ON THE SPECIAL VALUES OF *L*-FUNCTIONS OF CM-BASE CHANGE FOR HILBERT MODULAR FORMS

CRISTIAN VIRDOL

Department of Mathematics, Yonsei University, Seodaemun-gu, Seoul, South Korea e-mail: virdol@yonsei.ac.kr

(Received 15 April 2012; revised 2 November 2012; accepted 20 December 2012; first published online 13 August 2013)

Abstract. In this paper we generalize some results, obtained by Shimura, on the special values of *L*-functions of *l*-adic representations attached to quadratic CM-base change of Hilbert modular forms twisted by finite order characters. The generalization is to the case of the special values of *L*-functions of arbitrary base change to CM-number fields of *l*-adic representations attached to Hilbert modular forms twisted by some finite-dimensional representations.

2010 Mathematics subject classification. 11F41, 11F80, 11R42, 11R80.

1. Introduction. For *F*, a totally real number field, let J_F be the set of infinite places of *F*, and let $\Gamma_F := \operatorname{Gal}(\overline{\mathbb{Q}}/F)$. Let *f* be a normalized Hecke eigenform of $\operatorname{GL}(2)/F$ of weight $k = (k(\tau))_{\tau \in J_F}$, where all $k(\tau)$ have the same parity and $k(\tau) \ge 2$. We denote by Π the cuspidal automorphic representation of $\operatorname{GL}(2)/F$ generated by *f*. In this paper we assume that Π is non-CM. We denote by ρ_{Π} the *l*-adic representation attached to Π , for some prime number *l* (by fixing an isomorphism $\iota : \overline{\mathbb{Q}}_l \xrightarrow{\sim} \mathbb{C}$ one can regard ρ_{Π} as a complex valued representation). Define $k_0 = \max\{k(\tau) | \tau \in J_F\}$ and $k^0 = \min\{k(\tau) | \tau \in J_F\}$. In this paper we write $a \sim b$ for $a, b \in \mathbb{C}$ if $b \neq 0$ and $a/b \in \overline{\mathbb{Q}}$. By a CM-field we mean a quadratic totally imaginary extension of a totally real number field.

In this paper we prove the following result.

THEOREM 1.1. Assume $k(\tau) \geq 3$ for all $\tau \in J_F$, and $k(\tau) \mod 2$ is independent of τ . Let M be a CM-field which contains F, and let ψ be a finite-dimensional complexvalued continuous representation of $\Gamma_M := Gal(\bar{\mathbb{Q}}/M)$ such that $K := \bar{\mathbb{Q}}^{ker\psi}$ is an abelian extension of a CM number field. Then

$$L(m, \iota \rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) \sim \pi^{(m+1-k_{0})[M:\mathbb{Q}]\dim \psi} \langle f, f \rangle^{\frac{[M:F]}{2}\dim \psi},$$

for any integer m satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2.$$

Theorem 1.1 is a generalization of Theorem 5.7 of [7] (i.e. Proposition 2.1; and the inner product $\langle f, f \rangle$ is normalized as in Section 2). In the proof of Theorem 1.1 we use some results on the behaviour (see [10, 11]) of the inner product $\langle f, f \rangle$ under base change of f to some large ([1]) totally real extensions of F (see formula (3.1)).

CRISTIAN VIRDOL

We remark that Deligne's [4] conjecture for motives predicts that

$$L(n, \iota \rho_{\Pi}|_{\Gamma_M} \otimes \psi) \sim_{\mathbb{Q}(\Pi_{M}, \psi)} c^+(\operatorname{Res}_{M/\mathbb{Q}}(M(f)_{/M} \otimes M(\psi)(n))),$$

