
UNBOUNDED VECTOR MEASURES 

William Byers 

Introduction. The aim of this paper is to extend the 
idea of a measu re which takes on values in Euclidean n-space 
so as to allow it to assume infinite values while preserving its 
countable additivity over a given cr-ring. It is shown that in 
order to do this it is necessa ry to r e s t r i c t the range of the 
m e a s u r e to one infinite value. 

Liapounoff [ l ] and Halmos [2] have sho wn that the range of 
a non-atomic bounded vector measu re is convex and that the 
range of any bounded vector measure is closed. It is shown here 
that while the former resul t r emains true for unbounded vector 
m e a s u r e s , the lat ter does not. 

Discussion. Let R be the space of r ea l numbers and 

let E be Euclidean n- space regarded as a normed n-dimen-

sional vector space. Since all norms on E are equivalent, we 
shall employ the Euclidean norm in all of the following without 
any loss of generali ty. 

We construct a completion of E by adjoining to it 
infinite points ot oo corresponding to each of the points a <= E 
with | \a | j = 1 so that a oo = lim (3 in a suitable sense, 

k-*oo 
where 6, € E 

k 

The set D = {x e E : | |xj j £ 1} is a compactification 

of E under the map 

£(x) = x / ( | | x | | +1) 

of E into D . Let T be the completion of E given by 
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T = E n U{<*w a € E n , | |a | | = 1} . 

We shall descr ibe the topology on T by giving a neigh
bourhood base for each of its points . The base for a point 

x € E is that of the usual topology on E , while the neighbour
hood base for a point a& consists of the sets of the form 

V(k,«) = {xeE n : | | x | | > k, | |x / | |x j | - a j | < £} ^{pco: | |p - a | | <£} 

where k, € a r e a rb i t r a ry positive numbers . This enables us to 

extend the notion of convergence in E to T. F u r t h e r m o r e if 
the function g is defined by 

g(x) = f(x), x € E and g(«oo) = a, 

then g is a homeomorphism of T onto D where D is 
provided with the usual topology. 

Let X be a space and let S be a cr-ring of subsets of X. 
Let u be a function defined on the sets of S which takes on 
values in T. We shall always assume that |i is countably 
additive on sets of finite measu re ; i . e . , if E € S, | | JJL(E) | | < OO 

00 

and E = [ J E is a decomposition of E into disjoint m e a s u r e -
n=l 

able sets of finite m e a s u r e , then 
00 

u(E) = 2 u(E ). 
A n 

n=l 
We shall also assume that \i{§) = 0 where cj> denotes the empty 
set and 0 is the null vector , and that the function ^ is strongly 
<r- fini te, i . e . , if E 6 S then there exists a sequence {E Y of 

oo 
disjoint measurable sets of finite m eas u re such that E = ! | E . 

UA n 
n=l 

We shall make the following operational definitions for the 
use of the symbol #oo: 

00 

( l a ) ttoo + QGO =oroo; ( lb ) S («oo) = **>; 
n=l 

(2) X(aco) = oroo, w h e r e X € R, X > 0 ; 

(3) a oo + x = aoo, w h e r e x € E 
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Def in i t ion 1. Le t E € S. We say tha t u(E) = aoo if, for 
e v e r y coun tab l e d i s jo in t d e c o m p o s i t i o n of E into m e a s u r a b l e 

oo 
s e t s , E = U E , sa t i s fy ing I L ( E ) I I < oo, n = 1, 2, . . . we 

n=l n n 
h a v e : 

N 
(1) |f S |i(E ) | | -» oo a s N - o o 

A n 

n=l 
and 

N N 
(2) 2 fi(E ) / | | Z u(E ) | | - a a s N - co . 

A n A n 

n=l n=l 

Since u i s s t r o n g l y cr-fini te ove r S, e a c h s e t wi th 
m e a s u r e a<x> h a s at l e a s t one such d e c o m p o s i t i o n . If the l i m i t 
in (2) d o e s not e x i s t for s o m e d e c o m p o s i t i o n , the funct ion JJL 
wi l l not be a m e a s u r e on S. 

