Return times and conjugates of an antiperiodic transformation

STEVE ALPERN†

From the Department of Mathematics, London School of Economics, England

(Received 6 June 1980 and revised 8 April 1981)

Abstract. Denote by G the group of all μ -preserving bijections of a Lebesgue probability space (X, Σ, μ) and by C the conjugacy class of an antiperiodic transformation σ in G. We present several new results concerning the denseness of C in G with respect to various topologies. One of these asserts that given any weakly mixing transformation τ in G and any F with $\mu(F) < 1$, there is a transformation in C which agrees with τ a.e. on F.

1. Introduction and statement of results

In this paper we consider two related questions concerning an arbitrary antiperiodic automorphism σ of a Lebesgue probability space (X, Σ, μ) . The first question concerns when we can find a sweep-out set for σ with a specified distribution of return times. The second asks in which ways automorphisms of X can be approximated by conjugates of σ .

Denote by $G = G(X, \Sigma, \mu)$ the group of all automorphisms $(\mu$ -preserving bijections) of (X, Σ, μ) , and by $C(\sigma)$ the class of all conjugates, $\theta^{-1}\sigma\theta$, $\theta \in G$, of the antiperiodic automorphism σ . The first question seeks a sweep-out set B such that the relative distribution of return times to B is a given probability distribution $\pi = (\pi_1, \pi_2, \ldots)$. Suppose d > 1 divides all the k for which $\pi_k > 0$. Then for any such set B, and any m which is not a multiple of d, we would have

$$\mu(B \cap \sigma^m B) = 0.$$

So such a set B cannot exist in general, for example when σ is mixing. However, if no such d exists for π , then the required set B can always be found (by taking $B = \bigcup_{k=1}^{\infty} P_{k,1}$ in the following).

THEOREM 1. Let $\sigma \in G$ be antiperiodic and let $\pi = (\pi_1, \pi_2, ...)$ be any denumerable probability distribution such that the ks with $\pi_k > 0$ are relatively prime. Then there is a partition $\{P_{k,i}\}, k = 1, ..., \infty, i = 1, ..., k \text{ of } X \text{ satisfying}$

(i)
$$P_{k,i} = \sigma^{i-1}(P_{k,1})$$
; and

(ii)
$$\mu\left(\bigcup_{i=1}^k P_{k,i}\right) = \pi_k$$
.

[†] Address for correspondence: Dr Steve Alpern, Department of Mathematics, London School of Economics, Houghton Street, London, England.

Theorem 1 generalizes corollary 2 of [1] which is restricted to finite dimensional distributions $\pi = (\pi_1, \dots, \pi_n)$, and also Rohlin's lemma which is covered by $\pi_1 = \varepsilon$ and $\pi_n = 1 - \varepsilon$. Basically, theorem 1 says that an antiperiodic automorphism can be represented by stacks $(\bigcup_{i=1}^k P_{k,i})$ of given heights (k) and given measures (π_k) as long as the heights are relatively prime. The proof of theorem 1 incorporates a substantial simplification for which I wish to thank the referee.

We turn now to the second question: the approximation of an automorphism $\tau \in G$ by a conjugate $\hat{\sigma}$ of σ ($\hat{\sigma} \in C(\sigma)$). We list below four types of approximation, which we shall then discuss in turn.

Approximation problems. Let $\tau, \sigma \in G$ with σ antiperiodic, $\varepsilon > 0$ and $F, A_m \in \Sigma$, $m = 1, \ldots, M$ be given. We seek a $\hat{\sigma} \in C(\sigma)$ satisfying:

- (P1) $\mu(\hat{\sigma}(A_m) \triangle \tau(A_m)) \leq \varepsilon, \quad m = 1, \ldots, M;$
- (P2) $\mu(\hat{\sigma}(A_m)\triangle\tau(A_m))=0, \quad m=1,\ldots,M;$
- (P3) $\mu\{x \in X : \hat{\sigma}(x) \neq \tau(x)\} \leq \varepsilon$;
- (P4) $\mu\{x \in F: \hat{\sigma}(x) \neq \tau(x)\} = 0.$

The problem P1 was first studied by Halmos [6] and [7], who showed that P1 can be solved without any restrictions on τ or the A_m . That is, $C(\sigma)$ is dense in G in the coarse, or weak topology [8, p. 77].

