A NOTE ON UNIQUENESS AND CONVERGENCE
OF SUCCESSIVE APPROXIMATIONS

Fred Brauer
(received April 8, 1958)

1. In a recent note in this Bulletin [3], W.A.J. Luxemburg has
shown in two different ways that a condition of Krein and Krasnosel'-
skii {2] for the uniqueness of solutions of a differential equation
also implies the convergence of the successive approximations.
Here, a third proof of the uniqueness and the convergence of suc-
cessive approximations, formulated for systems of differential
equations, will be obtained. This third proof is modelled on the
methods used in proving general uniqueness and convergence the-
orems {1)}. The approach is suggested by Luxemburg's idea of
breaking the argument into two stages and using one of the hypoth-
eses in each stage. Since the proofs given here are hardly shorter
than the earlier direct proofs, their main interest lies in the fact
that they fit what appeared to be an isolated result into the frame-
work of a general theory.

2. We consider the initial value problem
(1) x! = (t,x) , x(0) =0,
where x and f are n-dimensional vectors. The norm 1ix| of any
vector x is defined in the usual way (cf. {1]) as the sum of the
absolute values of its components. We consider a vector function
f(t, x) satisfying the pair of conditions

«

(2) Uit %)) - £(t, )l £ Alx)- %1,
(3) l(t, x))- £(t,x)l € k Ixp- 5l /¢,

where k,A, and X are constants with 0 < k, 0<X<1.

THEOREM 1 (2,3] . Let f(t,x) be continuous in a region
0 £t<a, Ixl <Db, and bounded in norm by M in this region.
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Suppose also that f satisfies (2) and (3) in this region, withk(l-x)<1.
Then there is a unique solution of (1) on 0 £t<a.

Proof. Suppose there are two solutions x,(t) and 'xz(t) of (1) on
0<&t<a, and let m(t) = \xl(t)- xz(t)l . We must show that m(t) = 0

for 0 £t<a. We have
(4)  tm'@] £ [x (@-x" 0 S it x ) - £t x, 0
< Alx0)- x,0 8 AlmE]

using (2). Suppose there exists 0, 0<0<a, such that -

(5) m(o) > [A(l-o()cr]l/(l—a().

Then there is a solution u(t) of the differential equation
(6) u' = Au® ,

passing through the point (0, m(o)), and existing on some interval
to the left of . As far to the left of 0 as u(t) exists,

(7) u(t) £ m(t) .

If this is false, there exists § £0" such that u(g) = m($) and u(t)> m(t)
for t<t and t sufficiently near §, say for t-h £t <% . But if

3 -h£t<g,thenu'(t) = A Lu(t)]* > A (m(t)]™ 2 m'(t). This, together
with m(§ -h) < w(¥ -h) implies m(3) < u(3), a contradiction which
proves (7). The solution u(t) can be continued tot = 0. If u(c) = 0,
0< c<o , we can effect the continuation by defining u(t) = 0 for

0 < t € c; otherwise (7) ensures that the continuation is possible.
Since m(0) = 0, lim - u(t) = 0, and we define u(0) = 0. Now we
have a solution u(t) of (6) on 0 £ t £0° satisfying u(0) = 0, But (6)

can be solved explicitly, and any solution with u(0) = 0 has the

form u(t) = 0, [0t <], ut) = [A(1-)(t- c)]l/(l"of), ft>cl,
and satisfies

(8) aft) =taqi-an) /%),

Then u(g) = m(o), (5) and (8) yield a contradiction, and (5) can not
be true for any a. Therefore

9) m(t) & (a1-agt/ 7%,
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and since k(1-&) <1, we have

(10) 1i t'km(t) = 0,

M 50
To complete the proof, we must show that (10) implies m(t)=0.
Proceeding as in the first part of the proof, but using (3) instead ot
(2), we obtain |m'(t)] & km(t)/t. Suppose m(T)# 0 for some T,
0<T< a. The same argument as that used above, replacing (6) by

(11) vt = kv/t ,

gives a solution v(t) of (11) on 0£t£T such that v(T) = m(T), 0 £v(t)
<m(t), v(0) = 0. Then hmt-_)ot'lﬁr(t) $lim, _  t"*m(t) = 0, and

(12) lim, _, t™v(t) = 0 .

But the only solution v(t) of (11) satisfying (12) is the identically
zero solution. This contradicts v(7) = m(7)# 0, and thus m(t) = 0,
0 £ t<a, which completes the proof of the theorem.

3. The successive approximations to the solution of (1) are
defined by

(13) x0(6) = 0, %) ()= fo f(s,x; (s))ds , (5= 0,1,...) .

THEOREM 2 [3] . Let f satisfy the hypotheses of Theorem 1.
Then the successive approximations (13) converge uniformly on
0&t<min (a,b/M) to the unique solution of (1).

Proof. An examination of the proof of the general theorem on
the convergence of successive approximations ((1], chap.2, Theorem
3.1) shows that the approximations (13) form a uniformly bounded
equicontinuous sequence, and that the conclusion of the theorem is
equivalent to

(14)  lim sup, Ix. 1 (t)-x.(t] = 0, 0%t<min (a,b/M).
Jo e it J

Let Wj(t) = xj+1(t)—xj(t), m(t) = lim sup j —)oo‘wj(t)l . Thenm {0) = 0,

and m(t) is continuous on 0-£t <min (a,b/M), since it is the upper

limit of a uniformly bounded equicontinuous sequence of functions.

Using (13) and (2), we obtain

(15) bwy, ) (6h) - wip 1 (0lS [P (s, x5y 1(eN-Lls,xj(oNl ds
éjt A \_wj(s)\ ds .
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Because of the continuity of m and the equicontinuity of wj ,

given any & » 0 there exists an integer M(€), independent of s and
j such that

(16) lwi(s) € m(s) + €, Cj>M(E) .
It follows from (15) and (16) that

(17) dwyy (trh)-wi (01 S/, ¥R A fm(s)t €lds,  j>M(e) .

From the definition of m it is easy to see that lm(t+h)- m(t){
S hrnv sup j-yoéle+l(t+h)- Wj+l(t)" . Combining this with (17) and

then letting € =0, we obtain

(18) Im(t+h)-m(e)l S f; P A Im(s)l™ ds .

The inequality (18) implies that m'(t) exists on any interval (t,t+h),
t 2°0, and that Im'(t)l & Alm(t)l* . The argument used in the
proof of Theorem 1 beginning with (4) proves

(19) lim _ tFm(t) = 0.

To complete the proof, we must show that (19) implies m(t)=0
This is done in much the same way as the last stage of the proof of
Theorem 1. Suppose m(T) # 0for some T, 0<T<a. A repetition
of the first part of the proof, using (3) instead of (2), so that (11)
replaces (6), gives a solution v(t) of (11) on 04t $ T such that
v(T) = m(T), 0 £v(t) £ m(t), v(0) = 0. Then (19) implies (12), and
the desired conclusion follows as in Theorem 1.
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