L E M M A 2. C o n s i d e r a s e q u e n c e {x } of v e c t o r s in 

E s u c h tha t : 

(3) x / | | x l | - * Q ' a s n - * o o 
n n 

and 

(4) U x J | - o o a s n - o o . 

L e t z be a fixed v e c t o r . T h e n 

(5) (a) | | x n + z | | - * o o , 

(6) (b) | | x j | / | | x n + z | | - 1, 

(7) (c) (x + z) / j j x + z | j - a . 
n n 

T H E O R E M 3. Suppose E and F a r e two d i s jo in t 
m e a s u r a b l e s e t s s u c h tha t u(E) = aoo , u (F) = poo (a i p) . Then u 
i s not a m e a s u r e on S. 

P roo f . Since u(E) = oroo and JJL(F) = poo , t h e r e e x i s t 
d e c o m p o s i t i o n s of E and F into d i s jo in t m e a s u r a b l e s e t s of 

00 00 

f ini te m e a s u r e , E = | j E and F = M F , sa t i s fy ing 
A n A n 

n=l n=l 
cond i t ions (1) and (2) . 
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(a) We first show that J |p.(EUF) j | cannot be finite. This 
follows from (5) of Lemma 2, since there exists a strictly-
increasing sequence {t } of positive integers with 

k tk 

| | 2 ^(F ) + 2 H(E.) | | > k k = 1,2, . . . 
i=l i i=i 1 

where the sequence of sets 

Fi'Ei E t ; F 2'V E V " * 
1 1 2 

is a disjoint measurable decomposition of (E U F) into sets of 
finite measure and the measures of the sequence of partial sums 
are unbounded. 

(b) Suppose U ( E ( J F ) - V ° ° for some v. 

Let N be any positive integer and let z € E . From 
Lemma 2 it follows that 

k k 
(8) [ z + 2 ^(E.) ] / | |z + 2 u(E.)| | - a as k - oo 

i=N 1 i = N 1 

and 
k 

(9) | | z + 2 |i(E.) | | -oo as k -* oo . 
i=N 1 

The same result holds for F = I I F 
^ n 
n 

Suppose | | o r - p | | = 6 > 0 . Select € such that 0 < € < 5 / 2 . 
From condition (2) for the {E } , there exists N such that 

^ nJ 

N N 
| | * - 2 jx (E . ) / | | 2 j i ( E . ) | | | | < € . 

i= l X i=l l 

Let n be the first such N. From the analogue of (8) for 

F = (JF there exists an integer M such that 
n 

n i M n i M 
| |p - [ 2 n(E ) + 2 u(F )]/ | | 2 n(E.) + 2 ^ F . ) | | | | < c . 

i = l i = l i=l ' i=l x 

Let m be the first such M. Having chosen n , . . . , n, ; 
1 J. itC— "1 
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m , . . . , m, , (8) i m p l i e s tha t t h e r e e x i s t s an N > n such 
1 k - 1 k - 1 

tha t 
m k - l N « k - 1 N 

| | a - [ 2 ^ ( F . ) + 2 * i (E . ) ] / (J 2 ^ ( F . ) + 2 K (E . ) | | | | < 6 . 
i= l 1 i= l * i= l 1 i= l ' 

L e t IL be the f i r s t such N. S i m i l a r l y we chose m . 

Thus we have a r r a n g e d the two s e q u e n c e s ( E } and ( F } 
nJ ^ nJ 

in to a s ing le s e q u e n c e : 

E , . . . , E , F . F , E . . . . E , F . , , . . . . 
1 n 1 m . n +1 n m t l 

1 1 1 2 1 
R e n a m e t h e s e s e t s H , H , H , . . . whi le p r e s e r v i n g the above 

00 

o r d e r » T h e n {H } i s a s e q u e n c e of d i s j o in t s e t s of f ini te 
1 nJ n=l ^ J 

m e a s u r e w h o s e un ion i s (EJJ F ) . 
n 

Now i t i s obvious tha t the s e q u e n c e { 2 u(H.) / 
i = l X 

n 
j J 2 JJL(H.) ( J } t a k e s v a l u e s in € - n e i g h b o u r h o o d s of a. 

i = l 
and j3 inf in i te ly often, and s i n c e ( ) # - p | j = 5 > 2 e the 
s e q u e n c e cannot c o n v e r g e . Th i s c o n t r a d i c t s the a s s u m p t i o n 
tha t | i ( E U F) = v oo . 

