten in polar co-ordinates as
a function of a shear magnitude, y, and an angle, ¢

Y, =Y cosg;y, =ysing, (10)

where ¢ is the angle of the shear vector and y = ,/ y12 + y22.

In this work, we are interested in the value of y for a given
lens—source system, which is a function of the lens projected
mass density and the lens—source angular separation.

We assume a Singular Isothermal Sphere (SIS) lens profile
throughout this paper, whose projected surface density has
the form

2 = 2L (11

2G &I
where o, is the halo velocity dispersion. Although the SIS
profile is a primitive lens model, it is sufficient for this work
and allows for a simple shear estimation. The Einstein radius
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for an SIS lens is given by

2
2 _ 4o Dy,

E ¢t D’

12

and from e.g. Lasky & Fluke (2009), the shear components
for an SIS are

Db Dbk

Y= 2NEP & —ED; p= _Wélgzv (13)
so that
DdeE
= . 14
14 20| (14)

Thus, we have an expression for the shear magnitude as a
function of lens—source projected separation and lens veloc-
ity dispersion, the latter of which can be related to the halo
mass.

3 AN ESTIMATION OF THE PROBABILITY OF
LENSING

In this section, we describe the process by which a theoretical
estimate may be made of the probability of a given source
being weakly lensed, as a function of the source redshift. We
begin by introducing a similar calculation for strong lens-
ing in analytically solvable cosmologies from Mortlock &
Webster (2000). We then adapt this work to the weak lensing
case, and for a more realistic Concordance cosmology. In the
following sections, we will assume two different lens popu-
lations: a population of halos housing elliptical galaxies, as
in Mortlock & Webster (2000), and a Press—Schechter (Press
& Schechter 1974) population of halos. In both cases, we
assume an SIS halo. We will discuss the general steps for ob-
taining the expression for the weak lensing optical depth, and
will then discuss the elliptical galaxy and Press—Schechter
halo cases individually.

Given an estimate for the spatial distribution and mass of
lensing galaxies in a given volume, it is possible to make
an estimate of the distribution of shears in the volume. This
can in turn be used to make an estimate of the probability
distribution of weak shears across the sky, assuming the dis-
tribution of lensing galaxies is isotropic. Mortlock & Webster
(2000) have used these arguments to make an estimate of the
probability of lensing of quasars by elliptical galaxies for
three simplified cosmologies. They define the lensing optical
depth, t, as the fraction of the source plane within which
the lens equation has multiple solutions. It can be used as an
estimator for strong lensing probability. The contribution to
the total optical depth by one lensing galaxy is

2
T, = %, (15)
i.e. the fraction of the sky covered by its lensing cross-section.
Here, B, is the angular distance from the deflector where a
background source transitions between being singly or mul-
tiply imaged.

In the case of weak lensing, rather than being interested

in the region where the source is multiply imaged, we are
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interested in the region where the source is singly imaged,
yet sheared sufficiently such that it is still a measurable ef-
fect. This region takes the form of an annulus about the lens
(assuming a spherically symmetric lens), the inner bound of
which is the Einstein radius, 6, and the outer bound of which
is a function of some limiting shear value, y;;,,. Thus, 7 is
re-written as a function of a new area, a(y;;,,), defined as the
area covered by this annulus:
a(Viim)

'Cg()’nm) = T (16)

| 2
a(Vyiy) =7 |:(2ylim - 1) 95] ) a7

and substituting in Equation (12) this becomes

_ 2 1 2oy Dy ?
Ty (Vi) =7 (23’11m _1) <:> (F) ) (18)

s

and

where o is the velocity dispersion of the deflector, c is the
speed of light, D is the deflector-source distance, and Dy is
the observer-source distance.

If it is assumed that the population of lensing objects are
non-evolving and have uniform volume density at all red-
shifts (which is reasonable at low redshift), then the differen-
tial number of objects at redshift z with velocity dispersion
o is

BN, dV, dny
dzydo N deE

19)

Here, dV|)/dz is the co-moving volume element at redshift z,

AV, ¢ (1+2°D,@?

hald Q 2
dz ~ H, E(z) 4 20

where c is the speed of light, D, (z) is the angular diameter
distance at redshift z, and

E@)=,/(01+23Q,+%,, 1

assuming a flat universe.

The optical depth to a redshift z, is then obtained by in-
tegrating over the optical depths of the entire population of
deflectors up to z

(2. v )=/ZS /m N Ydodz, 22)
s? /lim o o ddeO' g \/lim d

We will now discuss using this relation to estimate the weak
lensing optical depth as a function of source redshift for a
population of elliptical galaxies, n,, and a population of dark
matter halos, n;,.

3.1. A population of halos housing elliptical galaxies

Mortlock & Webster (2000) gives the local co-moving num-
ber density of elliptical galaxies as

dng o, o 8(14a)—1 o s ”
o o exp | — ) (23)
O'" O’* O'* O'*
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where o is the observed line-of-sight velocity dispersion,
o = —1.07 £0.05, n, = (0.0019 £ 0.003)3,Mpc >, o, =
225+ 20kms™!, and § = 3.7 £ 1. The values of « and n,
are drawn from Efstathiou, Ellis, & Peterson (1988), and the
values of o, and § from de Vaucouleurs & Olson (1982).
Substituting this into Equation (22), the inner integral can be

solved analytically, to give

s (1+2)* (DD’
g

s

where

C =t (& ' 1y 21“ ltat+ ), (25)
& *\ ¢ 2Vim )

For a given limiting shear value, y;;,, to obtain the probability
of measuring a shear of at leastthe limiting value, one must
solve Equation (24) numerically as a function of the source
redshift, z_.

The dashed grey line in Figure 1 shows the lensing optical
depth as a function of source redshift for a limiting shear of
Viim = 0.02 based on a population of elliptical galaxies. The
coloured lines in Figure 1 are discussed in the next section.

