ON THE SPECIAL VALUES OF L-FUNCTIONS OF CM-BASE CHANGE FOR HILBERT MODULAR FORMS

CRISTIAN VIRDOL
Department of Mathematics, Yonsei University, Seodaemun-gu, Seoul, South Korea e-mail: virdol@yonsei.ac.kr

(Received 15 April 2012; revised 2 November 2012; accepted 20 December 2012; first published online 13 August 2013)

Abstract

In this paper we generalize some results, obtained by Shimura, on the special values of L-functions of l-adic representations attached to quadratic CM-base change of Hilbert modular forms twisted by finite order characters. The generalization is to the case of the special values of L-functions of arbitrary base change to CMnumber fields of l-adic representations attached to Hilbert modular forms twisted by some finite-dimensional representations.

2010 Mathematics subject classification. 11F41, 11F80, 11R42, 11R80.

1. Introduction. For F, a totally real number field, let J_{F} be the set of infinite places of F, and let $\Gamma_{F}:=\operatorname{Gal}(\overline{\mathbb{Q}} / F)$. Let f be a normalized Hecke eigenform of $\mathrm{GL}(2) / F$ of weight $k=(k(\tau))_{\tau \in J_{F}}$, where all $k(\tau)$ have the same parity and $k(\tau) \geq 2$. We denote by Π the cuspidal automorphic representation of GL(2)/F generated by f. In this paper we assume that Π is non-CM. We denote by ρ_{Π} the l-adic representation attached to Π, for some prime number l (by fixing an isomorphism $\iota: \overline{\mathbb{Q}}_{l} \xrightarrow{\sim} \mathbb{C}$ one can regard ρ_{Π} as a complex valued representation). Define $k_{0}=\max \left\{k(\tau) \mid \tau \in J_{F}\right\}$ and $k^{0}=\min \left\{k(\tau) \mid \tau \in J_{F}\right\}$. In this paper we write $a \sim b$ for $a, b \in \mathbb{C}$ if $b \neq 0$ and $a / b \in \overline{\mathbb{Q}}$. By a CM-field we mean a quadratic totally imaginary extension of a totally real number field.

In this paper we prove the following result.
Theorem 1.1. Assume $k(\tau) \geq 3$ for all $\tau \in J_{F}$, and $k(\tau) \bmod 2$ is independent of τ. Let M be a $C M$-field which contains F, and let ψ be a finite-dimensional complexvalued continuous representation of $\Gamma_{M}:=\operatorname{Gal}(\overline{\mathbb{Q}} / M)$ such that $K:=\overline{\mathbb{Q}}^{\text {ker } \psi}$ is an abelian extension of a CM number field. Then

$$
L\left(m,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right) \sim \pi^{\left(m+1-k_{0}\right)[M: \mathbb{Q}] \operatorname{dim} \psi}\langle f, f\rangle^{\frac{[M: F]}{2}} \operatorname{dim} \psi,
$$

for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m<\left(k_{0}+k^{0}\right) / 2 .
$$

Theorem 1.1 is a generalization of Theorem 5.7 of [7] (i.e. Proposition 2.1; and the inner product $\langle f, f\rangle$ is normalized as in Section 2). In the proof of Theorem 1.1 we use some results on the behaviour (see $[\mathbf{1 0}, \mathbf{1 1}]$) of the inner product $\langle f, f\rangle$ under base change of f to some large ([1]) totally real extensions of F (see formula (3.1)).

We remark that Deligne's [4] conjecture for motives predicts that

$$
L\left(n,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right) \sim_{\mathbb{Q}\left(\Pi_{/ M}, \psi\right)} c^{+}\left(\operatorname{Res}_{M / \mathbb{Q}}\left(M(f)_{/ M} \otimes M(\psi)(n)\right)\right),
$$

