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Abstract. Denote by G the group of all /i-preserving bijections of a Lebesgue
probability space (X, 2, /*) and by C the conjugacy class of an antiperiodic
transformation cr in G. We present several new results concerning the denseness of C
in G with respect to various topologies. One of these asserts that given any weakly
mixing transformation T in G and any F with (JL(F) < 1, there is a transformation in C
which agrees with T a.e. on F.

1. Introduction and statement of results
In this paper we consider two related questions concerning an arbitrary antiperiodic
automorphism a of a Lebesgue probability space (X, 1, fx). The first question
concerns when we can find a sweep-out set for a with a specified distribution of
return times. The second asks in which ways automorphisms of X can be approxi-
mated by conjugates of cr.

Denote by G = G(X, 2, fi) the group of all automorphisms (n-preserving bijec-
tions) of (X, 2, ft), and by C{cr) the class of all conjugates, d~lcr0, 6eG, of the
antiperiodic automorphism cr. The first question seeks a sweep-out set B such that
the relative distribution of return times to B is a given probability distribution
TV = (TTI, n2,...). Suppose d > 1 divides all the k for which vk > 0. Then for any
such set B, and any m which is not a multiple of d, we would have

So such a set B cannot exist in general, for example when a is mixing. However,
if no such d exists for IT, then the required set B can always be found (by taking
B = U"=i Pk,i in the following).

THEOREM 1. Let cr eG be antiperiodic and let ir = (TTI, 77-2,...) be any denumerable
probability distribution such that the ks with irk > 0 are relatively prime. Then there
is a partition {Pk,i}, k = 1 , . . . , 00, / = 1 , . . . , k of X satisfying

(i)

(ii)
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Theorem 1 generalizes corollary 2 of [1] which is restricted to finite dimensional
distributions ir — (TTI, . . . , vn), and also Rohlin's lemma which is covered by ir\ = e
and irn = 1 - e. Basically, theorem 1 says that an antiperiodic automorphism can
be represented by stacks (U,=i Pk,i) of given heights (k) and given measures (irk)
as long as the heights are relatively prime. The proof of theorem 1 incorporates a
substantial simplification for which I wish to thank the referee.

We turn now to the second question: the approximation of an automorphism
T e G b y a conjugate & of cr (& e C(er)). We list below four types of approximation,
which we shall then discuss in turn.

Approximation problems. Let r, a e G with cr antiperiodic, e > 0 and F, Am e X,
m = 1 , . . . , M be given. We seek a a- e C(o-) satisfying:

(PI) M(^(Am)Ar(Am))<e, m = l , . . . , M ;

(P2) ^(&(Am)AT(Am)) = 0, m = 1 , . . . , M;

(P3)

(P4)

The problem PI was first studied by Halmos [6] and [7], who showed that PI
can be solved without any restrictions on T or the Am. That is, C(cr) is dense in G
in the coarse, or weak topology [8, p. 77].

We next consider problem P2. First observe that, if & satisfies P2, then &{A) =
r(A) (equality is always up to sets of measure 0) for all A belonging to the
subalgebra si of 2 generated by Au ..., AM. Now suppose that the set map r/sd
has a non-trivial periodic point, that is, an Aes4-{0,x} with r'{A)e.sd for
/ = 1 , . . . , k, and rk{A) = A. Then for any & satisfying P2 we have &k{A) = rk(A) =
A, so that &, and hence cr, could not be mixing. Consequently, P2 cannot be solved
in general. However, if we exclude the above situation by hypothesis, then P2 can
always be solved.

THEOREM 2. Let T,O-SG with a antiperiodic. Let si be a finite subalgebra of £ such
that T/S£ has no non-trivial periodic point. Then there is aa-e C(a) such that &{A) =
T(A) for all A<= si.

THEOREM 3. Furthermore (continuing from above) let p be any totally bounded
metric on X such that fj, is positive on open sets. Let D denote the union of all atoms
of si whose image under T is connected. Then, given any e > 0, there is a <x e C(cr)
such that &(A) = T(A) for all A e si and p{cr(x), T(X)) < e for (a.e.) x in D.

We note that theorem 3 is used in [3] to prove the existence of an ergodic non-stable
Lebesgue measure preserving homeomorphism of R , conditional on the
existence of a non-ergodic one.

We briefly discuss problem P3 by observing that it can be solved when T is
antiperiodic, by applying Rohlin's lemma to both T and a. That is, C(a) is dense
in the antiperiodic transformations with respect to the uniform topology [5, p. 112].