3.2. A Press—Schechter halo population
The Press—Schechter mass function is given by

dn _ 2 p, dlno (M)

52
- - x it exp 20 (26)
dm T M dm

o (M)

and gives the co-moving number density of dark matter halos

as a function of halo mass (Press & Schechter 1974).
Substituting this into Equation (22),

Z o] dzn
T(Zg Vi) = / / —L o (V) dMdz,, 27
1 o " ddeM d\71 d

min

where M, ; is the mass of the smallest halo capable of con-
taining a galaxy, and

4

2 ~140.316 2
T, (Vim) =71 L) (M) (Pas ,
g tm 2ylim ¢ Ds

(28)
where n = 6.14656 x 10~7 and we have used the relation
V=28 x 1072 (Mh )", (29)

from Klypin, Trujillo-Gomez, & Primack (2011). V, is the
halo asymptotic circular velocity, and we have assumed V, ~
o. The lower bound of the integral over M in Equation (27)
has been truncated at M, ;, because we are only interested in
halos large enough to contain at least one galaxy. The value
of M ;, atz >~ O1is usually taken to be log,, (M, /M) == 10
(Barkana & Loeb 2001).

In this case, the integral over mass is not analytically solv-
able, however the two integrals are still separable, giving the

following expression:

in

® d
r(zi’ y]im) = Ch / ﬂ (M h;Ol
: Mo dM

mij

)1.264 dM
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Figure 1. The lensing optical depth as a function of source redshift and
a limiting shear of y; = 0.02. The coloured solid lines show the optical
depths obtained when using a population of lenses drawn from a Press—
Schechter halo mass function. The three lines show the effect of different
minimum halo masses. The minimum halo mass is usually taken to be
IOIOMQ (e.g. in the Millennium simulation). The dashed grey line shows
the optical depth obtained when using a population of lenses drawn from an
elliptical galaxy population. It is reassuring to see that the Press—Schechter
curve which best matches the dashed curve is that which uses the commonly
used minimum halo mass of IOIOMQ.

“(142,)% (DD \°
ﬂ( d dS) dz,, (30)
o E(z,) D

s

2 L 4
c =t (———1) (Z) . 31)
" 2ylim ¢

and o* ~ 321 kms~! is a halo characteristic velocity disper-
sion, corresponding to a characteristic halo mass M* defined
as where o (M*) = §,.(z), where §,.(z) is the critical den-
sity and §.(z = 0) =~ 1.686. At z = 0, log,((M* /M) ~ 13
(Barkana & Loeb 2001).

To obtain the probability of a shear of at least y;;, from
halos, as a function of source redshift, the mass and redshift
integrals in Equation (30) must be solved numerically. In
order to illustrate the effect of varying the minimum halo
mass, the mass integral in Equation (30) has been solved for
three values of the minimum halo mass: log,,(M,;,/My) =
9.5, 10, and 10.5. The results of this are shown by the three
coloured curves in Figure 1. As expected, the probability
curve which best matches that of an elliptical population
is for the case log,q(M,;,/M) = 10. Not surprisingly, the
higher the minimum halo mass the lower the probability of
lensing, since the majority of halos are of lower mass.

From Figure 1, roughly 1 in 1 000 sources at z ~ 0.2 will
be sheared by at least y = 0.02. In the calculation of halo
lensing probability, four major assumptions have been made:

where

+ The lensing cross-sections of each galaxy in the pop-
ulation do not overlap. This assumption breaks down
if: (1) The redshift is high, since the number of lenses
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contributing to the optical depth increases with increas-
ing source redshift. (2) M, is small, since this leads to
more lenses and an increasing cross-section. (3) yj;, is
small, since the cross-section of each lens is larger for
a smaller limiting shear.

» Both assumed halo populations do not evolve with red-
shift. This assumption is only correct over small red-
shift ranges. The elliptical and halo populations used in
Figure 1 are for z = 0.

* The Press—Schechter halo population is dependent on
the minimum halo mass, i.e. the smallest halo which
will house a galaxy. This is discussed in detail in
Section 5.1.1.

¢ For this calculation, we have assumed a uniform distri-
bution of lens redshifts, which is not the case in real data.
If the total lens mass distribution is specified however,
any inhomogeneity in the galaxy distribution will aver-
age out over a large sample of source galaxies. Thus,
when comparing the results of our theoretical calcula-
tion to lensing probabilities in real data, it is acceptable
to use the redshifts of the source galaxies in the sample
and treat them as homogenous. Such a comparison is
discussed in greater detail in Section 5.1.1.

In spite of minor limitations, the results shown in Figure 1
are strong motivation for a more through calculation and
estimation of the probability of detecting weak lensing, since
we are interested primarily in relatively low-redshift weak
lensing, where the DSM technique will be useful.

4 THE LENSING FREQUENCY ALGORITHM

We now describe an algorithm for estimating the lensing
signal per galaxy in a catalogue. We can use this algorithm
to estimate the probability of any given object in the cata-
logue being lensed by some value, and to identify potentially
suitable targets for lensing studies.

There are three factors which will determine the strength
of the shear signal a lens imposes on a source: the mass of
the lens, the angular separation of the lens and source, and
the redshifts of the lens and source. Different combinations
of these can lead to systems in which the lens appears large,
and almost obscuring the source, but has a shear of the same
magnitude as well separated systems with a small but dense
lens. The simplest approach to estimating the strength of the
shear present in a potential lens—source system is to simply
inspect their separations and redshifts. Clearly, this is prone
to misidentifications, since systems may be falsely rejected
using this method if the lens is particularly dense, and systems
may be falsely selected if the lens appears large and close to
a background source, but is of a very low density.

In the lensing frequency algorithm, the shear probability is
estimated utilising information about the stellar mass of the
lens, and the redshifts and angular separations of each lens—
source pair. There are a number of steps involved in this
process, beginning with the stellar masses of the galaxies in
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the catalogue, assuming an SIS density distribution for each
galaxy, estimating the halo circular velocities of each galaxy,
and ultimately returning an estimate of the shear each object
imposes on its nearest neighbours. These measurements can
then be binned in shear to obtain an estimate of the proba-
bility distribution function for shear, and to flag particularly
promising targets for follow up and direct measurement of
the shear. In this investigation, we focus on galaxy—galaxy
lensing only, however this process is equally applicable to
galaxy-group lensing, provided good group masses are avail-
able.