for any integer n satisfying $\left(k_{0}-k^{0}\right) / 2<n<\left(k_{0}+k^{0}\right) / 2$, where $M(f)$ is the motive conjecturally associated to f and $M(\psi)$ is the motive associated to $\psi, \mathbb{Q}\left(\Pi_{/ M}, \psi\right)$ is the field of rationality of $M(f)_{/ M} \otimes M(\psi),{ }^{‘} \sim_{\mathbb{Q}\left(\Pi_{/ M}, \psi\right)}$ ' means up to multiplication by an element in the number field $\mathbb{Q}\left(\Pi_{/ M}, \psi\right)$, and $c^{+}\left(\operatorname{Res}_{M / \mathbb{Q}}\left(M(f)_{/ M} \otimes M(\psi)(n)\right)\right)$ is Deligne's period associated to the n-Tate twist of $\operatorname{Res}_{M / \mathbb{Q}}\left(M(f)_{/ M} \otimes M(\psi)\right)$. In this paper we cannot say anything about Deligne's conjecture, as we do not know how to relate $c^{+}\left(\operatorname{Res}_{M / \mathbb{Q}}\left(M(f)_{/ M} \otimes M(\psi)(n)\right)\right)$ to $\langle f, f\rangle^{\frac{[M: F]}{2}} \operatorname{dim} \psi$ (i.e. we do not know how to obtain even an equality up to an algebraic number times a power of π between these two periods; not even when $F=\mathbb{Q}, \psi$ is a character and M is an imaginary quadratic number field).
2. Known results. Consider F a totally real number field and let J_{F} be the set of infinite places of F. If Π is a cuspidal automorphic representation (discrete series at infinity) of weight $k=(k(\tau))_{\tau \in J_{F}}$ of $\mathrm{GL}(2) / F$, where all $k(\tau)$ have the same parity and all $k(\tau) \geq 2$, let $k_{0}=\max \left\{k(\tau) \mid \tau \in J_{F}\right\}$ and $k^{0}=\min \left\{k(\tau) \mid \tau \in J_{F}\right\}$. Then there exists ([8]) a λ-adic representation

$$
\rho_{\Pi}:=\rho_{\Pi, \lambda}: \Gamma_{F} \rightarrow \mathrm{GL}_{2}\left(O_{\lambda}\right) \hookrightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{l}\right)
$$

which satisfies $L\left(s, \iota \rho_{\Pi, \lambda}\right)=L\left(s-\frac{\left(k_{0}-1\right)}{2}, \Pi\right)=L\left(s-\frac{\left(k_{0}-1\right)}{2}, f\right)$, where $\iota: \overline{\mathbb{Q}}_{l} \xrightarrow{\sim} \mathbb{C}$ is a specific isomorphism, and the above equality of L-functions is up to finitely many Euler factors; also, because the line of convergence of $L(s, \Pi)$ is $\operatorname{Re}(s)=1$, we get that the line of convergence of $L\left(s, \rho_{\Pi, \lambda}\right)$ is $\left.\operatorname{Re}(s)=\left(k_{0}+1\right) / 2\right)$; the representation ρ_{Π} is unramified outside the primes dividing $\mathbf{n} l$. Here f is the normalized Hecke eigenform of $\mathrm{GL}(2) / F$ of weight k corresponding to Π, O is the coefficients ring of Π (i.e. O is the ring of integers of the field generated over \mathbb{Q} by the eigenvalues a_{\wp} defined by $T_{\wp} f=a_{\wp} f$, where T_{\wp} is the Hecke operator at \wp, and \wp runs over the prime ideals of F (see [8] for details)), λ is a prime ideal of O above some prime number l and \mathbf{n} is the level of $П$. We define

$$
\langle f, f\rangle=\pi^{\sum_{\tau \epsilon J_{F}} k(\tau)} \int_{Z_{\infty+} \mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)} f(x) \overline{f(x)} d x
$$

where $Z_{\infty+} \simeq \mathbb{R}_{+}^{\times}$is the connected component of the center of $\mathrm{GL}_{2}(\mathbb{R})$, and the measure is normalized such that $\operatorname{vol}\left(Z_{\infty+} \mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}\left(\mathrm{~A}_{F}\right)\right)=1$.

Proposition 2.1 follows from Proposition 5.2 and Theorem 5.7 of [7]. We actually use the fact that $\left.L\left(s,\left.\rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)=L\left(s, \rho_{\Pi} \otimes \operatorname{Ind}_{\Gamma_{M}}^{\Gamma_{F}} \psi\right)\right)$ in order to reduce Proposition 2.1 to a particular case of Theorem 5.7 of [7] where a convolution of two cuspidal automorphic representations (one non-CM, and the other CM) of GL(2)/F was considered. We remark that $\operatorname{Ind}_{\Gamma_{M}}^{\Gamma_{F}} \psi$ corresponds to a CM cuspidal automorphic representation of GL(2)/F of weight 1.

