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Summary

Compared with single markers, polygenic scores that evaluate the joint effects of multiple trait-associated
variants are more effective in explaining the variance of traits and risk of diseases. In total, 182 CHDWB
(Emory-Georgia Tech Center for Health Discovery and Well Being study) adults were genotyped to investigate
the common variant contributions to three traits (height, BMI, serum triglycerides) and three diseases (coronary
artery disease (CAD), type 2 diabetes (T2D) and asthma). Association was contrasted between weighted and
simple allelic sum polygenic scores with quantitative traits, and with the Framingham risk scores for CAD and
T2D. Although the cohort size is two or three orders of magnitude smaller than typical discovery cohorts, we
were able to detect significant associations and to explain up to 5% of the traits by the genetic risk scores, despite
a strong influence of outliers. An unexpected finding was that CAD-associated single nucleotide polymorphisms
(SNPs) explain a significant amount of the variation for total serum cholesterol. Forward step-wise sequential
addition of SNPs into the regression model showed that the top-ranked SNPs explain a large proportion of
variance, whereas inclusion of gender and ethnicity also affect the performance of polygenic scores.

1. Introduction

Despite high heritability, most complex traits and
diseases in humans have such a polygenic inheritance
pattern that prediction of phenotype or liability on
the basis of genetic risk profile has proven elusive. The
possible benefits of genetic risk evaluation were re-
cognized more than a decade ago (Collins et al., 2003;
Bell, 2004; Wray et al., 2008), but only recently has
the application of high-density genotyping technology
(Khoury et al., 2006) brought us closer to the goal.
Polygenic scores, which represent the summed effects
of multiple trait-associated genetic variants, contain
more information than single markers and explain
more of the variance in phenotype or disease risk.
This type of analysis has been applied to several
complex traits including height (Lango Allen et al.,
2010), body mass index (BMI) (Stahl et al., 2012) and
rheumatoid arthritis (Speliotes et al., 2011), in each
case evaluating the joint effects of polymorphisms

identified in samples of tens or even hundreds of
thousands of individuals, in large validation cohorts
of several thousands.

Most cohort studies are focused on a single trait or
condition, so do not allow the evaluation of genetic
risk across multiple phenotypes. Here we report on
common variant contributions to three traits and
three diseases in the Emory-Georgia Tech Center for
Health Discovery and Well Being study of clinically
deeply profiled adults, 182 of whom have whole
genome genotype information available. Despite
the relatively small size of the cohort, we nevertheless
detect significant association with quantitative traits,
and take the opportunity to compare methods that do
or do not weigh allelic effects, while also comparing
genetic risk scores with Framingham risk scores for
coronary artery disease (CAD) and type 2 diabetes
(T2D). Examination of the correlations highlights the
strong influence of outliers on risk prediction, and
raises the hope that in a well-characterized cohort it
may be possible to identify the hidden variables that
are shared by such outliers, which may in turn suggest
strategies for conditional analysis to uncover more of
the hidden heritability.
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Some studies have also reported that most of the
variation explained by polygenic risk scores can ac-
tually be explained by the top-ranked markers (Kang
et al., 2011; Peterson et al., 2011). The rationale is
that the top-ranked markers tend to have the largest
genetic effects ; so explain more of the disease or trait
than markers that only emerge once large-scale meta-
analyses have been performed. The proportion of
variance that they explain will be a function of the
distribution of effect sizes, which is itself difficult to
estimate due to the high noise level in genome-wide
association study (GWAS) data. Therefore, the risk
attributable to top-ranked SNPs is an empirical
question, and our dataset allows us to address per-
formance across phenotypes in the same individuals.
We applied forward-step regression adding alleles se-
quentially to investigate the influence of adding more
marker information to the regression on explaining
the genetic variance. It turns out that in small cohorts,
the inclusion of covariates such as gender and eth-
nicity, influences performance of genetic risk scores,
presumably because of residual correlation between
genotype and those covariates. While the detection of
positive genotype–phenotype associations in a small
study is encouraging, the results also highlight the
limited clinical potential of risk scores based on com-
mon variants identified in genome-wide association
studies (Kraft & Hunter, 2009).