4.1. Estimation of the circular velocity, V,

The most uncertain step in the estimation of the estimated
shears for each object is the calculation of the asymptotic
circular velocity of the lens, V,. This step is important as it
takes us from the stellar mass to the total mass of each lens.
Three approaches to this calculation were used:

1. Use a power-law relation between halo mass and halo
circular velocity obtained from the Bolshoi simulations
(Klypin et al. 2011). In this case, it is necessary to com-
pute the halo masses from the stellar masses, which is
done using the relation derived by Moster et al. (2010).

2. Assume the circular velocity at the outermost regions
of the disk is approximately equal to the circular veloc-
ity in the halo. In this case, the baryonic Tully—Fisher
relation (McGaugh et al. 2000) can be used to obtain
V. from the known stellar masses of the objects.

3. Use an empirically derived relation between V, and
o, from Courteau et al. (2007). This relation has a
significant scatter.

There are significant uncertainties in all of the methods
discussed here, and the discrepancies in the results obtained
are at times significant (in particular for very high and
very low mass objects). However, there is no single best
method, and each method approaches the problem from a
different starting point. These three methods may bracket
the reality, and so by utilising all three methods simultane-
ously a good representation of possible values is obtained.
Therefore, the shear resulting from all three methods are
computed.
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The steps taken by the algorithm are as follows:

1. The objects are sorted by redshift and the angular size
distance for each object is computed by integrating over
the Friedman equation:

D= i/[szmu +2)° + 2,1 dz. (32)
HO

2. Beginning with the lowest-redshift galaxy, assume it is
a lens, and perform the following steps:

a. Compute the angular separation between the ob-
ject and its neighbours out to a specified projected

radius 0, , excluding those at a lower redshift:
0., = v AlRcos DI + A[DP, (33)
where A[RcosD] = (R; — R,) cos(D, + D,),

AD =D, — D,, and R;, D, are an objects right
ascension and declination';

b. Sort the neighbours by angular distance from the
object;

c. Compute the halo mass from the stellar mass
(Moster et al. 2010)

=) [G) 6T
Mh Mh 0 M] M] '

(34)
where M, is the halo mass, m is the stellar mass,
(m/M,), is a normalisation, M, is a characteristic
mass where m(M,) /M, is equal to (m/M,,),, and ¢
and 5 are two slopes which indicate the behaviour
of the relation at the low and high mass ends. The
values for the free parameters used in this work are
the best-fit values from Moster et al. (2010):

log (M) = 11.884%0%%

m
— | = 0.02820"0(00¢;
( Mh >0 0.00053

.054
b = 1057058

n = 0.5560:01¢. (35)

—0.004>
d. Compute the circular velocity in three different
ways:

i. Using a power law relation derived from the
Bolshoi simulation (Klypin et al. 2011), which
uses a ACDM cosmology:

V. =128 x 1072M%31°, (36)

where M., is the virial mass and it is assumed
that M ;. = M,,.

The purpose of only including galaxies with Gsep < 0. in this step is
to improve computation time, otherwise every object would be compared
to every other higher redshift object. Background objects with a large
separation from the source are likely to have negligible shears, and so can

be safely excluded.
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ii. From the stellar mass using the baryonic Tully—
Fisher relation (McGaugh et al. 2000)

M 0.25
Vv, = (T) : 37)

where A = 26.25 hy) M km™* s*.
iii. Using an empirically derived relation between
V, and o, (Courteau et al. 2007):

v, = V2o, (38)

These will henceforth be referred to as the ACDM,
bTF, and o,, methods respectively.

e. The Einstein radius of the object is computed for
each of the three V, values (where it is assumed that
due to the virial theorem one can write V, ~ 0,),
and the shear for each V, value is computed;

3. Move to the next highest redshift galaxy, assume it is a
lens, and repeat the above steps.

4. Continue iterating, increasing in redshift until the
second-highest redshift has been reached.

5 APPLICATION TO THE GAMA SURVEY DATA
RELEASE 2 CATALOGUE

The target selection procedure outlined in Section 4 has been
applied to the GAMA I DR2 catalogue (Driver et al. 2011,
Liske et al., 2015). The GAMA Survey is part of a larger
project aiming to exploit the latest generation of ground-
based and space-borne survey facilities to study cosmology
and galaxy formation and evolution (Driver et al. 2009).
Phase I of the GAMA Survey is a magnitude limited spectro-
scopic survey measuring galaxy spectra and redshifts in three
equatorial regions centred at 9", 12", and 14.5" (called G09,
G12, and G15, respectively), each with an area of 12 x 4
deg? (Baldry et al. 2010) . The fields were observed to a lim-
iting r-band apparent magnitude of r,,, < 19.4,r,,, < 19.8,
and r,,, < 19.4 mag respectively. The target galaxies are
distributed over a redshift range 0 < z < 0.5 with a median
redshift of z >~ 0.17. The GAMA DR?2 catalogue contains all
GAMA I main survey objects down to r < 19.0 mag (for
G09 and G12) and r < 19.4 mag (for G15) including spec-
tral redshifts (Baldry et al. 2014). The catalogue contains a
total of 72 225 objects, of which 71 599 have derived stellar
masses (Taylor et al. 2011). GAMA survey data is available
on the GAMA website?.