Proposition 2.1. Assume $k(\tau) \geq 2$ for all $\tau \in J_{F}$ and $k(\tau) \bmod 2$ is independent of τ. Let M be a quadratic CM-extension of F, and let ψ be a continuous one-dimensional
representation of Γ_{M}. Then

$$
L\left(m, \iota \rho_{\Pi} \mid \Gamma_{M} \otimes \psi\right) \sim \pi^{\left(m+1-k_{0}\right)[M: \mathbb{Q}]}\langle f, f\rangle
$$

for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m<\left(k_{0}+k^{0}\right) / 2 .
$$

3. The proof of Theorem 1.1 for ψ a character. We fix a non-CM cuspidal automorphic representation Π of $\mathrm{GL}(2) / F$ as in Theorem 1.1, and let M / F be a CM-finite extension. In this section we assume that ψ is an arbitrary one-dimensional continuous representation of Γ_{M} and prove Theorem 1.1 in this case.

We know the following result (Theorem 1.1 of [12] or Theorem 2.1 of [13] or Theorem A of [1]).

Theorem 3.1. Let Π be a cuspidal automorphic representation of weight $k=$ $(k(\tau))_{\tau \in J_{F}}$ of $G L(2) / F$, where all $k(\tau)$ have the same parity and all $k(\tau) \geq 2$. Let F^{\prime} be a totally real extension of F. Then there exists a totally real Galois extension $F^{\prime \prime}$ of F^{\prime} such that $\left.\rho_{\Pi}\right|_{\Gamma^{\prime \prime}}$ is cuspidal automorphic, i.e. there exists a cuspidal automorphic representation $\Pi^{\prime \prime}$ of weight $k^{\prime \prime}$ of $G L(2) / F^{\prime \prime}$ such that $\left.\rho_{\Pi}\right|_{\Gamma_{F^{\prime \prime}}} \cong \rho_{\Pi^{\prime \prime}}$.

We denote by F^{\prime} the maximal totally real subfield of M; hence M is a quadratic CM-extension of F^{\prime}. Then from Theorem 3.1 we know that we can find a totally real Galois extension $F^{\prime \prime}$ of F^{\prime}, and a cuspidal automorphic representation $\Pi^{\prime \prime}$ of GL(2)/ $F^{\prime \prime}$ such that $\left.\rho_{\Pi}\right|_{\Gamma^{\prime \prime}} \cong \rho_{\Pi^{\prime \prime}}$. Because Π is non-CM, we get that $\Pi^{\prime \prime}$ is non-CM.

From Theorem 15.10 of [3] we know that there exist some subfields $M_{i} \subseteq M F^{\prime \prime}$ such that $M \subseteq M_{i}$ and $\operatorname{Gal}\left(M F^{\prime \prime} / M_{i}\right)$ are solvable, and some integers n_{i}, such that the trivial representation

$$
1_{M}: \operatorname{Gal}\left(M F^{\prime \prime} / M\right) \rightarrow \mathbb{C}^{\times}
$$

can be written as

$$
1_{M}=\sum_{i=1}^{u} n_{i} \operatorname{Ind} \underset{\operatorname{Gal}\left(M F^{\prime \prime} / M i\right)}{\operatorname{Gal}\left(M F^{\prime \prime} / M\right)} 1_{M_{i}}
$$

(an equality in the character ring of $\operatorname{Gal}\left(M F^{\prime \prime} / M\right)$), where

$$
1_{M_{i}}: \operatorname{Gal}\left(M F^{\prime \prime} / M_{i}\right) \rightarrow \mathbb{C}^{\times}
$$

is the trivial representation. In particular, we have $1=\sum_{i=1}^{u} n_{i}\left[M_{i}: M\right]$. Then (for the equality between the second and the third terms below, we use Corollary 10.20 of [3], which says that if G is a finite group and H a subgroup, and if ρ and ϕ are k-linear
representations of G and H, where k is a field, then $\left.\rho \otimes \operatorname{Ind}_{H}^{G} \phi \simeq \operatorname{Ind}_{H}^{G}\left(\left.\rho\right|_{H} \otimes \phi\right)\right)$,