2. Materials and methods

(i) Participants

The CHDWB is a longitudinal study of health
measures in over 600 employees of Emory University.
We describe data for 182 participants for whom
genotypic data were available, consisting of 136
Caucasians, 34 Africans, 11 Asians and one American
Indian. Two-thirds of the individuals were women
(120 females and 62 males), and the ages ranged from
26 to 79. The data of interest for this study are height
(in cm), BMI (weight/height2 in kg/m2), serum trigly-
ceride levels (mg/dl), serum cholesterol levels (mg/dl)
and various measures of blood flow and arterial stiff-
ness. We also computed Framingham risk scores for
T2D and for CAD as described in Wilson et al. (2007)
and D’Agostino et al. (2008).

(ii) Genotypes

Whole genome genotypes were measured using
Illumina OmniExpress arrays. Identities of 169
height, 49 BMI, 48 triglyceride, 34 CAD, 66 T2D and
31 asthma-related SNPs listed in Supplementary
Table S1 (available at http://journals.cambridge.org/
grh) were collected from the dbGaP database. All of
the selected SNPs were previously reported to be

significantly associatedwith the respective traits or dis-
eases at the significance level of P<10x7. Individual
genotypes for each of these SNPs were extracted,
or if missing from the Illumina genotype data files,
were imputed using IMPUTE2 (Howie et al., 2011).
Accuracy of the imputation was estimated to be
98% by comparison with nine individual whole
genome sequences (two African Americans, seven
Caucasians – GG, unpublished) as indicated in
Supplementary Table S2 (available at http://journals.
cambridge.org/grh).

(iii) Genetic risk score analyses

Three approaches to calculating the proportion of
phenotypic variance explained by the common gen-
etic variants were considered. All computations were
performed using R scripts. For the continuous quan-
titative traits height, BMI and triglyceride level, we
first calculated the sum of increasing alleles for each
individual. Second, we calculated a weighted sum
of allelic effects according to the effect size of each
SNP reported in dbGaP. Each of these allelic sum
and weighted allelic effect scores was then linearly
regressed on the relevant phenotype(s), with or with-
out adjustment for gender and ethnicity. In the latter
case, the genotypic contribution was estimated from
the difference in the variance explained (R-squared)
by the models including the genetic risk (allelic sum
or weighted allelic effect) score and without it.
Furthermore, the influences of gender and ethnicity
were estimated directly from our cohort by including
these terms as covariates ; or by incorporating re-
ported population averages for each gender and eth-
nicity from the CDC website as ‘pre-height’.

For disease risk variants, the third approach was to
compute the odds ratio essentially as described in
Ashley et al. (2010). We computed an adjusted relative
genetic risk by setting each individual’s prior odds as
that corresponding to the prevalence for their gender
and ethnicity as reported by the CDC. In order
to obtain the genetic contribution to the post-test odds,
a slight adjustment to the Ashley et al. (2010) method
was performed as follows. According to those authors,
pre-test odds=pre-test probability/(1xpre-test prob-
ability), post-test odds=pre-test oddsrlikelihood ratio
(LR) and post-test probability=post-test odds/
(1+post-test odds). Rearranging their equations, post-
test probability=pre-test probabilityrLR/(1+pre-test
probabilityr(LRx1)). As the reported 95% confi-
dence intervals for genotypic contribution LRs
lie between 1.6 and 0.7, pre-test probabilities
range between 4.2 and 14.3%, then post-test prob-
abilities range from (0.93y1.04)rpre-test prob-
abilityrLR. It follows that we can approximate the
post-test probability as the pre-test probabilityrLR
(thus log10(post-test probability)=log10(pre-test
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probability)+log10(LR)).We confirmed this relation-
ship by observing that this approximated post-test
probability is highly significantly linearly associated
with the post-test probability using Ashley et al.’s
method (P<2r10x16). Our partitioning allows esti-
mation of the genetic contribution to the post-test
probability independent of the pre-test probability.