Thus we cannot def ine the m e a s u r e of (E (J F) in such a 
way a s to be c o n s i s t e n t wi th our p r e v i o u s def in i t ions and t h e r e f o r e 
JJL i s not a m e a s u r e on the cr-r ing S. 

We have shown tha t in o r d e r for our s e t funct ion JJL to be 
defined on a l l s e t s of a cr-ring S , it i s n e c e s s a r y tha t |JL not 
take on d i s t i n c t inf ini te v a l u e s a t d i s jo in t m e a s u r a b l e s e t s . 
T h e r e f o r e we sha l l subsequen t ly e l i m i n a t e th is s i t ua t ion f r o m 
our c o n s i d e r a t i o n s and a s s u m e tha t non- f in i t e d i s jo in t m e a s u r a b l e 
s e t s have i d e n t i c a l m e a s u r e s . 

L E M M A 4. If E and F a r e m e a s u r a b l e s e t s with 
E C F , then J | j i(F) | | < oo i m p l i e s | |^ (E) | | < oo. 

P roo f . The proof c o n s i s t s of a s s u m i n g tha t JJL(E) = 700 
for s o m e v . Then any d e c o m p o s i t i o n of E into d i s jo in t s e t s of 
f ini te m e a s u r e c a n be extended to a s i m i l a r d e c o m p o s i t i o n of F 
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such that the norms of the partial sums of the sequence of 
measures in unbounded. This would imply that j |}J.(F) | J = oo , 
a contradiction, and therefore | |u(E) | | < oo. 

LEMMA 5. If E and F are two disjoint measurable 
sets with |J.(E) = JJL(F) = aoo, then JJL(E \J F) = aoo. 

Proof. By Lemma 4, u(E U F) cannot be finite. 
oo 

Let E (J F = M H. be any decomposition of (E (J F) into 
i = l 1 

disjoint, measurable sets of finite measure. Let E. = E M H. 
i i 

co oo 

and F. = Ffl H., i = 1, 2 Then E = I J E. and F = Il F. 
i = l i = l 

are decompositions of E and F respectively into disjoint sets 
of finite measure and thus satisfy conditions (1) and (2). It will 

CO 

suffice to prove that EU F = |J H. satisfies conditions (1) and 
i = l 1 

(2). 

(a) If C is any e-cone about the direction vector a ( i . e . , 
C is the cone based at the origin each of whose generators 
makes an angle of € with the vector a ) it is clear that 

n n 
[i{ j j E.) € C and u( |J F.)c C for n > N . Therefore 

i = l 1 i=l X ° 
n n n 

H( U E.) + \x( [J F.) = |i( (J H.) € C for n > N , that is, 
i=l i=l i=l 

n n 
fx( (J H.) / | ju( U H. ) | | - a as n - oo . 

i=l 1 i=l X 

n 
(b) Also, since JJL( . . E.), |JL( M F. € C for n > N , it follows that 

y i .y i - o 
i=i i=i 

the angle between these vectors is less than 2€ (where 0 < € <TT/6) 

and so | | s | i (E.) | | , | | 2^JL(F. ) | | -^OO implies that 
i=l * i=l l 

n 
M S n ( H . ) | | - * oo 

i=l 1 
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LEMMA 6. If E and F a re two disjoint measurab le 
sets with JJL(E) = oroo and | \\i[F) j J < oo , then JJL(E (J F) = aoo . 

Proof. The proof follows immediately from Definition 1. 

Corollary to Theorem 3. If E and F are measurab le 
sets with |JL(E) = oroo and JJL(F) = poo , where a i p, then JJI is 
not a measu re on the cr-ring S. 

Proof. We shall consider all possibi l i t ies for the 
m e a s u r e s of the disjoint sets E fl F , E - F , and F - E, where-
ja(E) = aoo and |x(F) = poo, a i p . We only consider the case 
where | |ji(E 0 F) j j < oo, since all other cases follow in the same 
general manner . 