$$
\begin{aligned}
L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right) & =\prod_{i=1}^{u} L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \operatorname{Ind}_{\Gamma_{M_{i}}}^{\Gamma_{M}} 1_{M_{i}} \otimes \psi\right)^{n_{i}} \\
& =\prod_{i=1}^{u} L\left(s, \operatorname{Ind}_{\Gamma_{M_{i}}}^{\Gamma_{M}}\left(\left.\left.\iota \rho_{\Pi}\right|_{\Gamma_{M_{i}}} \otimes 1_{M_{i}} \otimes \psi\right|_{\Gamma_{M_{i}}}\right)^{n_{i}}\right. \\
& =\prod_{i=1}^{u} L\left(s,\left.\iota \rho_{\Pi}| |_{M_{i}} \otimes \psi\right|_{\Gamma_{M_{i}}}\right)^{n_{i}} .
\end{aligned}
$$

Since $\left.\rho_{\Pi}\right|_{\Gamma_{F^{\prime \prime}}}$ is cuspidal automorphic and $M F^{\prime \prime}$ is a quadratic extension of $F^{\prime \prime}$, we get ([5]) that $\left.\rho_{\Pi}\right|_{\Gamma_{M F^{\prime \prime}}}$ is cuspidal automorphic, and because the $\operatorname{group} \operatorname{Gal}\left(M F^{\prime \prime} / M_{i}\right)$ is solvable, one easily gets (see Section 4 of [9]) that $\left.\rho_{\Pi}\right|_{\Gamma_{M_{i}}}$ is cuspidal automorphic.

Hence, the function $L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because each function $L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M_{i}}} \otimes\right.$ $\left.\psi\right|_{\Gamma_{M_{i}}}$) has a meromorphic continuation to the entire complex plane and satisfies a functional equation. Moreover, since each function $L\left(s,\left.\left.\iota \rho_{\Pi}\right|_{\Gamma_{M_{i}}} \otimes \psi\right|_{\Gamma_{M_{i}}}\right)$ has no poles or zeros for $\operatorname{Re}(s) \geq\left(k_{0}+1\right) / 2$ (see Proposition 5.2 of [7] and Proposition 4.16 of [6]), we get that the function $L\left(s, \iota \rho_{\Pi} \mid \Gamma_{M} \otimes \psi\right)$ has no poles or zeros for $\operatorname{Re}(s) \geq\left(k_{0}+1\right) / 2$. Thus, for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m,
$$

we get the identity

$$
L\left(m,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)=\prod_{i=1}^{u} L\left(m, \iota \rho_{\Pi}\left|\Gamma_{M_{i}} \otimes \psi\right|_{\Gamma_{M_{i}}}\right)^{n_{i}}
$$

Let F_{i} be the maximal totally real subfield of M_{i}. Since $\left.\rho_{\Pi}\right|_{\Gamma_{M_{i}}}$ is cuspidal automorphic and M_{i} / F_{i} is quadratic, one can easily prove that $\left.\rho_{\Pi}\right|_{\Gamma_{F_{i}}}$ is cuspidal automorphic (see Lemma 1.3 of [2]), so $\left.\rho_{\Pi}\right|_{\Gamma_{F_{i}}} \cong \rho_{\Pi_{i}}$ for some cuspidal automorphic representation Π_{i} of GL(2)/Fi. We denote by f_{i} the normalized Hecke eigenform of $\operatorname{GL}(2) / F_{i}$ associated to Π_{i}. Then f_{i} has weight $k_{i}=\left(k_{i}(\tau)\right)_{\tau \in J_{F_{i}}}$, where $J_{F_{i}}$ is the set of infinite places of F_{i}, and $k_{i}(\tau)=k(\tau \mid F)$ for any $\tau \in J_{F_{i}}$.