In order to ask whether addition of more SNPs
continuously improves risk prediction, the SNPs were
sorted by previously reported effect sizes from larger
to smaller. Each SNP was added sequentially to the
regression model, taking the negative log10 P-value
and percent variance explained by each successive
model. For comparison with the random SNP selec-
tion, we randomly sorted the SNPs 100 times and
averaged the results of these permutations.

3. Results

(i) Regression of genotypic risk scores on phenotypes

Significant and positive regression of genotype on
phenotype was observed, as expected, for each of the
continuous traits, height, BMI and serum triglycer-
ides as shown in Table 1. In each case, the estimated
variance explained by the SNPs is in the range of
3–5%, which is lower than that reported in the re-
spective discovery samples (Lango Allen et al., 2010;
Teslovich et al., 2010; Speliotes et al., 2011). The in-
clusion of estimated effect size in weighted sum scores
did not significantly improve the model fitting. For
each of these traits, gender and ethnicity explains
considerably more of the variance than the genotypes,
and fitting these covariates slightly improved the es-
timate of the genetic contribution (with the exception
of the weighted sum for BMI). The weighted sum was
not calculated for triglycerides since the effect sizes are
not fully reported in dbGaP. We also fit multiple re-
gression models based on all of the SNPs for each
trait, and although the variance explained reached
16% for height the estimates were not significant after
adjustment for the number of SNPs included.

Regressions were also computed for disease-
associated risk scores, namely: T2D risk with the
Framingham T2D risk score, and with serum tri-
glyceride, cholesterol, fasting glucose and insulin
levels ; CAD risk with the Framingham CAD risk
score, blood pressure, arterial stiffness and serum
metabolites ; and asthma risk with estimated VO2-max
from treadmill performance. Only two of these
analyses (CAD SNPs with Framingham CAD risk
score and with cholesterol) yielded nominally signifi-
cant correlations as reported in Table 1, and these
would not formally survive adjustment for multiple
comparisons. Nevertheless, for CAD, the total num-
ber of increasing alleles shows a somewhat surprising
positive relationship with the total cholesterol levels,T
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given that there is little overlap between these SNPs
and those associated with cholesterol by GWAS.

Table 1 shows that the regression of genotypic risk
scores on phenotypes was little affected by consider-
ing only the Caucasians. The proportion of variance
explained by SNPs for triglycerides and CAD was
slightly increased relative to the full cohort, probably
due to better capture of LD between tagging and
causal SNPs in Caucasians, but this effect is offset by
the smaller sample size for other traits.

(ii) Effect of number of alleles on risk prediction

Step forward regression, sequentially adding SNPs
in the order of previously reported effect size, was
performed to address whether the addition of more
SNPs to the model continuously improves the pre-
diction. Figure 1 shows the results for height, BMI
and cholesterol on the left-hand panels, compared
with average effects for 100 randomly permuted
orders of SNP addition on the right-hand panels.

Fig. 1. Left : The percentage of variance explained by the model by sequentially adding SNPs in the order of their effect
sizes (height, BMI and cholesterol-CAD SNPs from top to bottom, (a), (c) and (e)). Right: The percentage of variance
explained by the models randomly adding SNPs (height, BMI and cholesterol-CAD SNPs from top to bottom, (b), (d) and
(f)) averaged over 100 permutations. SA refers to models with just the sum of alleles score, while eg_SA refers to models
additionally fitting ethnicity and gender as covariates with the sum of alleles score. WS refers to models with sum of
weighted allelic effects, while eg_WS and pre_WS refer to weighted allelic sum includng ethnicity and gender in the
CHDWB cohort, or taken as the population averages, as covariates respectively. LR refers to likelihood ratio models, with
or without pre-test probability as a covariate. Variance explained (%) refers only to the genetic contribution in each model.
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In each case, explanatory power of the SNPs
increases at least for the first 30 SNPs included in the
model.

