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1. In a recent note in this Bulletin t3] , W . A . J . Luxemburg has 
shown in two different ways that a condition of Krein and Krasnosel 1 -
skii [2] for the uniqueness of solutions of a differential equation 
also implies the convergence of the successive approximations. 
Here , a third proof of the uniqueness and the convergence of suc­
cessive approximations, formulated for systems of differential 
equations, will be obtained. This third proof is modelled on the 
methods used in proving general uniqueness and convergence the­
orems £ l } . The approach is suggested by Luxemburg1 s idea of 
breaking the argument into two stages and using one of the hypoth­
eses in each stage. Since the proofs given here a re hardly shorter 
than the ear l ie r d i rect proofs , their main in teres t l ies in the fact 
that they fit what appeared to be an isolated result into the f rame­
work of a general theory* 

2. We consider the initial value problem 

(1) x' = f(t,x) , x(0) = 0 , 

where x and f a r e n-dimensional vec tors . The norm lx| of any 
vector x is defined in the usual way (cf. LI 3) as the sum of the 
absolute values of i ts components. We consider a vector function 
£(t,x) satisfying the pai r of conditions 

(2) l f ( t , x 1 ) - f ( t , x 2 ) U A ! x 1 . x 2 | < , 

(3) IfCt.X!)- f(t,x2) | < k |xX- :2 | It , 

where k ,A , and oc a r e constants with 0 < k, 0<<*<1. 

THEOREM 1 [2, 3j . Let f(t,x) be continuous in a region 
0 i t < a , | x | < b , and bounded in norm by M in this region. 
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Suppose also that f satisfies (2) and (3) in this region, withk(l-<*)< 1. 
Then there is a unique solution of (1) on 0 £ t < a . 

Proof. Suppose there a r e two solutions x (t) and x?(t) of (1) on 

0 < t < a, and let m(t) = l x . ( t ) - x (t)| . We must show that m(t) = 0 

for 0 < t < a . We have 

(4) |m«(t)| 4 | x x Ht)-x2
!(t)l < U(t ,x 1( t ) ) - f(t,x2(t))l 

< A l x ^ t ) . xz(t)C$ A£rn(t)3* , 

using (2), Suppose there exists <T, 0<d~<a, such that 

(5) rn(<T)> L A t l - o c J c r l 1 ^ 1 " ^ . 

Then there is a solution u(t) of the differential equation 

(6) u1 = Au* , 

passing through the point (cr,m((J*)), and existing on some interval 
to the left of <r. As far to the left of <T as u(t) ex i s t s , 

(7) u( t )<m(t) . 

If this is false, there exists \ £cr such that u(Ç) = m(Ç ) and u(t)>m(t) 
for t<^ and t sufficiently near ^ , say for ^-h ^ t < Ç . But if 
Ç -h £ t < Ç ,then u'(t) = A Cu(t)3" > A Cm(t)3* ^ m ! ( t ) . Th is , together 
with m(Ç -h) < u ( | -h) implies m(^) < u(^ ) , a contradiction which 
proves (7) . The solution u(t) can be continued to t = 0. If u(c) = 0, 
0 < c<cr , we can effect the continuation by defining u(t) = 0 for 
0 < t < c; otherwise (7) ensures that the continuation is poss ib le . 
Since m(0) = 0, l im t_^ou(t) = 0, and we define u(0) = 0. Now we 
have a solution u(t) of (6) on 0 et t ^cr satisfying u(0) » 0. But (6) 
can be solved explicitly, and any solution with u(0) = 0 has the 

form u(t) = 0, C 0 i t i c ] , u(t) = U ( l - o c ) ( u c)Jl^l'V 9 £t > c] , 
and satisfies 

. 1 / (1 -* ) 
(8) u(t) <A(l-<*)t3 ' , 0 i t £ < r . 

Then u(cr) = m(cr), (5) and (8) yield a contradiction, and (5) can not 
be t rue for any cr. Therefore 

n l / ( l - « ) 
(9) m(t) < [A(l-oc)t] v ' , 0 4 t < a , 
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and since k(l-<*) < 1, we have 

(10) lim t^ot"km(t) = 0. 