for any integer *n* satisfying $(k_0 - k^0)/2 < n < (k_0 + k^0)/2$, where M(f) is the motive conjecturally associated to *f* and $M(\psi)$ is the motive associated to ψ , $\mathbb{Q}(\Pi_{/M}, \psi)$ is the field of rationality of $M(f)_{/M} \otimes M(\psi)$, ' $\sim_{\mathbb{Q}(\Pi_{/M}, \psi)}$ ' means up to multiplication by an element in the number field $\mathbb{Q}(\Pi_{/M}, \psi)$, and $c^+(\operatorname{Res}_{M/\mathbb{Q}}(M(f)_{/M} \otimes M(\psi)(n)))$ is Deligne's period associated to the *n*-Tate twist of $\operatorname{Res}_{M/\mathbb{Q}}(M(f)_{/M} \otimes M(\psi))$. In this paper we cannot say anything about Deligne's conjecture, as we do not know how to relate $c^+(\operatorname{Res}_{M/\mathbb{Q}}(M(f)_{/M} \otimes M(\psi)(n)))$ to $\langle f, f \rangle^{\frac{[M,F]}{2} \dim \psi}$ (i.e. we do not know how to obtain even an equality up to an algebraic number times a power of π between these two periods; not even when $F = \mathbb{Q}$, ψ is a character and *M* is an imaginary quadratic number field).

2. Known results. Consider *F* a totally real number field and let J_F be the set of infinite places of *F*. If Π is a cuspidal automorphic representation (discrete series at infinity) of weight $k = (k(\tau))_{\tau \in J_F}$ of GL(2)/F, where all $k(\tau)$ have the same parity and all $k(\tau) \ge 2$, let $k_0 = \max\{k(\tau) | \tau \in J_F\}$ and $k^0 = \min\{k(\tau) | \tau \in J_F\}$. Then there exists ([8]) a λ -adic representation

$$\rho_{\Pi} := \rho_{\Pi,\lambda} : \Gamma_F \to \operatorname{GL}_2(O_{\lambda}) \hookrightarrow \operatorname{GL}_2(\mathbb{Q}_l),$$

which satisfies $L(s, \iota \rho_{\Pi,\lambda}) = L(s - \frac{(k_0-1)}{2}, \Pi) = L(s - \frac{(k_0-1)}{2}, f)$, where $\iota : \overline{\mathbb{Q}}_l \xrightarrow{\sim} \mathbb{C}$ is a specific isomorphism, and the above equality of *L*-functions is up to finitely many Euler factors; also, because the line of convergence of $L(s, \Pi)$ is $\operatorname{Re}(s)=1$, we get that the line of convergence of $L(s, \rho_{\Pi,\lambda})$ is $\operatorname{Re}(s) = (k_0 + 1)/2$; the representation ρ_{Π} is unramified outside the primes dividing \mathbf{n} . Here *f* is the normalized Hecke eigenform of $\operatorname{GL}(2)/F$ of weight *k* corresponding to Π , *O* is the coefficients ring of Π (i.e. *O* is the ring of integers of the field generated over \mathbb{Q} by the eigenvalues a_{\wp} defined by $T_{\wp}f = a_{\wp}f$, where T_{\wp} is the Hecke operator at \wp , and \wp runs over the prime ideals of *F* (see [8] for details)), λ is a prime ideal of *O* above some prime number *l* and \mathbf{n} is the level of Π . We define

$$\langle f, f \rangle = \pi^{\sum_{\tau \in J_F} k(\tau)} \int_{Z_{\infty +} \operatorname{GL}_2(F) \backslash \operatorname{GL}_2(\mathbb{A}_F)} f(x) \overline{f(x)} dx$$

where $Z_{\infty+} \simeq \mathbb{R}_+^{\times}$ is the connected component of the center of $GL_2(\mathbb{R})$, and the measure is normalized such that $vol(Z_{\infty+}GL_2(F)\setminus GL_2(\mathbb{A}_F)) = 1$.

Proposition 2.1 follows from Proposition 5.2 and Theorem 5.7 of [7]. We actually use the fact that $L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) = L(s, \iota\rho_{\Pi} \otimes \operatorname{Ind}_{\Gamma_{M}}^{\Gamma_{F}}\psi))$ in order to reduce Proposition 2.1 to a particular case of Theorem 5.7 of [7] where a convolution of two cuspidal automorphic representations (one non-CM, and the other CM) of $\operatorname{GL}(2)/F$ was considered. We remark that $\operatorname{Ind}_{\Gamma_{M}}^{\Gamma_{F}}\psi$ corresponds to a CM cuspidal automorphic representation of $\operatorname{GL}(2)/F$ of weight 1.