If (i) ||(JL(E - F ) | I < oo, then 

| | n ( E ) | | = H ^ E R D + f i t E . F) | | < | | ^ ( E n F ) | | + | | ^ ( E - F ) | l < * , 

which gives a contradiction. Therefore j |fi(E - F) | | = oo and 
s imi lar ly | Ju(F - E) | | = oo. 

(ii) JJL(E - F) = yôo, for some y, then Lemma 5 
implies that ^JL(E) = y00- Therefore y = a . Similarly }i(F - E) = pco. 
Thus (E - F) and (F - E) are disjoint, measurab le sets with 
different infinite measu re s and Theorem 3 then implies that JJL is 
not a measu re on S. 

In the above manner the existence of two measurab le sets 
with different infinite m e a s u r e s always leads to the existence of 
two disjoint sets with different infinite m e a s u r e s which 
according to Theorem 3 implies that JJL is not a m e a s u r e on S. 
Thus the range of our measu re cannot contain two different 
infinite values if it is to be consistently defined on all sets of the 
given (r-ring. This situation motivates the following definition. 

Definition 7. A set function |i, defined on a cr-ring S 
with values in the space T, countably additive on sets of finite 
measu re , strongly cr-finite, and assuming one and only one 
infinite value (in the sense of Definition 1) will be called an 
unbounded vector m e a s u r e . We shall usually denote its unique 
infinite value by aoo . 

THEOREM 8. Let JJ. be an unbounded vector m e a s u r e 
on the cr-ring S. Since |JL is countably additive on sets of finite 
measu re , i t is countably additive on all sets of S. 
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Proof. The proof follows immediately from the 
definition of an unbounded vector m e a s u r e and from Lemma 4, 
noting that we must make use of the operational definitions for 
the use of the symbol orco which were adopted at the beginning 
of the paper . 

We now consider the possibili ty of extending the r e su l t s 
of Liapounoff [ l ] and Halmos [2] to the case of unbounded vector 
m e a s u r e s . 

Definition 9. If v is a signed (scalar) m e a s u r e and E 
is a measurab le set, v(E) ^ 0, then E is called an atom of v 
if F C E , F measurab le , implies that v(F) = v(E) or v(F) = 0. 

A bounded vector m e a s u r e can be expressed in the form 
u. = (u. , . . . , UL ) where u.. is a signed m e a s u r e i = 1,. . . , n. It 

is called non-atomic if none of i ts coordinates have any a toms . 

An unbounded vector m e a s u r e is said to be non-atomic if 

(i) it is non-atomic on measurab le sets of finite m e a s u r e ; 

(ii) f±(E) = cvoo implies there exists F C E, F € S, such 
that 0 < j jjj.(F) | | < oo. 

Definition 10. A half-cylinder on a set S contained in 
n 

E is defined to be the set of all vec tors of the form (x + (3t), 
where x € S, t >; 0, and (3 is a fixed direct ion. An open half-
cylinder on a set S is the inter ior of the associated half-
cylinder. 

LEMMA 11. Let A be an unbounded convex set in E . 
Then there exists a t ransla te of some m-dimensional vector 

subspace of E (1 £ m £ n) containing A such that A contains 
a non-tr ivial open half-cylinder in the m-dimensional space. 

Proof. Consider the set of all t rans la tes of vector 

subspaces of E which contain A. Select the one of min imal 
dimension, m, and take this to be our space. Since A is 
unbounded and the unit sphere is compact we can always find a 

r i °° sequence {x V a of points belonging to A such that: 
^ nJn=l r ° ° 

(10) | |x | | -> oo as n -*- oo 
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and 

(11) x / J J x J | -* a as n -*• oo, for some unit vector a . 
n n 

There certainly exist m independent points of A, 
y . . . . , y , such that the direction a does not lie in the hyper-

1 m 
plane spanned by these points . Let H be the open half-cylinder 
with base the simplex determined by the ver t ices y . . . . , v 

1 ' m 
and extending to infinity in the direction a . 

Let z be any point of H and let C., i = 1, . . . , m, be the 

cone with base point y. all of whose genera tors make the same 

angle with the vector a as does the line y .z . Then (10) implies 
that 

x € inter ior C n . . . rj in ter ior C 
m 

for all but finitely many of the m e m b e r s of the sequence {x } . 