To complete the proof, we must show that (10) implies m(t)s0. 
Proceeding as in the first part of the proof, but using (3) instead oi 
(2), we obtain |mf(t)| £ km(t)/t. Suppose m(T) TÉ 0 for some r , 
0<T< a. The same argument as that used above, replacing (6) by 

(11) v! = kv/t , 

gives a solution v(t) of (11) on OétèT such that v(r) = m(r), 0 4v(t) 
£m(t), v(0) = 0. Then lim Qt"Kr(t) 4 l ir^ ^ ^ " ^ ( t ) = 0, and 

(12) l i n ^ ^ r ^ t ) = 0 . 

But the only solution v(t) of (11) satisfying (12) is the identically 
zero solution. This contradicts v{T) = mfT)^ 0, and thus m(t) = 0, 
0 é t < a, which completes the proof of the theorem. 

3, The successive approximations to the solution of (1) are 
defined by 

(13) xQ(t) = 0, x j+1 (t) = >/J)
tf(s,xj (s))ds , (j = 0,1, . - . ) . 

THEOREM 2 Dl . Let f satisfy the hypotheses of Theorem 1. 
Then the successive approximations (13) converge uniformly on 
0 4 t < min (a,b/M) to the unique solution of (1). 

Proof. An examination of the proof of the general theorem on 
the convergence of successive approximations ( t i l , chap. 2, Theorem 
3.1) shows that the approximations (13) form a uniformly bounded 
e qui continuous sequence, and that the conclusion of the theorem is 
equivalent to 

(14) lim sup lx (t)-x.(t)l = 0 , 0ât<min (a,b/M) . 
J «-* oo J T x J 

Let w (t) = x (t)-x (t), m(t) = lim sup \w (t)l . Then m (0) = 0, 

and m(t) is continuous on 0$ t < min (a,b/M), since it is the upper 
limit of a uniformly bounded e qui continuous sequence of functions. 
Using (13) and (2), we obtain 

(15) Iw (t+h)- wj+1(t)|< / t
t+hif(s,x j+1(s»-f(s,Xj(s))| ds 

^ / t+h t .<* 
< J A 1 Wj(s)l ds 

7 

https://doi.org/10.4153/CMB-1959-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1959-002-4


Because of the continuity of m and the e qui continuity of w. , 

given any £ > 0 there exists an integer M(£) , independent of s and 
j such that 

(16) I w ^ s j U m ( s ) + £ , j > M < £ ) . 

It follows from (15) and (16) that 

(17) t w j + 1 ( t + h ) - w j + 1 ( t ) t à ^ t + h A l m ( s ) + 4 " d s „ j > M ( e ) . . 

F r o m the definition of m it is easy to see that lm(t+h)- m(t)( 
4 l im sup . îw.+ 1(t+h)- w-+1(t)l- . Combining this with (17) and 

then letting £->0, we obtain 

(18) |m(t+h)-m(t)l Û ft
 t + h A M s ) ! * ds . 

The inequality (18) implies that m !(t) exists on any interval ( t , t+h), 
t £ '0 , and that |m 1 ( t ) | à A |m(t)r* . The argument used in the 
proof of Theorem 1 beginning with (4) proves 

(19) liin ^ t-kmft) = 0 . 
t -> o 

To complete the proof, we must show that (19) impl ies m(t) H 0. 
This is done in much the same way as the las t stage of the proof of 
Theorem 1. Suppose m(T) ^ 0 for some T, 0 < T < a . A repeti t ion 
of the f i rs t pa r t of the proof, using (3) instead of (2), so that (11) 
rep laces (6), gives a solution v(t) of (11) on O â t 4 T such that 
v(T) = m(T) , 0 $ v(t) 4 m(t) , v( 0) = 0. Then (19) implies (12), and 
the des i red conclusion follows as in Theorem 1. 
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