Now from Proposition 2.1 we get

$$
L\left(m,\left.\left.\iota \rho_{\Pi}\right|_{\Gamma_{M_{i}}} \otimes \psi\right|_{\Gamma_{M_{i}}}\right) \sim \pi^{\left(m+1-k_{0}\right)\left[M_{i}: \mathbb{Q}\right]}\left\langle f_{i}, f_{i}\right\rangle,
$$

for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m<\left(k_{0}+k^{0}\right) / 2 .
$$

But we know that (see the paragraph just before Remark 5.1 of [10])

$$
\begin{equation*}
\left\langle f_{i}, f_{i}\right\rangle \sim\langle f, f\rangle^{\left[F_{i}: F\right]} \tag{3.1}
\end{equation*}
$$

and using the fact that $1=\sum_{i=1}^{u} n_{i}\left[M_{i}: M\right]$, we obtain

$$
L\left(m,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right) \sim \pi^{\sum_{i=1}^{u}\left(m+1-k_{0}\right)\left[M_{i}: \mathbb{Q}\right] n_{i}} \prod_{i=1}^{u}\left\langle f_{i}, f_{i}\right\rangle^{n_{i}}
$$

$$
\sim \pi^{\sum_{i=1}^{u}\left(m+1-k_{0}\right)\left[M_{i}: \mathbb{Q}\right] n_{i}}\langle f, f\rangle^{\sum_{i=1}^{u}\left[F_{i}: F\right] n_{i}} \sim \pi^{\left(m+1-k_{0}\right)[M: \mathbb{Q}]}\langle f, f\rangle^{\frac{[M: F]}{2}}
$$

for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m<\left(k_{0}+k^{0}\right) / 2,
$$

which proves Theorem 1.1 for ψ one-dimensional representation.
4. The proof of Theorem 1.1 for general ψ. Let ψ be a finite-dimensional representation of Γ_{M} as in Theorem 1.1. We denote by M^{\prime} the maximal CM-subfield of $K:=\overline{\mathbb{Q}}^{\text {ker } \psi}$. Obviously, M^{\prime} / M is Galois and K is an abelian extension of M^{\prime}.

From the beginning of Section 15 in [3] we know that there exist some subfields $E_{i} \subseteq M^{\prime}$ such that $M \subseteq E_{i}$ and $\operatorname{Gal}\left(M^{\prime} / E_{i}\right)$ are cyclic, and some integers n_{i} such that the trivial representation

$$
1_{M}: \operatorname{Gal}\left(M^{\prime} / M\right) \rightarrow \mathbb{C}^{\times}
$$

can be written as

$$
\left[M^{\prime}: M\right] 1_{M}=\sum_{i=1}^{u} n_{i} \operatorname{Ind}_{\operatorname{Gal}\left(M^{\prime} / E_{i}\right)}^{\operatorname{Gal}\left(M^{\prime} \mid M\right)} 1_{E_{i}},
$$

where $1_{E_{i}}: \operatorname{Gal}\left(M^{\prime} / E_{i}\right) \rightarrow \mathbb{C}^{\times}$is the trivial representation. In particular, we have $\left[M^{\prime}\right.$: $M]=\sum_{i=1}^{u} n_{i}\left[E_{i}: M\right]$. Then

$$
\begin{aligned}
L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)^{\left[M^{\prime}: M\right]} & =\prod_{i=1}^{u} L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi \otimes \operatorname{Ind}_{\Gamma_{E_{i}}}^{\Gamma_{M}} 1_{E_{i}}\right)^{n_{i}} \\
& =\prod_{i=1}^{u} L\left(s, \operatorname{Ind}_{\Gamma_{E_{i}}}^{\Gamma_{M}}\left(\iota \rho_{\Pi}\left|\Gamma_{E_{i}} \otimes \psi\right|_{\Gamma_{E_{i}}} \otimes 1_{E_{i}}\right)\right)^{n_{i}} \\
& =\prod_{i=1}^{u} L\left(s,\left.\left.\iota \rho_{\Pi}\right|_{\Gamma_{E_{i}}} \otimes \psi\right|_{\Gamma_{E_{i}}}\right)^{n_{i}} .
\end{aligned}
$$

We write

$$
\left.\psi\right|_{\Gamma_{E_{i}}}=\bigoplus_{j=1}^{u_{i}} \psi_{i j}
$$

where $\psi_{i j}$ are irreducible representations of $\Gamma_{E_{i}}$. Since $\operatorname{Gal}\left(M^{\prime} / E_{i}\right)$ is cyclic, $\left.\psi_{i j}\right|_{\Gamma_{M^{\prime}}}$ is abelian and $\psi_{i j}$ is irreducible, we get that the following:

Lemma 4.1. We have

$$
\psi_{i j} \simeq \operatorname{Ind} \int_{\Gamma_{E_{j}}}^{\Gamma_{E_{i}}} \phi_{i j}
$$

for some continuous character

$$
\phi_{i j}: \Gamma_{E_{i j}} \rightarrow \mathbb{C}^{\times},
$$

where $E_{i j}$ is a subfield of M^{\prime} which contains E_{i}.