The lensing frequency algorithm has been applied to the
GAMA 1 DR2 catalogue in two ways:

1. As the entire catalogue (with some minor cuts detailed
below) to investigate the probability of any object being
sheared by at least some value, and to identify conceiv-
ably suitable targets for potential follow up observation
and shear measurement with DSM;

Zhttp://www.gama-survey.org
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Figure 2. The M, — V, relation for three methods of calculation. ‘K’ de-
notes the ACDM method (Klypin et al. 2011), ‘M’ the bTF method (Mc-
Gaugh et al. 2000), and ‘C’ the o, method (Courteau et al. 2007). The
dotted, dashed, and solid lines show the relation with no scatter intro-
duced. The blue, maroon, and green points show a synthetic dataset ob-
tained by making 100 realisations of the original dataset, and introduc-
ing a scatter of OacDM = 0.15 dex, Oyrp = 0.14h7’02 dex, and (r% =0.08
dex for the ACDM (Moster et al. 2010), bTF (McGaugh et al. 2000),
and o, methods respectively. The three methods agree well in the range
8 < loglO(M*/MO) < 12 (to within ~15%), where most galaxies are

situated.

2. As a smaller sample to investigate the possibility of
measuring the scatter in the M, —M, relation, and to
determine what sample size of galaxies is required to

make this measurement.

These two analyses are described in detail in the following

subsections.

5.1. Identifying weak lensing candidates in the
GAMA survey Catalogue

In this section, we look at the entire GAMA 1 DR2 catalogue
(with minor cuts described in the next paragraph), to inves-
tigate the probability of detecting shear of at least y for any
given object in the catalogue, and identify candidate targets
for follow up observation and shear measurement with DSM.

After removing objects with undefined or uncertain red-
shift, and selecting for stellar mass in the range 8 <
log,,(M,/Mg) < 12, a dataset of 69 434 objects was ob-
tained. The data was passed to the lensing frequency algo-

rithm in two ways:

* As the original set of galaxies (i.e. 69 434 objects). The
shears present in the dataset were calculated via the
three halo circular velocity estimates (ACDM, bTF, and
0y)- The three M, — V, relations are shown in Figure 2
as dotted (ACDM), dashed (bTF), and solid (o;,) lines. A
histogram of shears present in the GAMA DR2 sample
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Figure 3. Histogram of estimated shears for galaxies in the GAMA survey.
The solid, coarsely-binned lines correspond to the shears present in the
original GAMA DR2 sample. The dotted lines correspond to the shears
present in a synthetic dataset, obtained by producing 100 relisations of the
original dataset, and introducing a scatter in the M, — V, relation. For every
galaxy in the GAMA survey, there are 100 galaxies in the synthetic dataset.
Therefore, for ease of comparison of the histograms of the synthetic and real
datasets, the number of sheared objects in the synthetic dataset have been
divided by 100. One can see that the three methods agree well within each
of the real and synthetic datasets, with the synthetic datasets sitting slightly
above the real datasets.

is shown in Figure 3 as solid lines. The probability of
a given galaxy being sheared by a particular value is
obtained by normalising by the total number of galaxies
in the sample.

* As a larger (synthetic) population of galaxies, to ac-
count for the scatter in the M, — V, relation. The syn-
thetic population is produced by making 100 realisa-
tions of each input galaxy, with a scatter introduced
to the realisations (giving a total dataset of 7 029 800
objects). The scatter in the population arises from the
intrinsic scatter in each M, — V, relation and so is dif-
ferent for each of the three relations used. A scatter of
oxcpm = 0.15 dex was introduced into Equation (34)
for the ACDM method (Moster et al. 2010); a scatter of
oy = 0.14 i dex was introduced into Equation (37)
for the bTF method (McGaugh et al. 2000); and a scat-
ter of 0y = 0.08 dex was introduced into Equation (38)
for the o, method. The o, values and associated scat-
ter used in the o, method were obtained by fitting for
the stellar masses using velocity dispersions obtained
from the Sloan Digital Sky Survey Data Release 10
(SDSSDR10; Ahn et al. 2014). The M, — V, relation of
the synthetic population of galaxies is shown in Figure 2
as blue (ACDM), maroon (bTF), and green (o) points.
One can see that in the range 8 < log,,(M,/M) <
12, where most galaxies are situated, the three meth-
ods agree well. The shears present in the synthetic
dataset were computed for every point, and the resulting
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Figure 4. Two example galaxy pairs from the GAMA DR2 Sample identified with the target selection algorithm. In both cases, the galaxy in the crosshairs
is the source galaxy (i.e. the galaxy being lensed). The left-hand images show thumbnails of the galaxy pairs from the SDSS DR10 Finding Chart Tool,
while the middle and right-hand images show the J-band images from the United Kingdom infrared telescope Infrared Deep Survey (UKIDSS), with the
residuals from 2D Sérsic fits, taken from GAMA'’s online Single Object Viewer tool. The top pair is at RA = 213.705 deg, DEC = 1.623 deg, and has
an estimated shear of y = 0.023. The lens and source redshifts are z = 0.128 and z = 0.186 respectively. The bottom pair is at RA = 213.705 deg, DEC
= 1.623 deg, and has an estimated shear of = 0.053. The lens and source redshifts are z = 0.088 and z = 0.190 respectively.

number of sheared objects, normalised by 100, are pre-
sented in Figure 3, as dotted lines. The synthetic data
is normalised by 100 to allow for better comparison to
the real data, since for every galaxy in the real dataset
there are 100 galaxies in the synthetic dataset. One can
see that the three methods agree well within within
each of the real and synthetic datasets, with the syn-
thetic datasets sitting slightly above the real datasets.
The implications of this upward shift are discussed in
Section 5.2. The probability of a given galaxy being
sheared by a particular value is obtained by normalis-
ing by the total number of galaxies in the sample.

5.1.1. Discussion

The number of galaxies with shears above the cut-off value of
0.02 varied between the three methods of calculating V,, with
the ACDM method giving the largest estimate of measurable
shears in the data, and the bTF method giving the smallest
estimate. The probability of a shear of at least y = 0.02 was
P(> y) = 0.018, 0.005, and 0.007 for the ACDM, bTF, and
o, methods respectively. The bTF method was chosen for
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selecting candidate targets because it gives the smallest shear
probability, and so will be the least likely to overestimate the
shears present in a sample. Using the bTF method, the number
of objects in GAMA with an estimated shear of y > 0.02 is
393. The bTF method always estimates a smaller shear than
the ACDM and o, methods for any given object, so any of
the 393 objects selected by the bTF method would also have
been selected by the other two methods (although of course
the converse is not true).