We next consider problem P2. First observe that, if $\hat{\sigma}$ satisfies P2, then $\hat{\sigma}(A) = \tau(A)$ (equality is always up to sets of measure 0) for all A belonging to the subalgebra \mathcal{A} of Σ generated by A_1, \ldots, A_M . Now suppose that the set map τ/\mathcal{A} has a non-trivial periodic point, that is, an $A \in \mathcal{A} - \{\emptyset, x\}$ with $\tau^i(A) \in \mathcal{A}$ for $i = 1, \ldots, k$, and $\tau^k(A) = A$. Then for any $\hat{\sigma}$ satisfying P2 we have $\hat{\sigma}^k(A) = \tau^k(A) = A$, so that $\hat{\sigma}$, and hence σ , could not be mixing. Consequently, P2 cannot be solved in general. However, if we exclude the above situation by hypothesis, then P2 can always be solved.

THEOREM 2. Let τ , $\sigma \in G$ with σ antiperiodic. Let \mathcal{A} be a finite subalgebra of Σ such that τ/\mathcal{A} has no non-trivial periodic point. Then there is a $\hat{\sigma} \in C(\sigma)$ such that $\hat{\sigma}(A) = \tau(A)$ for all $A \in \mathcal{A}$.

THEOREM 3. Furthermore (continuing from above) let ρ be any totally bounded metric on X such that μ is positive on open sets. Let D denote the union of all atoms of \mathcal{A} whose image under τ is connected. Then, given any $\varepsilon > 0$, there is a $\hat{\sigma} \in C(\sigma)$ such that $\hat{\sigma}(A) = \tau(A)$ for all $A \in \mathcal{A}$ and $\rho(\hat{\sigma}(x), \tau(x)) < \varepsilon$ for (a.e.) x in D.

We note that theorem 3 is used in [3] to prove the existence of an ergodic non-stable Lebesgue measure preserving homeomorphism of \mathbb{R}^4 , conditional on the existence of a non-ergodic one.

We briefly discuss problem P3 by observing that it can be solved when τ is antiperiodic, by applying Rohlin's lemma to both τ and σ . That is, $C(\sigma)$ is dense in the antiperiodic transformations with respect to the uniform topology [5, p. 112].

Finally, we discuss the strongest type of approximation, P4. First, it is obvious that we must require $\mu(F) < 1$, for otherwise P4 implies τ is conjugate to σ . Next,

the same argument used in the discussion of P2 shows that we must rule out the possibility that τ/\mathscr{A} has a non-trivial periodic point, where \mathscr{A} is here the σ -algebra generated by measurable subsets of F. This possibility is excluded by either assumption of the following result, which is proved by using theorem 1.

THEOREM 4. Let $\tau, \sigma \in G$, with σ antiperiodic, and $F \in \Sigma$ with $\mu(F) < 1$ be given. Assume either

- (1) τ is ergodic and $\mu(F \cup \tau F) < 1$, or
- (2) τ is weakly mixing.

Then there is a $\hat{\sigma} \in C(\sigma)$ such that $\hat{\sigma}(x) = \tau(x)$ for (a.e.) x in F.

Part (1) of theorem 4 is similar to a recent result of Choksi and Kakutani for $G(\bar{X}, \bar{\Sigma}, \bar{\mu})$, where $(\bar{X}, \bar{\Sigma}, \bar{\mu})$ is an infinite σ -finite Lebesgue measure space. They demonstrated [4, theorem 6] that when $\tau, \sigma \in G(\bar{X}, \bar{\Sigma}, \bar{\mu})$, with τ ergodic, σ antiperiodic, and $F \in \bar{\Sigma}$ with $\mu(F) < \infty$ are given, there is a $\hat{\sigma} \in C(\sigma)$ with $\sigma(x) = \tau(x)$ for a.e. x in F. This can be expressed by saying that $C(\sigma)$ is dense in the ergodic automorphisms with respect to the 'strong topology' defined (in [2]) by basic neighbourhoods consisting of all automorphisms (of $(\bar{X}, \bar{\Sigma}, \bar{\mu})$) agreeing with a given one on a given set of finite measure. Theorem 4 can be similarly expressed by saying that $C(\sigma)$ is dense in the weakly mixing automorphisms with respect to the 'compact-equal' topology on G defined as follows. Identify (X, Σ, μ) with Lebesgue measure on the open unit interval. A basis is then given by sets of all automorphisms agreeing with a given one on a given compact set. This topology is finer than the uniform topology. For applications to the study of measure preserving homeomorphisms, (X, Σ, μ) can be identified with other non-compact spaces.