Proof: Let σ be a generator of $\operatorname{Gal}\left(M^{\prime} / E_{i}\right)$. Then, since M^{\prime} / E_{i} is Galois, σ permutes the irreducible components of $\left.\psi_{i j}\right|_{\Gamma_{M^{\prime}}}$. The representation $\left.\psi_{i j}\right|_{\Gamma_{M^{\prime}}}$ is abelian, and thus a direct sum of characters. Let ϕ be one of these characters. We denote by $E_{i j}$ the subfield of M^{\prime} which contains E_{i} having the property that $\operatorname{Gal}\left(M^{\prime} / E_{i j}\right)$ is the stabiliser of ϕ under the action of $\operatorname{Gal}\left(M^{\prime} / E_{i}\right)=\langle\sigma\rangle$. The character ϕ extends to a character $\phi_{i j}$ of $\Gamma_{E_{j}}$. Then, because $\psi_{i j}$ is irreducible, $\sigma \in \operatorname{Gal}\left(E_{i j} / E_{i}\right)$ permutes simply transitively all the components of the abelian representation $\left.\psi_{i j}\right|_{\Gamma_{E_{j}}}$ and we have $\left[E_{i j}: E_{i}\right]=\operatorname{dim} \psi_{i j}$. Let $V_{\psi_{i j}}$ be the space corresponding to $\psi_{i j}$, and $V_{\phi_{i j}}$ be the space corresponding to $\phi_{i j}$. Since $\operatorname{Hom}_{\Gamma_{E_{i j}}}\left(V_{\psi_{i j}}, V_{\phi_{i j}}\right)$ is non-trivial, by Frobenius reciprocity we get that $\operatorname{Hom}_{\Gamma_{E_{i}}}\left(V_{\psi_{i j}}, \operatorname{Ind}_{\Gamma_{E_{i j}}}^{\Gamma_{E_{i}}} V_{\phi_{\dot{j}}}\right)$ is also non-trivial. But $\operatorname{dim} \operatorname{Ind}_{\Gamma_{E_{i j}}}^{\Gamma_{E_{i}}} \phi_{i j}=\operatorname{dim} \psi_{i j}$, and thus we obtain $\psi_{i j} \simeq \operatorname{Ind}_{\Gamma_{E_{i j}}}^{\Gamma_{E_{i}}} \psi_{i j}$.

Therefore, we obtain

$$
\begin{aligned}
L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)^{\left[M^{\prime}: M\right]} & =\prod_{i=1}^{u} L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{i}} \otimes \psi| |_{E_{i}}\right)^{n_{i}} \\
& =\prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{E_{i}}} \otimes \operatorname{Ind}_{\Gamma_{E_{i j}}}^{\Gamma_{E_{i}}} \phi_{i j}\right)^{n_{i}} \\
& =\prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L\left(s, \operatorname{Ind}_{\Gamma_{E_{i j}}}^{\Gamma_{E_{i}}}\left(\left.\rho_{\Pi}\right|_{\Gamma_{E_{j}}} \otimes \phi_{i j}\right)\right)^{n_{i}} \\
& =\prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L\left(s, \iota \rho_{\Pi} \mid \Gamma_{E_{E_{j}}} \otimes \phi_{i j}\right)^{n_{i}} .
\end{aligned}
$$

Hence, the function $L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)^{\left[M^{\prime}: M\right]}$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because from Section 3 we know that each function $L\left(s,\left.\rho_{\Pi}\right|_{\Gamma_{E_{i j}}} \otimes \phi_{i j}\right)$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation. Also, since each function $L\left(s,\left.\rho_{\Pi}\right|_{\Gamma_{E_{j}}} \otimes \phi_{i j}\right)$ has no poles or zeros for $\operatorname{Re}(s) \geq\left(k_{0}+1\right) / 2$, we get that the function $L\left(s,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)^{\left[M^{\prime}: M\right]}$ has no poles or zeros for $\operatorname{Re}(s) \geq\left(k_{0}+1\right) / 2$. Thus, for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m,
$$

we get the identity

$$
L\left(m,\left.\varphi \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right)^{\left[M^{\prime}: M\right]}=\prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L\left(m,\left.\iota \rho_{\Pi}\right|_{\Gamma_{E_{i j}}} \otimes \phi_{i j}\right)^{n_{i}} .
$$