This fact and the convexity of A imply that z is contained in 
A and therefore that H is a subset of A. 

Note. If A is an unbounded convex subset of E then 
the above proof can easily be altered to show that for any vector 
(3 in the inter ior of A or in the inter ior of A considered as a 

subset of some t rans la te of a vector subspace of E , we have 
((3 + tor) € A, for all t :> 0. The counter example given below 
shows that this proper ty need not extend to every point in A. 

THEOREM 12. Let u be a non-atomic, unbounded 
vector m e a s u r e . Then 

(a) if E and F a re any two sets of finite measu re , then 
for each X, 0 £ X £ 1, there exists a measurab le set G(X) such 
that 

(G(X)) =Xu(E) + (1 - X)u(F); 

(b) if aoo is contained in the range of JJL, then there exists 

t > 0 and a vector j3 € E such that (p + ta) is contained in the 
o 

range of u for all t > t . 

(These two proper t ies may together be regarded as an 
extension of the idea of convexity to the case of T, the com
pletion of E defined above. Thus Theorem 12 states that the 
range of a non-atomic, unbounded vector measu re is a convex 
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subset of T. ) 

Proof. (a) Since E and F have finite m e a s u r e so 
does E ( J F . Let JJL be the res t r i c t ion of JJL to ( E l j F ) . Then 

(1 
Lemma 4 implies that ji is a bounded vector m e a s u r e . Thus 
the resul t proved by Halmos in [2] shows that the range of p[ is 
convex which implies (a). 

(b) Decompose the range of JJL into the disjoint 
union E J M E , where E consists of all the finite points and 

1 2 1 
E of all the infinite points in the range of JJL. Since E = {a<x> } 

Ù £• 

and each set of infinite measu re can be decomposed into a 
sequence of sets of finite measu re satisfying 

n n 
||n( y E ) | | = |j 2 ^ ( E ) | | - oo, 

i=l i=l 

E is an unbounded convex set . Thus Lemma 11 certainly 
implies that E contains a half-line of the form 

(3 + v t t > t , (3, v e E n . 

However the range of an unbounded vector m e a s u r e can only 
tend to infinity in one direction, namely a . Therefore we mus t 
have y = a , which concludes the proof of (b). 

Counter Example 13. Here we give an example of an 
unbounded vector m e a s u r e whose range is not closed. For 
convenience we give the example in the complex plane. 

Let JJL be Lebesgue measu re on the r ea l l ine. Consider 
the unbounded complex measu re , v, given by 

V(E)= /End,-) d^ + ^nu.co) [ i / d + t 2 ) ] d , . 

Obviously v only takes on values in the f i rs t quadrant and tends 
to infinity in the direct ion of the positive r e a l axis . It may 
easily be verified that v takes on values as close to any point 
(x, 0) on the positive r ea l axis as we p lease . However v takes 
on no values on the r ea l axis other than the or igin. Thus the 
range of v is not closed. 

(1 
See Gould [5], page 195. 

340 

https://doi.org/10.4153/CMB-1966-041-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-041-2


The author would like to thank Professor A. Evans for his 
guidance in the preparat ion of the Master1 s thes i s from which 
this paper is taken. 

REFERENCES 

1. A. Liapounoff, Sur les fonctions-vecteurs complètement 
addit ives, Bull. Acad. Sci. URSS Ser. Math. Vol. 4 (1940) 
465-478. 

2. P. R. Halmos, The range of a vector m e a s u r e , Bull. A. M. S. 
vol. 54(1948), 416-421. 

3. P. R. Halmos, On the set of values of a finite m e a s u r e , 
Bull. A. M.S. vol. 53(1947), 138-144, ( lemmas 1 and 2). 
(Note that the statement and proof of lemma 5 a re wrong. ) 

4. P. R. Halmos, Measure theory, Princeton (1950). 

5. G. G. Gould, Integration over vector-valued m e a s u r e s , 
P r o c . Lon. Math. Soc. ,vol . 15, par t 2 (1965), 193-225. 

McGill University 
and 
University of California, Berkeley 

341 
https://doi.org/10.4153/CMB-1966-041-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-041-2