2. Proof of theorem 1

Our proof of theorem 1 will involve some special notation, for which we fix the σ and π of the theorem. For $i \ge 1$, let

$$S^{j} \equiv \{k \leq j : \pi_{k} > 0\},$$

$$S_{j} = \sum_{k \in S^{j}} \pi_{k},$$

and

$$\pi^{i} = (\pi_{1}^{i}, \pi_{2}^{i}, \ldots, \pi_{j}^{i}, 0, 0, \ldots),$$

where $\pi_k^i = \pi_k/s_i$, for $k \le j$. According to assumption on π , there is a j_0 such that S^{i_0} is relatively prime. Consequently, all integers greater than or equal to some fixed integer L may be represented as positive integer linear combinations of S^{i_0} .

A π -partition of X is a measurable partition $R = \{R_{k,i}\}, k = 1, \ldots, \infty, i = 1, \ldots, k$ such that

$$R_{k,i} = \sigma^{i-1}(R_{k,1}), \text{ and } \mu(R_{k,1}) = 0$$

whenever $\pi_k = 0$. Define

$$R_k = \bigcup_{i=1}^k R_{k,i}$$

and

$$d(R) = (\mu(R_1), \mu(R_2), \ldots).$$

In this notation, theorem 1 asserts the existence of a π -partition P with $d(P) = \pi$. Our proof will obtain P as the limit of π -partitions P^i , $j \ge j_0$, with respect to the partition metric

$$||R - Q|| = \mu\{x : x \text{ has different } R \text{ and } Q \text{ labels}\}$$

on the (complete) space of π -partitions. Each P^i will be a π -partition 'of type j' by which we mean that $\mu(P^i_k) = 0$ for k > j.

To ensure that $d(P) = \pi$ we use the 'sum' metric on l^{∞} and observe that

$$|d(R)-d(Q)| = \sum_{k=1}^{\infty} |\mu(R_k)-\mu(Q_k)| \le 2||R-Q||.$$

So we would like to choose P^i with $|d(P^i) - \pi|$ very small. But unfortunately, since P^i is of type j, $|d(P^i) - \pi|$ is bounded away from 0. So instead we choose P^i with $|d(P^i) - \pi^i|$ small, or equivalently, with $\Delta_i(P^i)$ small, where

$$\Delta_{j}(R) = \max_{k \in S_{j}} (1 - \pi_{k}^{j} / \mu(R_{k})).$$

The construction of the P^i will be based on the following two lemmas.

LEMMA 1. For any positive integer n there is a sweep-out set $B = B_n$ whose return times are not less than n. That is, there is a measurable subset B of X satisfying:

(i) the sets $B, TB, \ldots, T^{n-1}B$ are disjoint; and

(ii)
$$\bigcup_{l=1}^{\infty} T^{l}B = X.$$

Proof. This result is, of course, a special case of the finite dimensional version of theorem 1 [1, corollary 2] which gives us (for example) a sweep-out set whose only return times are n and n + 1. However, the lemma as formulated may be established directly by observing that any set which is maximal with respect to (i) must necessarily also satisfy (ii) [8, pp. 70-72].

LEMMA 2. Let $j \ge j_0$ and $\varepsilon > 0$ be given. Then to every π -partition R of type j there corresponds a π -partition Q of type j satisfying $|d(Q) - \pi^j| < \varepsilon$ and $||Q - R|| \le \Delta_i(R)$.