From Section 3 we know that

$$
L\left(m, \iota \rho_{\Pi} \mid \Gamma_{E_{i j}} \otimes \phi_{i j}\right) \sim \pi^{\left(m+1-k_{0}\right)\left[E_{i j}: \mathbb{Q}\right]}\langle f, f\rangle^{\frac{\left.\mid E_{i j} \cdot F\right]}{2}}
$$

for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m<\left(k_{0}+k^{0}\right) / 2 .
$$

Hence, from the fact that $\left[M^{\prime}: M\right] \operatorname{dim} \psi=\sum_{i=1}^{u} \sum_{j=1}^{u_{i}} n_{i}\left[E_{i j}: M\right]$, we get

$$
\begin{aligned}
& L\left(m, \iota \rho_{\Pi} \mid \Gamma_{M} \otimes \psi\right)^{\left[M^{\prime}: M\right]}=\prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L\left(m, \iota \rho_{\Pi} \mid \Gamma_{E_{i j}} \otimes \phi_{i j}\right)^{n_{i}} \\
& \sim \pi^{\sum_{i=1}^{u} \sum_{j=1}^{u_{i}}\left(m+1-k_{0}\right)\left[E_{j}: \mathbb{Q}\right]_{i}}\langle f, f\rangle^{\sum_{i=1}^{u} \sum_{j=1}^{u_{j}} \frac{\left[E_{i j} \cdot F\right]}{2} n_{i}} \\
& \sim \pi^{\left(m+1-k_{0}\right)\left[M^{\prime}: \mathbb{Q}\right] \operatorname{dim} \psi}\langle f, f\rangle^{\left[\frac{\left[M^{\prime}: F\right]}{2} \operatorname{dim} \psi\right.},
\end{aligned}
$$

and thus

$$
L\left(m,\left.\iota \rho_{\Pi}\right|_{\Gamma_{M}} \otimes \psi\right) \sim \pi^{\left(m+1-k_{0}\right)[M: \mathbb{Q}] \operatorname{dim} \psi}\langle f, f\rangle^{\frac{[M: F]}{2} \operatorname{dim} \psi}
$$

for any integer m satisfying

$$
\left(k_{0}+1\right) / 2 \leq m<\left(k_{0}+k^{0}\right) / 2 .
$$

This concludes the proof of Theorem 1.1.

REFERENCES

1. T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, Potential automorphy and change of weight (preprint). arXiv:1010.2561v1 [math.NT].
2. T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), 29-98.
3. C. W. Curtis and I. Reiner, Methods of representation theory, vol. I (Wiley, New York, NY, 1981).
4. P. Deligne, Valeurs de fonctions L et periodes d'integrales, Proc. Symp. Pure Math. 33(part 2) (1979), 313-346.
5. R. P. Langlands, Base change for GL(2), Ann. of Mathematics Studies, No. 96 (Princeton University Press, Princeton, NJ, 1980).
6. G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679.
7. G. Shimura, Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math. 104 (1983), 253-285.
8. R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265-280.
9. C. Virdol, Tate classes and poles of L-functions of twisted quaternionic Shimura surfaces, J. Number Theory 123(2) (2007), 315-328.
10. C. Virdol, On the critical values of L-functions of tensor product of base change for Hilbert modular forms, J. Math. Kyoto Univ. 49(2) (2009), 347-357.
11. C. Virdol, On the critical values of L-functions of base change for Hilbert modular forms, Amer. J. Math. 132(4) (2010), 1105-1111.
12. C. Virdol, Non-solvable base change for Hilbert modular forms and zeta functions of twisted quaternionic Shimura varieties, Annales de la Faculte des Sciences de Toulouse 19(3-4) (2010), 831-848.
13. C. Virdol, On the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to Hilbert modular forms, J. Number Theory 131(4) (2011), 681-684.