Finally, we discuss the strongest type of approximation, P4. First, it is obvious
that we must require /JL(F)< 1, for otherwise P4 implies T is conjugate to a. Next,
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the same argument used in the discussion of P2 shows that we must rule out the
possibility that r/'si has a non-trivial periodic point, where M is here the cr-algebra
generated by measurable subsets of F. This possibility is excluded by either assump-
tion of the following result, which is proved by using theorem 1.

THEOREM 4. Let r,creG, with cr antiperiodic, and F e S with fi(F)< 1 be given.
Assume either

(1) T is ergodic and fi(F u TF) < 1, or
(2) T is weakly mixing.

Then there is a as C{cr) such that &{x) = T(X) for (a.e.) x in F.

Part (1) of theorem 4 is similar to a recent result of Choksi and Kakutani for
G(X, 2, fi), where (X, 2, fi) is an infinite <x-finite Lebesgue measure space. They
demonstrated [4, theorem 6] that when T, ae G(X, 2, ft), with T ergodic, a- anti-
periodic, and F e 2 with fi(F) < oo are given, there is a a e C(o-) with cr(x) = T(X)
for a.e. x in F. This can be expressed by saying that C(<x) is dense in the ergodic
automorphisms with respect to the 'strong topology' defined (in [2]) by basic
neighbourhoods consisting of all automorphisms (of (X,% fi.)) agreeing with a
given one on a given set of finite measure. Theorem 4 can be similarly expressed
by saying that C(o-) is dense in the weakly mixing automorphisms with respect to
the 'compact-equal' topology on G defined as follows. Identify (X, 2, /u) with
Lebesgue measure on the open unit interval. A basis is then given by sets of all
automorphisms agreeing with a given one on a given compact set. This topology
is finer than the uniform topology. For applications to the study of measure
preserving homeomorphisms, (X, 2, ju) can be identified with other non-compact
spaces.

2. Proof of theorem 1
Our proof of theorem 1 will involve some special notation, for which we fix the cr
and IT of the theorem. For / s i , let

and
ir' = ( i r / , , i rL. . . , f l i0 ,0 , . . . ) ,

where v'k = TTk/Sj, for k s / . According to assumption on n, there is a y0 such that
5'° is relatively prime. Consequently, all integers greater than or equal to some
fixed integer L may be represented as positive integer linear combinations of 5'°.

A 7r-partition of X is a measurable partition R = {JR)C,,}, k = 1 , . . . , oo, / = 1 , . . . , it
such that

Ufc..-=
so-'"1(^t.i). and n(Rk,1) = 0

whenever vk = 0. Define

Rk = U Rk,i
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and

In this notation, theorem 1 asserts the existence of a 7r-partition P with d(P) = tr.
Our proof will obtain P as the limit of 7r-partitions P', j >/0, with respect to the

partition metric

\\R~Q\\ = fi{x:x has different R and Q labels}

on the (complete) space of 7r-partitions. Each P' will be a ^-partition 'of type / '
by which we mean that fj. (P'k) = 0 for k >j.

To ensure that d(P) = irwe use the 'sum' metric on /°° and observe that

\d(R)-d(Q)\= £ \p(Rk)-ii(Qk)\*2\\R-Ql

So we would like to choose P' with \d{P') — n\ very small. But unfortunately, since
P' is of type /, \d(P') — ir\ is bounded away from 0. So instead we choose P' with
\d(P') — ir'\ small, or equivalently, with A,CP') small, where

The construction of the P' will be based on the following two lemmas.

LEMMA 1. For any positive integer n there is a sweep-out set B =Bn whose return
times are not less than n. That is, there is a measurable subset B of Xsatisfying:

(i) the sets B, TB,..., TnlB are disjoint; and

(ii) CJT'B=X.
1 = 1

Proof. This result is, of course, a special case of the finite dimensional version of
theorem 1 [1, corollary 2] which gives us (for example) a sweep-out set whose only
return times are n and n +1 . However, the lemma as formulated may be established
directly by observing that any set which is maximal with respect to (i) must
necessarily also satisfy (ii) [8, pp. 70-72]. •

LEMMA 2. Let j >/0 and e > 0 be given. Then to every ir-partition R of type j there
corresponds a tr-partition Q oftype j satisfying \d(Q) — ir'\<e and | |O-i?| |< A/CR).