Proof. Let $B = B_n$ be the set given by lemma 1 for some large n to be specified later. Partition B into sets B^l , $l = 1, 2, \ldots$ so that, if $x, y \in B^l$, then x and y have the same return time n^l to B, and $\sigma^m(x)$ and $\sigma^m(y)$ belong to the same element of R for $m = 0, \ldots, n^l - 1$. Next partition each B^l into sets B^l_0 and B^l_k , $k \in S^l$, so that

$$\mu(B_0^l/B^l) = \alpha_k$$
 and $\mu(B_k^l/B^l) = \beta_k$,

where $\alpha = 1 - \Delta_j(R)$ and $\beta_k = \pi_k^j - \alpha \mu(R_k) \ge 0$. Let C_k^l be the 'column' based on B_k^l , that is

$$C_k^l = \bigcup_{m=0}^{n^l-1} \sigma^m(B_k^l),$$

and let $D_k = \bigcup_l C_k^l$. Observe that

$$\mu(D_0) = \alpha = 1 - \Delta_j(R), \quad \mu(D_k) = \beta_k,$$

and that

$$\mu(R_k \cap D_0) = \alpha \mu(R_k) = \pi_k^i - \beta_k.$$

We now define Q on D_0 to be the same as R. Regardless of how we subsequently define Q on the complement $\sim D_0$ of D_0 we shall have

$$||Q-R|| \le \mu(\sim D_0) = 1 - \alpha = \Delta_i(R).$$

If we could define Q on $\sim D_0$ so that $\mu(Q_k/D_k) = 1$, we would have

$$\mu(Q_k) \ge \mu(R_k \cap D_0) + \mu(Q_k/D_k)\mu(D_k) = \alpha\mu(R_k) + \beta_k = \pi_k^j,$$

and consequently $d(Q) = \pi^{j}$. By defining Q on D_k so that $\mu(Q_k/D_k)$ is nearly 1, we shall ensure that

$$|d(Q)-\pi^i|<\varepsilon.$$

We define Q on D_k by specifying it on each column

$$C_k^l = \bigcup_{m=0}^{n^l-1} \sigma^m(B_k^l)$$

as follows. For simplicity take $B_k^l = E$ and $n^l = N$. Suppose $E \subseteq R_{(k_1,i_1)}$ and $\sigma^{N-1}(E) \in R_{(k_2,i_2)}$. We assign N Q-labels to the sets $E, \sigma E, \sigma^2 E, \ldots, \sigma^{N-1} E$ by beginning and ending with R-labels:

$$(k_1, i_1), (k_1, i_1+1), \ldots, (k_1, k_1), -, -, \ldots, -, -, (k_2, 1), (k_2, 2), \ldots, (k_2, i_2).$$

We then fill in successive blocks of the form

$$(k, 1), (k, 2), \ldots, (k, k),$$

beginning immediately after (k_1, k_1) , until there are T blanks remaining between the final (k, k) and the label $(k_2, 1)$, where T satisfies $L \le T \le L + k$. Since $T \ge L$, the definition of L guarantees that these blanks may be filled in with blocks of the form

$$(k', 1), (k', 2), \ldots, (k', k'),$$

where $k' \in S^{i_0}$. This procedure ensures that Q is a π -partition. Furthermore, of the N labels in this sequence, all but at most

$$(k_1-i_1+1)+T+k_2 \le k+(T+k)+k=T+3k \le T+3j$$

are in Q_k (first coordinate k). Thus

$$\mu(Q_k/C_k^l) \ge 1 - (T+3j)/n^l \ge 1 - (T+3j)/n,$$

and consequently

$$\mu(Q_k/D_k) \ge 1 - (T+3j)/n \ge 1 - \frac{1}{2}\varepsilon,$$

if we take $n > \frac{1}{2}\varepsilon(T+3i)$. Finally, we calculate

$$\pi_k^i - \mu(Q_k) \leq \frac{1}{2} \varepsilon \beta_k$$

for $k \in S^i$ so that

$$|\pi^{i} - d(Q)| \le 2(\frac{1}{2}\varepsilon) \sum_{k \in S^{i}} \beta_{k} \le \varepsilon$$

as required.