These objects were extracted from the sample, and
matched to objects in the SDSS DR10 catalogue. The lens—
source pairs in the sample were ranked by each of the authors
by eye, based on their morphology, surface brightness, incli-
nation angle, separation, and environment. The motivation
for selecting on this criterion stems from the requirements
of the DSM algorithm; that the source galaxy be undisturbed
and stably-rotating, neither face-on nor edge-on and bright
enough for observation with an Integral Field Unit (IFU). For
amore detailed discussion of the requirements of the DSM al-
gorithm, see de Burgh-Day et al. (2015). Two highly-ranked
example lens—source pairs are shown in Figure 4.
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Figure 5. Lens stellar mass as a function of lens redshift for the GAMA
DR?2 sample, showing the distribution of shears with these parameters. Grey
contours show the density of all galaxies in the sample. Blue squares show
galaxies with a shear in the range 0.01 < y < 0.05, and red circles show
those with a shear in the range y > 0.5. The shears were estimated using
the bTF method.

Figure 5 shows the distribution of galaxies with significant
estimated shear, with lens stellar mass plotted as a function
of lens redshift. As might be expected, the selection favours
more massive lensing galaxies, with significant numbers of
candidates at all redshifts. The quality of the shear measure-
ments however depends on the characteristics of the source
galaxy.

The normalised cumulative sum was taken of the data
shown in Figure 3, the results of which are shown in Figure 6,
giving the probability of measuring a shear of at least yy,,.
One can again see the upward shift in the distributions for
synthetic data, relative to those for the real data. Also shown
are two dashed lines corresponding to our theoretical estimate
of the probability of lensing from Section 3. The probability
of at least a given shear being observed in a galaxy increases
as the minimum shear decreases. Since the lensing cross-
section of each galaxy goes as yli_mz, this is not surprising,
as smaller minimum shears rapidly increase the fraction of
the sky in which measurable lensing will occur. The method
which gives the lowest overall probability is the bTF method.
Since we expect to be able to measure shears as small as
y = 0.02 with DSM, we can expect to have at least a one in
200 chance of measuring shear in a randomly chosen galaxy
(from the bTF method), and up to a roughly one in 50 chance
(from the ACDM method).

It is obvious that the ACDM method results in much higher
probabilities than the bTF and o, methods. It is interesting
to note that the ACDM method is the one which uses only
simulation and theoretically-derived relations to obtain val-
ues of V, from M,. In contrast, the bTF and o, methods
utilise empirically derived relationships between V, and M, .
One can easily identify the origin of the higher numbers of
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Figure 6. Estimated probability of measuring a shear of at least y for galax-
ies in the GAMA survey. The dotted lines are the probabilities with scatter
introduced into the M — V_ relation (i.e. the synthetic dataset), and the solid
lines are the probabilities with no scatter introduced. Again, one can see that
the synthetic datasets sit higher than the real datasets. The dashed lines
are included for comparison purposes, and correspond to the probabilities
as a function of y derived from the theoretical calculation of probabil-
ity in Section 3, using the redshifts of the sheared objects in the GAMA
survey.

lensed galaxies from the ACDM method; the break in the
M, — V,_ relation for this method. While giving good agree-
ment in the intermediate mass range, this results in a much
larger corresponding halo circular velocity. These higher V,
galaxies will have a much larger lensing cross section, re-
sulting in a larger number of lensed objects. Hence, while
there are relatively few galaxies with log,,(M, /M) > 12,
they contribute strongly to the total lensing probability. This
raises the question: how does this over-abundance of higher-
V. galaxies affect the results of ACDM-based cosmological
simulations? Further consideration of this topic is beyond the
scope of this paper, and is left to future work.

As mentioned already, in Figure 6, we have included two
dashed lines corresponding to our theoretical estimate of the
probability of lensing from Section 3. The probability calcu-
lated in Section 3 is the probability that a source at redshift z,
is lensed by at least some value y;;,,. The probability obtained
from the lensing frequency algorithm however is the prob-
ability that a single galaxy from the GAMA DR2 sample,
chosen at random, is lensed by at least ;. In order to com-
pare the two, we need to calculate the theoretical probability
that one galaxy, chosen at random from a GAMA-like popu-
lation of galaxies, is lensed by at least y;;,,. From Section 3,
the probability that some object in the GAMA DR2 sample
is lensed by at least y;;,, will be dependent on its redshift only
(once a lens mass distribution has been assumed). Thus, the
probability that any galaxy in the sample has been lensed by
at least y;;,, will be the sum of the individual probabilities of
each one having been lensed. Then, the probability that one
galaxy chosen at random has been lensed by at least y;;,, will
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Figure 7. Distribution of redshifts in the GAMA sample, after a redshift
quality cut has been made. The mean and median of this distribution are
0.18 (solid white line) and 0.17 (dashed white line) respectively, and the
range of the distribution is 0 < z < 0.65.

be the probability of any having been lensed, divided by the
total number of galaxies in the sample. Figure 7 shows the
histogram of the redshifts of the GAMA DR2 sample after a
redshift quality cut has been made. While the distribution of
redshifts in the GAMA sample is not uniform, it is sufficiently
smoothly varying that the assumption made in Section 3 (that
the lenses are uniformly distributed in redshift) will suffice.
Thus, we have arrived at a method by which we can compare
the results of Section 3 and Section 5.1.

From Section 3, the theoretical probability of measuring a
shear of at least y = 0.02 in any one galaxy in the GAMA
survey is P(> y) =~ 0.002 and 0.003 for the halos housing
elliptical galaxies and Press—Schechter halo populations re-
spectively. Comparing to the probabilities obtained from the
GAMA DR2 sample (P(> y) = 0.018, 0.005, and 0.007 for
the ACDM, bTF, and o, methods respectively), we see the
difference is a factor of ~6 for the ACDM method, and a
factor of ~2 for the bTF and o, methods. This is an accept-
able level of agreement, given the assumptions made in the
calculations in Section 4. The level of agreement between
the two approaches can be seen in Figure 6.