PROPOSITION 2.1. Assume $k(\tau) \ge 2$ for all $\tau \in J_F$ and $k(\tau) \mod 2$ is independent of τ . Let M be a quadratic CM-extension of F, and let ψ be a continuous one-dimensional

representation of Γ_M . Then

$$L(m, \iota \rho_{\Pi}|_{\Gamma_M} \otimes \psi) \sim \pi^{(m+1-k_0)[M:\mathbb{Q}]} \langle f, f \rangle$$

for any integer m satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2.$$

3. The proof of Theorem 1.1 for ψ a character. We fix a non-CM cuspidal automorphic representation Π of GL(2)/F as in Theorem 1.1, and let M/F be a CM-finite extension. In this section we assume that ψ is an arbitrary one-dimensional continuous representation of Γ_M and prove Theorem 1.1 in this case.

We know the following result (Theorem 1.1 of [12] or Theorem 2.1 of [13] or Theorem A of [1]).

THEOREM 3.1. Let Π be a cuspidal automorphic representation of weight $k = (k(\tau))_{\tau \in J_F}$ of GL(2)/F, where all $k(\tau)$ have the same parity and all $k(\tau) \ge 2$. Let F' be a totally real extension of F. Then there exists a totally real Galois extension F'' of F' such that $\rho_{\Pi}|_{\Gamma_{F''}}$ is cuspidal automorphic, i.e. there exists a cuspidal automorphic representation Π'' of weight k'' of GL(2)/F'' such that $\rho_{\Pi}|_{\Gamma_{F''}} \cong \rho_{\Pi''}$.

We denote by F' the maximal totally real subfield of M; hence M is a quadratic CM-extension of F'. Then from Theorem 3.1 we know that we can find a totally real Galois extension F'' of F', and a cuspidal automorphic representation Π'' of GL(2)/F'' such that $\rho_{\Pi}|_{\Gamma_{E''}} \cong \rho_{\Pi''}$. Because Π is non-CM, we get that Π'' is non-CM.

From Theorem 15.10 of [3] we know that there exist some subfields $M_i \subseteq MF''$ such that $M \subseteq M_i$ and $\text{Gal}(MF''/M_i)$ are solvable, and some integers n_i , such that the trivial representation

$$1_M$$
: Gal $(MF''/M) \to \mathbb{C}^{\times}$

can be written as

$$1_M = \sum_{i=1}^{u} n_i \operatorname{Ind}_{\operatorname{Gal}(MF''/M)}^{\operatorname{Gal}(MF''/M)} 1_{M_i}$$

(an equality in the character ring of Gal(MF''/M)), where

$$1_{M_i}$$
: Gal $(MF''/M_i) \to \mathbb{C}^{\times}$

is the trivial representation. In particular, we have $1 = \sum_{i=1}^{u} n_i [M_i : M]$. Then (for the equality between the second and the third terms below, we use Corollary 10.20 of [3], which says that if G is a finite group and H a subgroup, and if ρ and ϕ are k-linear

representations of G and H, where k is a field, then $\rho \otimes \operatorname{Ind}_{H}^{G} \phi \simeq \operatorname{Ind}_{H}^{G} (\rho|_{H} \otimes \phi))$,

$$L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) = \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \operatorname{Ind}_{\Gamma_{M_{i}}}^{\Gamma_{M}} 1_{M_{i}} \otimes \psi)^{n_{i}}$$

$$= \prod_{i=1}^{u} L(s, \operatorname{Ind}_{\Gamma_{M_{i}}}^{\Gamma_{M}} (\iota\rho_{\Pi}|_{\Gamma_{M_{i}}} \otimes 1_{M_{i}} \otimes \psi|_{\Gamma_{M_{i}}}))^{n_{i}}$$

$$= \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{M_{i}}} \otimes \psi|_{\Gamma_{M_{i}}})^{n_{i}}.$$

Since $\rho_{\Pi}|_{\Gamma_{F''}}$ is cuspidal automorphic and MF'' is a quadratic extension of F'', we get ([5]) that $\rho_{\Pi}|_{\Gamma_{MF''}}$ is cuspidal automorphic, and because the group $\text{Gal}(MF''/M_i)$ is solvable, one easily gets (see Section 4 of [9]) that $\rho_{\Pi}|_{\Gamma_{M_i}}$ is cuspidal automorphic.