Proof of theorem 1. For $j \ge j_0$ choose positive numbers ε_j going to 0 and sufficiently small so that

$$|d(Q) - \pi^{i}| < \varepsilon_{i} \text{ implies } \Delta_{i}(Q) < 2^{-(j+1)}$$

for any π -partition Q. For $j \ge j_0$ we construct a π -partition P^i of the type j satisfying:

- (i) $|d(P^i) \pi^i| < \varepsilon_i$; and
- (ii) $||P^{j}-P^{j-1}|| \le 2^{-j} + \pi_{j}/s_{j}$ $(j > j_{0}).$

It then follows that $||P^i - P|| \to 0$ for some π -partition P, which necessarily satisfies $d(P) = \pi$ (see remarks preceeding lemma 1).

The P^i are constructed as follows. The first one, P^{i_0} , satisfying property (i), may be obtained directly from the finite version of theorem 1 [1, corollary 2] – in fact with $d(P^{i_0}) = \pi^{i_0}$. However, we may make this proof self-contained by observing that the algorithm of lemma 2, used with $\alpha = 0$ and $\beta_k = \pi^{i_0}_k$, yields the required π -partition P^{i_0} directly. Now suppose

$$P^{i_0},\ldots,P^{i-1}$$

have been found satisfying (i) and (ii). Since P^{i-1} satisfies

$$|d(P^{i-1})-\pi^{i-1}|<\varepsilon_{i-1}$$

we know by choice of ε_{i-1} that

$$\Delta_{i-1}(P^{i-1}) < 2^{-i}$$
.

Now observe that any π -partition R of type j-1 is also of type j and that

$$\Delta_i(R) \leq \Delta_{i-1}(R) + \pi_i/s_i$$

If we apply this inequality to P^{i-1} we obtain

$$\Delta_j(P^{j-1}) \leq 2^{-j} + \pi_j/s_j.$$

Now apply lemma 2 taking $R = P^{i-1}$ and $\varepsilon = \varepsilon_i$ to obtain (as Q) the partition P^i satisfying (i) and (ii).

3. Proof of theorem 4

Since τ is ergodic and $\mu(F) < \mu(X)$, it follows that the τ -orbit of a.e. point of F eventually leaves F. Consequently, we can partition the set

$$F \cup \tau F = \bigcup_{k=2}^{\infty} \bigcup_{i=1}^{k} F_{k,i},$$

where $F_{k,i} = \tau^{i-1}(F_{k,1})$, $F_{k,i} \subseteq F - \tau F$ for i < k, and $F_{k,k} \subseteq TF - F$. Let

$$F_{1,1} = X - (F \cup TF)$$

and define

$$\pi_k = \mu \Big(\bigcup_{i=1}^k F_{k,i} \Big).$$

We claim that the ks for which $\pi_k > 0$ are relatively prime. The demonstration of this fact breaks up into two cases. In case (1), the hypothesis $\mu(F \cup TF) < \mu(X)$ ensures that $\pi_1 > 0$. Next suppose that we are in case (2), but not case (1), so that τ is weakly mixing, and $\mu(F \cup TF) = \mu(X)$. Suppose that p, the greatest common

divisor of the ks for which $\pi_k > 0$, is greater than 1. Let $D = F_{k,1}$ for some k with $\pi_k > 0$. Then

$$\mu(X) > \mu(D) = \pi_k/k > 0$$

but

$$\mu(D \cap \tau^{np+1}D) = 0$$
 for all n .

But this contradicts the hypothesis that τ is weakly mixing, so we must have p = 1. Thus in either case, π satisfies the hypothesis of theorem 1.

Let $P = \{P_{k,i}\}$ be the partition given by theorem 1 to the σ of this theorem and the distribution π we have just constructed. Define $\theta \in G(X, \Sigma, \mu)$ so that

$$\theta(P_{k,1}) = F_{k,1}$$
 and $\theta(x) = \tau^{i-1} \sigma^{1-i}(x)$

for $x \in P_{k,i}$, for all k with $\pi_k > 0$ and all i such that $1 \le i \le k$. It follows from this construction that

$$\tau(x) = \theta^{-1} \sigma \theta(x)$$

whenever $x \in F_{k,i}$ where i < k. But

$$F \subset \bigcup_{k} \bigcup_{i < k} F_{k,i}$$

so the theorem is proved.