Proof. Let B = Bn be the set given by lemma 1 for some large n to be specified
later. Partition B into sets B1,1 = 1, 2 , . . . so that, if x, y eB1, then x and y have
the same return time n to B, and o-m{x) and <Tm(y) belong to the same element of
R for m = 0 , . . . , « ' - 1 . Next partition each Bl into sets Bo and Bl

k, k € 5', so that
'Bl) = ak and '

where a = 1 - Ay(i?) and $k = Tr'k -a/j.(Rk)2z0. Let Ck be the 'column' based on
B'k, that is

and let Dk = U/ Ck. Observe that
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and that

= ir'k-n Do) = aft (Rk ) = ir'k

We now define Q on Do to be the same as R. Regardless of how we subsequently
define C? on the complement ~D0 of Do we shall have

If we could define Q on ~D0 so that fj.(Qk/Dk) = 1, we would have

M (Qk) > n (Rk n Do) + fi. (Qk/Dk )fi (Dk) = a,i (Rk) + 0fc = tri,

and consequently d(Q) = ir'. By defining Q on Dk so that (x.(Qk/Dk) is nearly 1,
we shall ensure that

\d(Q)-ir'\<e.

We define Q on Dk by specifying it on each column

Ck= "\J <rm(B'k)
m=0

as follows. For simplicity take Bk=E and n'=N. Suppose E<^R(kuh) and
<rN'1(E)eRik2yh). W e assign N Q-labels to the sets E, oE, cr2E,..., ^ ^ E by

beginning and ending with R-labels:

(ki, ii), (ku h + 1 ) , . . . , (fci, ki), - , - , . . . , - , - , (k2,1), (k2, 2 ) , . . . , (k2, h).

We then fill in successive blocks of the form

(fe, 1), (k, 2),..., (k, k),

beginning immediately after (Jti, fci), until there are T blanks remaining between
the final (k, k) and the label (k2,1), where T satisfies L < T<L + k. Since TsiL,
the definition of L guarantees that these blanks may be filled in with blocks of the
form

(it1,1), (fc1, 2 ) , . . . , (*', *'),
where k' e S'°. This procedure ensures that O is a w-partition. Furthermore, of the
N labels in this sequence, all but at most

are in Qk (first coordinate k). Thus

and consequently

if we take n >je(T + 3j). Finally, we calculate

for k e 5' so that

as required. D
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Proof of theorem 1. For / > / 0 choose positive numbers e, going to 0 and sufficiently
small so that

\d(Q) - TT' | < £, implies A,(Q) < 2"0+1)

for any 7r-partition Q. For / > y0 we construct a 7r-partition P' of the type / satisfying:

(i) \d{Pj) -iri\<ei; and

(ii) | | i» ' -P ' -1 | | s2- ' + ir//*/ (/>/o).
It then follows that \\P' — P||-» 0 for some 7r-partition P, which necessarily satisfies

d{P) = 77 (see remarks preceeding lemma 1).
The P' are constructed as follows. The first one, P'°, satisfying property (i), may

be obtained directly from the finite version of theorem 1 [1, corollary 2] - in fact
with d(P'°) = ir'°. However, we may make this proof self-contained by observing
that the algorithm of lemma 2, used with a = 0 and (3k = n'k°, yields the required
Tr-partition P'° directly. Now suppose

pio pi-1

have been found satisfying (i) and (ii). Since P'"1 satisfies

we know by choice of e,_i that

A,_1(P'

Now observe that any vr-partition R of type / — 1 is also of type / and that

If we apply this inequality to P'~l we obtain
Ay(P/-1)<2-y + 7rA,

Now apply lemma 2 taking R = P'~l and e =e, to obtain (as O) the partition P'
satisfying (i) and (ii). •

3. Proof of theorem 4
Since T is ergodic and fj,{F)<fi{X), it follows that the r-orbit of a.e. point of F
eventually leaves F. Consequently, we can partition the set

FKJTF= U LJFk.,-,
fc=2 i = l

where FKi = T'~\FkA), Fkti ^F-TF for / <k, and Fk,k cTF-F. Let

Ful=X-(FuTF)

and define

We claim that the ks for which irk > 0 are relatively prime. The demonstration of
this fact breaks up into two cases. In case (1), the hypothesis / i (Fu TF)<fj,(X)
ensures that TTI >0. Next suppose that we are in case (2), but not case (1), so that
T is weakly mixing, and H(FKJ TF) = fj,{X). Suppose that p, the greatest common
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divisor of the fcs for which vk >0, is greater than 1. Let D =Fk,i for some k with
77̂  > 0. Then

but
^ ( D n r " ' + 1 D ) = 0 for all n.

But this contradicts the hypothesis that T is weakly mixing, so we must have p = 1.
Thus in either case, -IT satisfies the hypothesis of theorem 1.