Hence, the function $L(s, \iota\rho_{\Pi}|_{\Gamma_M} \otimes \psi)$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M_i}} \otimes \psi|_{\Gamma_{M_i}})$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation. Moreover, since each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M_i}} \otimes \psi|_{\Gamma_{M_i}})$ has no poles or zeros for Re(s) $\geq (k_0 + 1)/2$ (see Proposition 5.2 of [7] and Proposition 4.16 of [6]), we get that the function $L(s, \iota\rho_{\Pi}|_{\Gamma_M} \otimes \psi)$ has no poles or zeros for Re(s) $\geq (k_0 + 1)/2$. Thus, for any integer *m* satisfying

$$(k_0+1)/2 \le m,$$

we get the identity

$$L(m, \iota \rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) = \prod_{i=1}^{u} L(m, \iota \rho_{\Pi}|_{\Gamma_{M_{i}}} \otimes \psi|_{\Gamma_{M_{i}}})^{n_{i}}.$$

Let F_i be the maximal totally real subfield of M_i . Since $\rho_{\Pi}|_{\Gamma_{M_i}}$ is cuspidal automorphic and M_i/F_i is quadratic, one can easily prove that $\rho_{\Pi}|_{\Gamma_{F_i}}$ is cuspidal automorphic (see Lemma 1.3 of [2]), so $\rho_{\Pi}|_{\Gamma_{F_i}} \cong \rho_{\Pi_i}$ for some cuspidal automorphic representation Π_i of $GL(2)/F_i$. We denote by f_i the normalized Hecke eigenform of $GL(2)/F_i$ associated to Π_i . Then f_i has weight $k_i = (k_i(\tau))_{\tau \in J_{F_i}}$, where J_{F_i} is the set of infinite places of F_i , and $k_i(\tau) = k(\tau|F)$ for any $\tau \in J_{F_i}$.

Now from Proposition 2.1 we get

$$L(m, \iota \rho_{\Pi}|_{\Gamma_{M_i}} \otimes \psi|_{\Gamma_{M_i}}) \sim \pi^{(m+1-k_0)[M_i:\mathbb{Q}]} \langle f_i, f_i \rangle,$$

for any integer m satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2$$

But we know that (see the paragraph just before Remark 5.1 of [10])

$$\langle f_i, f_i \rangle \sim \langle f, f \rangle^{[F_i:F]},$$
(3.1)

and using the fact that $1 = \sum_{i=1}^{u} n_i [M_i : M]$, we obtain

$$L(m, \iota \rho_{\Pi}|_{\Gamma_M} \otimes \psi) \sim \pi^{\sum_{i=1}^u (m+1-k_0)[M_i:\mathbb{Q}]n_i} \prod_{i=1}^u \langle f_i, f_i \rangle^{n_i}$$

$$\sim \pi^{\sum_{i=1}^{u}(m+1-k_0)[M_i:\mathbb{Q}]n_i}\langle f,f\rangle^{\sum_{i=1}^{u}[F_i:F]n_i} \sim \pi^{(m+1-k_0)[M:\mathbb{Q}]}\langle f,f\rangle^{\frac{[M:F]}{2}}$$

for any integer *m* satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2,$$

which proves Theorem 1.1 for ψ one-dimensional representation.

4. The proof of Theorem 1.1 for general ψ . Let ψ be a finite-dimensional representation of Γ_M as in Theorem 1.1. We denote by M' the maximal CM-subfield of $K := \overline{\mathbb{Q}}^{\ker\psi}$. Obviously, M'/M is Galois and K is an abelian extension of M'.

From the beginning of Section 15 in [3] we know that there exist some subfields $E_i \subseteq M'$ such that $M \subseteq E_i$ and $Gal(M'/E_i)$ are cyclic, and some integers n_i such that the trivial representation

$$1_M$$
: Gal $(M'/M) \to \mathbb{C}^{\times}$

can be written as

$$[M':M]\mathbf{1}_M = \sum_{i=1}^u n_i \mathrm{Ind}_{\mathrm{Gal}(M'/E_i)}^{\mathrm{Gal}(M'/M)} \mathbf{1}_{E_i},$$

where 1_{E_i} : Gal $(M'/E_i) \to \mathbb{C}^{\times}$ is the trivial representation. In particular, we have $[M': M] = \sum_{i=1}^{u} n_i [E_i : M]$. Then

$$L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi)^{[M':M]} = \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi \otimes \operatorname{Ind}_{\Gamma_{E_{i}}}^{\Gamma_{M}} 1_{E_{i}})^{n_{i}}$$

$$= \prod_{i=1}^{u} L(s, \operatorname{Ind}_{\Gamma_{E_{i}}}^{\Gamma_{M}} (\iota\rho_{\Pi}|_{\Gamma_{E_{i}}} \otimes \psi|_{\Gamma_{E_{i}}} \otimes 1_{E_{i}}))^{n_{i}}$$

$$= \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{E_{i}}} \otimes \psi|_{\Gamma_{E_{i}}})^{n_{i}}.$$