The theoretical estimate of P(> y;,) drawn from the
Press—Schechter halo population is dependent on the value
of the minimum halo mass in which a galaxy will form. As
can be seen in Figure 1, a smaller (larger) value of M, ;,
will result in a higher (lower) probability of measuring a
shear of at least y;,, as a function of redshift. It can be
seen in Figure 8 that adjusting M,  will alter the level of
agreement between the theoretical estimate and the proba-
bilities derived from the GAMA DR2 sample. Each dashed
grey line represents a minimum halo mass incremented
by 0.5log;q(Mg). The line with the highest corresponding
probability is that with log,, (M ;, /M) = 8, and that with
the lowest corresponding probability log,o (M ;, /M) = 12.

in
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Figure 8. Comparison of the results from the lensing frequency algorithm
with the theoretically derived Press—Schechter probabilities, with varying
M, ;.. The highest theoretically-derived probability corresponds to a min-
imum halo mass of log,,(M,; /M) = 8, while the lowest corresponds
to log,( (M, ;,/My) = 12. The results of the lensing frequency algorithm
are plotted as in Figure 6. The bTF and o, methods best agree with a
Press—Schechter halo population with a minimum halo mass in the range
9 < log (M, /M) < 10.

min

The probabilities from the lensing frequency algorithm are
as in Figure 6. It is interesting to note that for the bTF
and o, methods, the best agreement with the theoretical ap-
proach is obtained for a minimum halo mass in the range
9 < log o (M,;,,/Mg) < 10, whereas the currently accepted
value is log, (M,;, /M) = 10.

5.2. Measuring the scatter in the M,—M,, relation

Since halos of given mass can have different halo concen-
trations, spin parameters, and merger histories, we expect
them to house galaxies with a range of masses. This man-
ifests as a scatter in the stellar mass to halo mass relation.
The value of the scatter in the M,_—M,, relation is not well
constrained, as directly measuring the masses of galaxies
and their host halos is not trivial. Abundance matching tech-
niques can be useful for describing the relationship between
stellar mass and halo mass, however they cannot constrain
the scatter in the M,—M), relation (Conroy & Wechsler 2009).
Leauthaud et al. (2012) used traditional weak lensing tech-
niques to constrain the M,—M, relation, however as with
abundance matching they are unable to place any meaning-
ful constraints on the scatter in the relation. An alternative
approach has been to utilise satellite galaxies to constrain the
galaxy luminosity-halo mass relation. Early work involved
stacking the central galaxies to obtain a statistical measure of
the kinematics of the satellite galaxies (Erickson, Gottesman,
& Hunter 1987; Zaritsky et al. 1993; Zaritsky & White 1994;
Zaritsky et al. 1997). However, recent work has avoided the
need for stacking, largely by utilising the larger datasets of-
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fered by the 2dF Galaxy Redshift Survey (2dFGRS; Colless
et al. 2001) and SDSS (McKay et al. 2002; Brainerd & Spe-
cian 2003; Prada et al. 2003; van den Bosch, Yang, & Mo
2004a; van den Bosch et al. 2004b; Conroy et al. 2005, 2007,
More et al. 2009). These techniques do not utilise weak lens-
ing, and do not attempt to measure the scatter in the M,—M,
relation.

In this section, we test whether DSM measurements of a
population of galaxies could be used to measure the scatter
in the M,—M,, relation. This is a novel measurement which
is difficult with traditional weak lensing techniques, but is
made possible with DSM because it can measure individual
shears with far greater accuracy around individual galaxies.
We then briefly describe how to fit for the scatter in the
M —M,, relation, and measure the scatter in a set of simulated
shear datasets with a known scatter incorporated.

As was noted in Section 5.1, and can be seen in Figures 3
and 6, scatter in the M_—M),, relation results in a shift in the
distribution of shears present in a population of galaxies
towards larger shears. If the measurement error in the shear is
sufficiently small, or the population of galaxies with known
stellar masses is large enough, it is possible to measure the
scatter in the M,—M,, relation by comparing the distribution
of shears to those obtained from a M,—M,, relation with zero
scatter.

To perform this measurement with DSM, velocity maps
from from an intermediate redshift survey would be required.
The velocity maps can be obtained from several components
of the galaxy, such as HI in radio wavelengths, or IFU ob-
servations of stellar velocities and gas emission in optical
wavelengths. [FU maps obtained from bright, Hoe emitting
galaxies are the most practical and easily obtainable in the im-
mediate term however, and so we will focus on these galaxies
in this analysis.

We assume that the scatter in the M,—M),, relation is log-
normal, which is the standard form assumed in the literature
(e.g. Behroozi, Conroy, & Wechsler 2010, Moster et al. 2010,
Behroozi, Wechsler, & Conroy 2013). The mean of a lognor-
mal distribution is a function of the size of the scatter in the
distribution, and is given by exp(u 4+ 2/2), where o is the
scatter in the distribution, and u is the natural logarithm of
the mean of the underlying normal distribution. It can be
seen that the mean increases with increasing scatter. Thus,
if a lognormal scatter is introduced into the M_—M,, relation
for a population of galaxies, the result is a larger number
of galaxies with higher mass halos. It is this property of the
lognormal scatter in the M,—M,, relation which leads to an
increased probability of larger shears.

To compare the shear distributions obtained from popu-
lations with and without scatter in the M,—M,, relation, the
lensing frequency algorithm was applied to a selection of
mock catalogues generated from a subsample of the com-
plete GAMA DR2 sample. This subsample was obtained
by performing the same cuts on the GAMA DR2 as in the
previous section, along with the following additional cuts:
0.1 <z<0.15, r < 17.5, and keeping only galaxies with
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H-o emission. The resulting dataset contained 2 861 galax-
ies. When computing shears in the mock catalogues, a max-
imum lens—source separation of D, = 0.2 Mpc was used
for step (2a) of the lensing frequency algorithm.