Let P = {Pk,i} be the partition given by theorem 1 to the <z of this theorem and
the distribution rr we have just constructed. Define 6 e G(X, 2, fi) so that

0(Pk,i)=Fk,i and d(x) = Ti-1a1-i{x)

for x e Pkfi, for all fc with irk > 0 and all / such that 1 < i < fc. It follows from this
construction that

whenever x e Fkfi where i < k. But

so the theorem is proved. •

4. Proofs of theorems 2 and 3
The following discussion, through the statement of proposition 1, is taken from
[1]. Let T = {/,,} be an n x « matrix consisting of 0s and Is. We call T 'aperiodic'
if for some integer N, TN has all positive entries. T induces a map T: F-> T, where
F is the power set of { 1 , . . . , n}, by /€ f(y) if fl7 = 1 for some ieyeT. Let Fi
denote the subalgebra of F given by: y € Fi if ty = 1 and ; € f(y) imply / e y. We
say that a probability distribution ( p i , . . . , pn) is consistent with T if it satisfies

(1) I Pi= I P/ forallyeFijand

(2) I p,< Z p>

PROPOSITION 1 (immediate consequence of theorem 1, [1]). Let {Pi}"=\ be a
measurable partition of (X, 2, /u.) whose distribution (fiP\, ii.Pi,..., fiPn) is consistent
with an n x n 0-1 matrix T. Let a e G be antiperiodic. Then there is a & e C{cr) such
that fi (&Pi n Pj) = 0 for all i, j with tu = 0.

Proof of theorem 2. Let Ab I = 1 , . . . , L denote the atoms of si. Let {Pij}"i=i be a
measurable partition of (X, 2, fi) which refines the partitions given by the atoms
of si and the atoms of T{M). Define an n x n 0-1 matrix T by

r 1 if Pi <= At and P, c T(A(), some /;

10 otherwise.

First observe that -yeFi if and only if {Ji<-yPiesi, and that consequently
(fx.Pi,..., ixPn) is consistent with T. To show that T is aperiodic it is sufficient to

r

1
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prove that, for any y e F —{0}, the sequence

H(y), ti(fy), ti(f2y),...

is eventually 1, where p.(y) = ZIEY A*-̂*;- (K N is the longest number of steps it takes,
thenT^X).) It follows from (3) that p,(y)<p.{ty) with equality only for yeIV
Consequently, the only way such a sequence can fail to reach 1 is if f/Y\ has a
non-trivial period point y0. But then A = Uj61,0 P< would be a non-trivial periodic
point of T/s£. Since this possibility is excluded by assumption, our argument shows
that T is aperiodic. The automorphism & given by proposition 1 now proves the
theorem. •

Proof of theorem 3. This proof is very similar to the proof of theorem 2, so we only
indicate the differences. Let Au... ,ALl be the atoms of d whose T images are
connected. Let {Pa}, i,j = l,...,n additionally satisfy

p(Pt)<\e and p(r (P , ) )<k

which is possible because X is totally bounded (p( ) denotes diameter). Define
Tby

1 if Pi <= A, and P, <= T{At), some / > Li;

1 if Pi; c Ai and P, <= T(A/), some / < Li and

rPinPj 5̂  0 , where bar denotes closure;

0 otherwise.

tu =

The proof that T is aperiodic and that (fiPi,..., p,Pn) is consistent with T is the
same as that for theorem 2 except that the connectivity of T(At), l^L\, is used to
identify Pi with si. Let & be the automorphism given by proposition 1. To establish
the final estimate of the theorem, assume P{ <= D, or equivalently, Pt <= Ah some
/<L i . Then

P(<TP,UTP,)< max p(P>
/urP,)sp(Py) + p(TP,)<e,

since P^n rPt* 0 . It follows that

p(&(x), T(X))<E for a.e. x inD. •

The application (in [3]) of theorem 3 mentioned in the introduction uses only the
following special case.

COROLLARY 1. Let (X, 1, p,, p) be as in theorem 3. Let A el. and let T.A^Xbe

any ^-preserving injection such that fi(r(A)AA)>0 and f(A) is connected. Then
given any e > 0 there is a ̂ -preserving injection &:A-> f(A) such thatp{f(x), cr{x)) <
e for a.e. x in A, and & has no non-trivial invariant sets.

Proof. We may assume without loss of generality that n.(An f(A)) > 0, for otherwise
simply take dL = f. Let reG(X,1, n) be any extension of f and let si =
{0, X, A, ~A}. The set D of theorem 3 is either A or X, but in any case D s A .
Let a e G be any ergodic automorphism and let & be the conjugate of a which
approximates r in the sense of theorem 3. Then the restriction & of & to A has
the required properties. D
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