We write

$$\psi|_{\Gamma_{E_i}} = \bigoplus_{j=1}^{u_i} \psi_{ij},$$

where ψ_{ij} are irreducible representations of Γ_{E_i} . Since $\operatorname{Gal}(M'/E_i)$ is cyclic, $\psi_{ij}|_{\Gamma_{M'}}$ is abelian and ψ_{ij} is irreducible, we get that the following:

LEMMA 4.1. We have

$$\psi_{ij} \simeq \mathit{Ind}_{\Gamma_{E_{ii}}}^{\Gamma_{E_{i}}} \phi_{ij}$$

for some continuous character

 $\phi_{ij}:\Gamma_{E_{ij}}\to\mathbb{C}^{\times},$

where E_{ii} is a subfield of M' which contains E_i .

CRISTIAN VIRDOL

Proof: Let σ be a generator of $\operatorname{Gal}(M'/E_i)$. Then, since M'/E_i is Galois, σ permutes the irreducible components of $\psi_{ij}|_{\Gamma_{M'}}$. The representation $\psi_{ij}|_{\Gamma_{M'}}$ is abelian, and thus a direct sum of characters. Let ϕ be one of these characters. We denote by E_{ij} the subfield of M' which contains E_i having the property that $\operatorname{Gal}(M'/E_{ij})$ is the stabiliser of ϕ under the action of $\operatorname{Gal}(M'/E_i) = \langle \sigma \rangle$. The character ϕ extends to a character ϕ_{ij} of $\Gamma_{E_{ij}}$. Then, because ψ_{ij} is irreducible, $\sigma \in \operatorname{Gal}(E_{ij}/E_i)$ permutes simply transitively all the components of the abelian representation $\psi_{ij}|_{\Gamma_{E_{ij}}}$ and we have $[E_{ij} : E_i] = \dim \psi_{ij}$. Let $V_{\psi_{ij}}$ be the space corresponding to ψ_{ij} , and $V_{\phi_{ij}}$ be the space corresponding to ϕ_{ij} . Since $\operatorname{Hom}_{\Gamma_{E_{ij}}}(V_{\psi_{ij}}, V_{\phi_{ij}})$ is non-trivial, by Frobenius reciprocity we get that $\operatorname{Hom}_{\Gamma_{E_i}}(V_{\psi_{ij}}, \operatorname{Ind}_{\Gamma_{E_i}}^{\Gamma_{E_i}} \psi_{\phi_{ij}})$ is also non-trivial. But $\operatorname{dim}\operatorname{Ind}_{\Gamma_{E_i}}^{\Gamma_{E_i}} \phi_{ij} = \dim \psi_{ij}$, and thus we obtain $\psi_{ij} \simeq \operatorname{Ind}_{\Gamma_{E_i}}^{\Gamma_{E_i}} \phi_{ij}$.

Therefore, we obtain

$$\begin{split} L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi)^{[M':M]} &= \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{E_{i}}} \otimes \psi|_{\Gamma_{E_{i}}})^{n_{i}} \\ &= \prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L(s, \iota\rho_{\Pi}|_{\Gamma_{E_{i}}} \otimes \operatorname{Ind}_{\Gamma_{E_{ij}}}^{\Gamma_{E_{i}}} \phi_{ij})^{n_{i}} \\ &= \prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L(s, \operatorname{Ind}_{\Gamma_{E_{ij}}}^{\Gamma_{E_{i}}} (\iota\rho_{\Pi}|_{\Gamma_{E_{ij}}} \otimes \phi_{ij}))^{n_{i}} \\ &= \prod_{i=1}^{u} \prod_{j=1}^{u_{i}} L(s, \iota\rho_{\Pi}|_{\Gamma_{E_{ij}}} \otimes \phi_{ij})^{n_{i}}. \end{split}$$