A successful measurement of the scatter in the M —M,
relation will be limited by survey sample size and the size of
the scatter. To investigate the range in which these parameters
would enable a measurement of the scatter, a set of simulated
datasets of varying size was created, with a range of scatters
in the M —M,, relation.

To produce the mock catalogues, larger populations of
galaxies were generated from the subsample of GAMA
DR2 galaxies by producing Monte-Carlo realisations of each
galaxy. The resulting datasets contained N= 1 000, 15 000,
50 000, and 150 000 galaxies. The distribution of shears
for a tight M,—M,, relation was computed for the simulated
datasets. A scatter, On__m,» Was then included in the M,-M,,
relation and the shears were computed again. This process
was repeated for a selection of values of oM -u, between 0.1
and 0.5. This range of scatter is chosen to bracket the current
literature values (e.g. Yang, Mo, & van den Bosch 2009, More
et al. 2009, Behroozi et al. 2010, Moster et al. 2010). The
resulting ‘true’ shears for each dataset were then ‘observed’
with a range of measurement errors, so that the ‘observed’
shear in the tight datasets contained a shear measurement er-
ror only, while the ‘observed’ shear in the scattered datasets
contained a shear measurement error, and additional scatter
from the M,—M,, relation. The key questions are: (1) Can we
identify the scatter from the M,—M, relation over the scatter
from measurement error? (2) How many objects do we need
to do so? (3) What is the uncertainty on the measurement? To
answer these questions, one first needs to establish that for a
given number of galaxies, the distribution of shears arising
from a tight M,—M, relation can be distinguished from the
distribution with scatter in the M_—M), relation. The distribu-
tions of shears with and without scatter in the M, —M,, rela-
tion are shown in Figures 9—11. Figure 9 shows the observed
shear as a function of the predicted shear for N = 1 000,
15 000, 50 000, and 150 000, for a shear measurement error
of o, = = 0.02 and M,—M,, relation scatter of M m, = =03
dex. The solid blue and red lines show the mean in the tight
and scattered distributions respectively, and the dashed blue
and red lines show +1o from the mean in the tight and
scattered distributions respectively. The shaded background
shows the relative excess (red) or shortfall (blue) of galax-
ies with scatter relative to galaxies without scatter, in 2D
bins of size (Ay,, X Aypred) = (0.02 x 0.002). Figure 10
shows the observed shear as a function of the predicted shear
for N = 50000, shear measurement error of o, = = 0.02,and
scatters of MM, = = 0.1 and 0.5 dex. Lines and shading are

as in Figure 9. Flgure 11 shows the observed shear for o, =
0.005, 0.01, 0.03, and 0.1 for N = 50 000 and M m, = 0.3
dex. Lines and shading are as in Figure 9.

The distributions of observed shears with and without scat-

ter in the M,—M, relation were compared using the Two
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Figure 9. Distributions of observed shears as a function of predicted shears with and without scatter in the M, -M,, relation, for N = 1 000,
=0.02 and O M, = = 0.3 dex. The sohd blue and red lines show

15 000, 50 000, and 150 000, respectively (clockwise from top left), with o,
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galaxies with scatter relative to galaxies without scatter, nscatt ”u;mv in 2D bins of size (Ay,, ¥ Aypmd) = (0.02 x 0.002).
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Figure 10. Distributions of observed shears as a function of predicted shears with and without scatter in the M, -M, relation, foro,, ,, = 0.1

dex (left plot), and 0.5 dex (right plot), with o, " 0.02 and N = 15 000. All lines and shaded regions are as in Figure 9.
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Figure 11. Distributions of observed shears as a function of predicted shears with and without scatter in the M, -M, relation, for o,

0.01, 0.03, and 0.1, with Oy oy = 0.3 dex and N = 15 000. All lines and shaded regions are as in Figure 9.
M,

Sample Kolmogorov—Smirnov (2SKS) test. For it to be pos-
sible for the scatter in the M,—M,, relation to be measurable
from comparing the distribution of observed to predicted
shears with and without scatter, we require the distributions
to fail the hypothesis that they are drawn from the same
distribution, under the 2SKS test. That is, we require the p-
value of the test to be small. The resulting 2SKS scores and
p-values (denoted S,gxg and Pogyg) for the combinations of
n and o, M, considered are presented in Table 1.

The next step is to fit for the scatter in M,—M,, relation in
simulated datasets. To do this, we assume that the observed
shears are distributed according to both the scatter in the
M,—M,, relation, and an observation error, so that the likeli-
hood of an observed shear given the true underlying shear is
given by

L(Y g5 Virue Ou, a%bs) = /N(T ~ Yobs» 05 Uyobs)

(39)

X M(T, Ve O‘M*_Mh )dr,

where N is a Gaussian distribution representing the mea-
surement error in the DSM method, and M is a lognormal
distribution representing the scatter in the M,—M;, relation.
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Table 1. The Two Sample Kolmogorov—Smirnov test score, Syqyq»
and p-value, Py, for the scattered and tight datasets, for each
combination of N, %, and O, m, investigated. n is the number
of simulated datapomts for each real galaxy, N is the total number
of simulated datapoints, and GM;Mh is the scatter in the M —M,

relation.