4. Proofs of theorems 2 and 3

The following discussion, through the statement of proposition 1, is taken from [1]. Let $T = \{t_{ij}\}$ be an $n \times n$ matrix consisting of 0s and 1s. We call T 'aperiodic' if for some integer N, T^N has all positive entries. T induces a map $\hat{T}: \Gamma \to \Gamma$, where Γ is the power set of $\{1, \ldots, n\}$, by $j \in \hat{T}(\gamma)$ if $t_{ij} = 1$ for some $i \in \gamma \in \Gamma$. Let Γ_1 denote the subalgebra of Γ given by: $\gamma \in \Gamma_1$ if $t_{ij} = 1$ and $j \in \hat{T}(\gamma)$ imply $i \in \gamma$. We say that a probability distribution (p_1, \ldots, p_n) is consistent with T if it satisfies

(1)
$$\sum_{i \in \gamma} p_i = \sum_{j \in \hat{T}(\gamma)} p_j$$
 for all $\gamma \in \Gamma_1$; and

(2)
$$\sum_{i \in \gamma} p_i < \sum_{j \in \hat{T}(\gamma)} p_j$$
 for all $\gamma \in \Gamma - \Gamma_1$.

PROPOSITION 1 (immediate consequence of theorem 1, [1]). Let $\{P_i\}_{i=1}^n$ be a measurable partition of (X, Σ, μ) whose distribution $(\mu P_1, \mu P_2, \ldots, \mu P_n)$ is consistent with an $n \times n$ 0-1 matrix T. Let $\sigma \in G$ be antiperiodic. Then there is a $\hat{\sigma} \in C(\sigma)$ such that $\mu(\hat{\sigma}P_i \cap P_j) = 0$ for all i, j with $t_{i,j} = 0$.

Proof of theorem 2. Let A_l , $l=1,\ldots,L$ denote the atoms of \mathcal{A} . Let $\{P_{ij}\}_{i,j=1}^n$ be a measurable partition of (X,Σ,μ) which refines the partitions given by the atoms of \mathcal{A} and the atoms of $\tau(\mathcal{A})$. Define an $n \times n$ 0-1 matrix T by

(3)
$$t_{ij} = \begin{cases} 1 & \text{if } P_i \subseteq A_l \text{ and } P_j \subseteq \tau(A_l), \text{ some } l; \\ 0 & \text{otherwise.} \end{cases}$$

First observe that $\gamma \in \Gamma_1$ if and only if $\bigcup_{i \in \gamma} P_i \in \mathcal{A}$, and that consequently $(\mu P_1, \ldots, \mu P_n)$ is consistent with T. To show that T is aperiodic it is sufficient to

prove that, for any $\gamma \in \Gamma - \{\emptyset\}$, the sequence

$$\mu(\gamma), \mu(\hat{T}\gamma), \mu(\hat{T}^2\gamma), \ldots$$

is eventually 1, where $\mu(\gamma) = \sum_{i \in \gamma} \mu P_i$. (If N is the longest number of steps it takes, then $T^N > 0$.) It follows from (3) that $\mu(\gamma) \leq \mu(\hat{T}\gamma)$ with equality only for $\gamma \in \Gamma_1$. Consequently, the only way such a sequence can fail to reach 1 is if \hat{T}/Γ_1 has a non-trivial period point γ_0 . But then $A = \bigcup_{i \in \gamma_0} P_i$ would be a non-trivial periodic point of T/\mathcal{A} . Since this possibility is excluded by assumption, our argument shows that T is aperiodic. The automorphism $\hat{\sigma}$ given by proposition 1 now proves the theorem.