Hence, the function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi)^{[M':M]}$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because from Section 3 we know that each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{E_{ij}}} \otimes \phi_{ij})$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation. Also, since each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{E_{ij}}} \otimes \phi_{ij})$ has no poles or zeros for $\text{Re}(s) \ge (k_0 + 1)/2$, we get that the function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi)^{[M':M]}$ has no poles or zeros for $\text{Re}(s) \ge (k_0 + 1)/2$. Thus, for any integer *m* satisfying

$$(k_0+1)/2 \le m,$$

we get the identity

$$L(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi)^{[M':M]}=\prod_{i=1}^{u}\prod_{j=1}^{u_{i}}L(m,\iota\rho_{\Pi}|_{\Gamma_{E_{ij}}}\otimes\phi_{ij})^{n_{i}}.$$

From Section 3 we know that

$$L(m, \iota \rho_{\Pi}|_{\Gamma_{E_{ij}}} \otimes \phi_{ij}) \sim \pi^{(m+1-k_0)[E_{ij}:\mathbb{Q}]} \langle f, f \rangle^{\frac{|E_{ij}:F|}{2}}$$

for any integer *m* satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2$$

Hence, from the fact that $[M': M] \dim \psi = \sum_{i=1}^{u} \sum_{j=1}^{u_i} n_i [E_{ij}: M]$, we get

$$L(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi)^{[M':M]}=\prod_{i=1}^{u}\prod_{j=1}^{u_{i}}L(m,\iota\rho_{\Pi}|_{\Gamma_{E_{ij}}}\otimes\phi_{ij})^{n_{i}}$$

 $\sim \pi^{\sum_{i=1}^{u} \sum_{j=1}^{u_i} (m+1-k_0) [E_{ij}:\mathbb{Q}] n_i} \langle f, f \rangle^{\sum_{i=1}^{u} \sum_{j=1}^{u_i} \frac{[E_{ij}:F]}{2} n_i}$

$$\sim \pi^{(m+1-k_0)[M':\mathbb{Q}]\dim\psi}\langle f,f\rangle^{rac{[M':F]}{2}\dim\psi},$$

and thus

$$L(m, \iota \rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) \sim \pi^{(m+1-k_{0})[M:\mathbb{Q}]\dim \psi} \langle f, f \rangle^{\frac{[M:F]}{2}\dim \psi}$$

for any integer *m* satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2.$$

This concludes the proof of Theorem 1.1.

REFERENCES

1. T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, *Potential automorphy and change of weight* (preprint). arXiv:1010.2561v1 [math.NT].

2. T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, *Publ. Res. Inst. Math. Sci.* **47** (2011), 29–98.

3. C. W. Curtis and I. Reiner, *Methods of representation theory*, vol. I (Wiley, New York, NY, 1981).

4. P. Deligne, Valeurs de fonctions *L* et periodes d'integrales, *Proc. Symp. Pure Math.* **33**(part 2) (1979), 313–346.

5. R. P. Langlands, *Base change for GL(2)*, Ann. of Mathematics Studies, No. 96 (Princeton University Press, Princeton, NJ, 1980).

6. G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, *Duke Math. J.* **45** (1978), 637–679.

7. G. Shimura, Algebraic relations between critical values of zeta functions and inner products, *Amer. J. Math.* **104** (1983), 253–285.

8. R. Taylor, On Galois representations associated to Hilbert modular forms, *Invent. Math.* **98** (1989), 265–280.

9. C. Virdol, Tate classes and poles of *L*-functions of twisted quaternionic Shimura surfaces, *J. Number Theory* **123**(2) (2007), 315–328.

10. C. Virdol, On the critical values of *L*-functions of tensor product of base change for Hilbert modular forms, *J. Math. Kyoto Univ.* **49**(2) (2009), 347–357.

11. C. Virdol, On the critical values of *L*-functions of base change for Hilbert modular forms, *Amer. J. Math.* **132**(4) (2010), 1105–1111.

12. C. Virdol, Non-solvable base change for Hilbert modular forms and zeta functions of twisted quaternionic Shimura varieties, *Annales de la Faculte des Sciences de Toulouse* **19**(3-4) (2010), 831–848.

13. C. Virdol, On the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to Hilbert modular forms, *J. Number Theory* **131**(4) (2011), 681–684.