N Vobe Om,-M, Srsks Pisks
1000 0.02 0.3 2.5 % 1072 0.91
15 000 0.02 0.3 8.7 x 1073 0.61
50 000 0.02 0.3 1.1 x 1072 4.4 %1073
150 000 0.02 0.3 7.9 x 1073 1.9 x 1073
50 000 0.005 0.3 1.6 x 1072 6.2 x 1076
50 000 0.01 0.3 1.4 x 1072 1.4 x 1074
50 000 0.03 0.3 1.0 x 1072 9.5 x 1072
50 000 0.1 0.3 8.7 x 1073 4.7 x 1072
50 000 0.02 0.1 7.6 x 1073 0.11
50 000 0.02 0.5 1.9 x 102 1.6 x 1078
N is given by

N( )= NESVAY (40)

X, U, 0) = ex —— s
H V2mo P 2 o
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Figure 12. The standard error in the maximum value of log[ﬂ(aM —u, )]

as a function of the shear measurement error, o, for values of N in the
obs

range 1 000< N <150 000.

where w is the mean of the distribution and o is the stan-
dard deviation. The lognormal, M, is a distribution whose
logarithm is normally distributed. It is given by

e A=)

where ¢ and o are the mean and standard deviation of the un-
derlying normal distribution. The total likelihood of a given
value of 0, _ M, for fixed o, is then given by

M(x, u,0) =

Vobs

Ly )= D LVl Viwess Ot -1 0, - (42)

We have fitted for the scatter in the M,—M,, relation for an
assumed true scatter of OM,—m, = = 0.3 dex by maximising
log[E(GM M, )] for a range of values of N and o, to inves-
tigate the ‘behaviour of the uncertainty in the fit With these
parameters. A Fisher Matrix analysis was used to estimate
the standard error in the maximum likelihood for each o,
and N. Figure 12 shows the standard error, Aoy > as a
function of these parameters. We find that for an assumed
scatter of oM, M, = 0.3 dex, to obtain a robust fit with a
measurement error of oy = 0.02 a dataset of N ~ 50 000
DSM measurements is required, a result which is consistent
with the results of the 2SKS test.

5.2.1. Discussion

For fixed o, - and oM., the p-value for N = 15 000 is too
large to rule out the hypothes1s that the two samples of data
come from the same distribution, while the p-value for N =
50000 is sufficient to rule out this hypothesis, and the p-value
for N = 150 000 can easily do so. Similarly, for fixed N and
O, > the p-value for o, =0.03 is too large to confidently
rule out the hypothesis that the two samples of data come

from the same distribution, while the p-value for o, L= =0.02
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is sufficient to rule out this hypothesis, and the p-value for
0, = 0.01 can easily do so. Not surprisingly, a larger scatter
in the M ,—M), relation results in a smaller p-value, since a
larger scatter directly increases the difference between the
datasets with and without scatter in them. From the above
considerations, we conclude that in order to measure a scatter

of 0y _y = 0.3 dex, a sample of 250 000 galaxies with a
< 0.02 would be required.
For larger values of the scatter larger values of oy, and

smaller values of N would be sufficient.
This result is confirmed in our fits for a scatter in the
M,—M,, relation of 0.3 dex for a range of values of N and
, presented in Figure 12. For a true M,—M,, scatter of

O 3 dex a shear measurement error of o, = 0.02, and a
sample of N = 50000 shear measurements, we recover a
fitted scatter of 0.308+0.02 dex.

DSM is expected to achieve measurement errors of oy
0.02, and so shear measurement error is not seen to be a limit-
ing factor in measuring scatter in the M,—M|, relation. While a
sample of 250000 galaxies with spatial and spectral resolu-
tion does not yet exist, there are several surveys beginning in
the near to intermediate future which will provide datasets of
a sufficient size to perform this experiment, for example, sur-
veys with the Hector instrument (Lawrence et al. 2012) on the
Anglo-Australian Telescope (AAT), and The Hobby—Eberly
Telescope Dark Energy Experiment (HETDEX; Hill et al.,
2008), or surveys on the Square Kilometre Array (SKA). We
conclude that while it would not be possible to utilise DSM
to measure the scatter in the M, _—M,, relation with existing
IFU survey data, it will be possible with data from upcoming
surveys.

shear measurement error of O'

6 CONCLUSIONS

We have made an analytical estimate of the frequency of
a source being weakly lensed given a uniformly distributed
population of lenses, following Mortlock & Webster (2000).
We have adapted their work for the weak lensing case, in
which we consider the probability of the source being lensed
by at least some limiting value y;;,,. The results of this
analysis suggest the probability of detecting weak lensing
greater than a limiting value of y;;, = 0.02 in a realistically
observable redshift range (z < 1) is non-negligible. Given
this, we have created a lensing frequency algorithm which
searches an input dataset for all lens—source pairs with an
estimated shear greater than a limiting value of y;,,. Our
algorithm has been applied to a dataset extracted from the
GAMA survey catalogue, and the number of objects with
an estimated shear of at least ¥ = 0.02 in the sample was
found to be ~393. These targets can be matched to ob-
jects in the SDSS DR10 Catalogue, and a subsample of
good targets can be chosen from this selection for follow up
observations.

A scatter in the M_—M,, relation results in a shift towards
higher measured shears for a given population of galaxies.
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Given this, we have investigated the feasibility of measur-
ing the scatter in the M,—M,, relation using shear statistics.
We find that for a given shear measurement error, our abil-
ity to differentiate between a distribution of shears from a
‘tight” M,—M, relation, and one with scatter, is dependent on
the size of the scatter, the number of objects in the sample,
and the shear measurement error. For a scatter of 0.3 dex in
the M,—M,, relation, we find that a sample size of ~50 000
galaxies would be needed to measure the scatter, for a mea-
surement error on the shear of 0.02 (a value consistent with
the shear measurement accuracy achievable with DSM). We
attempt to fit for the scatter in the M,—M), relation for a set of
simulated datasets. The result of this is shown in Figure 12.
For a true scatter of 0.3 dex, a shear measurement error of
0.02 and ~50 000 shear measurements, we recover a scat-
ter of 0.308+0.02 dex. It should be noted that the technique
we have demonstrated here is based on a relatively untested
algorithm, however it is adequate as an illustrative example
and our results are promising for future measurements. While
there are no existing IFU survey catalogues of a sufficient size
to apply this technique, there are several surveys beginning
in the near to intermediate future which will provide datasets
of a sufficient size to perform this experiment, for example
HETDEX which aims to observe ~10° galaxies, or surveys
on the SKA, such as the ‘billion galaxy survey’ which aims
to observe ~10° galaxies.
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