Proof of theorem 3. This proof is very similar to the proof of theorem 2, so we only indicate the differences. Let A_1, \ldots, A_{L_1} be the atoms of \mathcal{A} whose τ images are connected. Let $\{P_{ij}\}, i, j = 1, \ldots, n$ additionally satisfy

$$\rho(P_i) < \frac{1}{2}\varepsilon$$
 and $\rho(\tau(P_i)) < \frac{1}{2}\varepsilon$,

which is possible because X is totally bounded ($\rho(\)$ denotes diameter). Define T by

$$t_{ij} = \begin{cases} 1 & \text{if } P_i \subseteq A_l \text{ and } P_j \subseteq T(A_l), \text{ some } l > L_1; \\ 1 & \text{if } P_i \subseteq A_l \text{ and } P_j \subseteq T(A_l), \text{ some } l \le L_1 \text{ and } \\ \hline \tau \overline{P_i} \cap \overline{P_i} \neq \emptyset, \text{ where bar denotes closure;} \\ 0 & \text{otherwise.} \end{cases}$$

The proof that T is aperiodic and that $(\mu P_1, \ldots, \mu P_n)$ is consistent with T is the same as that for theorem 2 except that the connectivity of $T(A_l)$, $l \le L_1$, is used to identify Γ_1 with \mathcal{A} . Let $\hat{\sigma}$ be the automorphism given by proposition 1. To establish the final estimate of the theorem, assume $P_i \subset D$, or equivalently, $P_i \subset A_l$, some $l \le L_1$. Then

$$\rho(\hat{\sigma}P_i \cup \tau P_i) \leq \max_{j:t_{ij}=1} \rho(P_j \cup \tau P_i) \leq \rho(P_j) + \rho(\tau P_i) < \varepsilon,$$

since $\overline{P}_i \cap \overline{\tau P}_i \neq \emptyset$. It follows that

$$\rho(\hat{\sigma}(x), \tau(x)) < \varepsilon$$
 for a.e. x in D .

The application (in [3]) of theorem 3 mentioned in the introduction uses only the following special case.

COROLLARY 1. Let (X, Σ, μ, ρ) be as in theorem 3. Let $A \in \Sigma$ and let $\tilde{\tau}: A \to X$ be any μ -preserving injection such that $\mu(\tilde{\tau}(A) \triangle A) > 0$ and $\tilde{\tau}(A)$ is connected. Then given any $\varepsilon > 0$ there is a μ -preserving injection $\tilde{\sigma}: A \to \tilde{\tau}(A)$ such that $\rho(\tilde{\tau}(x), \tilde{\sigma}(x)) < \varepsilon$ for a.e. x in A, and $\tilde{\sigma}$ has no non-trivial invariant sets.

Proof. We may assume without loss of generality that $\mu(A \cap \tilde{\tau}(A)) > 0$, for otherwise simply take $\tilde{\sigma} = \tilde{\tau}$. Let $\tau \in G(X, \Sigma, \mu)$ be any extension of $\tilde{\tau}$ and let $\mathcal{A} = \{\emptyset, X, A, \sim A\}$. The set D of theorem 3 is either A or X, but in any case $D \supseteq A$. Let $\sigma \in G$ be any ergodic automorphism and let $\hat{\sigma}$ be the conjugate of σ which approximates τ in the sense of theorem 3. Then the restriction $\tilde{\sigma}$ of $\hat{\sigma}$ to A has the required properties.

REFERENCES

- [1] S. Alpern. Generic properties of measure preserving homeomorphisms. In Ergodic Theory: Oberwolfach. Springer Lecture Notes in Math. no. 729, pp. 16-27. Springer: Berlin, 1978.
- [2] S. Alpern. Measure preserving homeomorphisms of Rⁿ. Indiana University Math. J. 28 (1979), No. 6, 957-960.
- [3] S. Alpern. Nonstable ergodic homeomorphisms of \mathbb{R}^4 . To appear.
- [4] J. R. Choksi & S. Kakutani. Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure. *Indiana University Math. J.* 28 (1979), 453-469.
- [5] N. A. Friedman. Introduction to Ergodic Theory. Von Nostrand Reinhold: New York, 1970.
- [6] P. R. Halmos. Approximation theories for measure preserving transformations. *Trans. Amer. Math. Soc.* 55 (1944), 1-18.
- [7] P. R. Halmos. In general a measure preserving transformation is mixing. Ann. of Math. 45 (1944), 786-792.
- [8] P. R. Halmos. Lectures on Ergodic Theory. Publ. of Math. Soc. of Japan no. 3. Tokyo, 1956.