For height (Figs 1a and b) it is also clear that most
of the variance is explained by the top 30 SNPs and
that sequential addition up to 169 SNPs does not im-
prove the fit. Models without gender and ethnicity
covariates (blue and brown curves) actually explained
the most variance when an intermediate number of
SNPs were selected. However, since inclusion of more
SNPs reduced the estimates to levels more consistent
with those obtained when gender and ethnicity are
included, the scores with intermediate numbers of
SNPs are likely to be overestimates. For BMI (Figs 1c
and d), there is a suggestion of a plateau effect after 10
SNPs, without a clear further increase until 40 SNPs
are included in the model. In this case, fitting gender
and ethnicity does not affect the genetic estimates. For
CAD (Figs 1e and f), significant explanation is not
observed until 30 SNPs are included, but there may be
a plateau thereafter, and the estimates are not obvi-
ously influenced by inclusion of the covariates. For
BMI and cholesterol, the weighted sum (or likelihood
ratio) scores performed slightly less well than the
simple allelic sum predictors.

(iii) Effect of outliers on explanatory power

Inspection of the regression plots in Fig. 2 suggests
the estimated variance explained can be strongly in-
fluenced by outliers. Thus, the sum of alleles test for
height in males shows several men who grow taller
than their genetic information predicts (asterisks in
Fig. 2). Except for one Asian, all of these men were

Caucasians. Excluding their data improves the per
cent variance explained from 8 to 37%.

The sum of alleles test plot for triglycerides (TG)
(Fig. 3) appears to differ between higher and lower
triglyceride levels. If the analysis is restricted to in-
dividuals with TG more than 100 mg/dl, the geno-
types explain a trivial 0.5% of the variance, while
regression on the remaining individuals with lower
TG has a similar slope but explains 5.3% of the
variance. The increased phenotypic variance in the
high triglyceride range reduces the significance of the
overall regression even though the slope is greater
than in either the low or high TG ranges. Moreover,
the association is more significant in Caucasians than
other ethnicities and more significant in males than
females.

For BMI (Supplementary Fig. S1c, available
at http://journals.cambridge.org/grh), the weighted
sum regression plot suggests that the genotypes are
more strongly associated with the BMI in African
Americans than Europeans. While weighted sum of
effects account for 17% of BMI variation in African
Americans, the effects only explain 3% of BMI vari-
ation in Caucasians. The high variance explained in
African Americans is plausibly an overestimate due to
the small sample.

The regression plot for logarithm transformation of
Framingham heart disease risk score and likelihood
ratio for CAD SNPs in males shows that there are
five Caucasian males (asterisks in Fig. 4a) who have
higher Framingham risk scores than expected. They
are all older than the average male. Exclusion of
those five males results in a more significant associ-
ation (Fig. 4a). In addition, we set Framingham risk

Fig. 2. Linear regression plot fitting real height by sum of
increasing alleles in males. Red symbols Caucasians; blue
American Indian; green African Americans; purple
Asians. Asterisks, the individuals who are taller than
their genetic information would indicate. Red line,
regression fitting line for all men. Green line, regression
fitting line for males without those taller than the
expected men.

Fig. 3. Linear regression plot fitting total triglyceride
levels by sum of increasing alleles. Dots: triglyceride levels
greater than 100 mg/ml. Triangles, triglyceride levels lower
than 100 mg/ml. Red line, linear regression fitting line for
all the individuals (P=0.0053, R2=0.042). Blue line, linear
regression fitting line for individuals with TG levels higher
than 100 mg/ml (P=0.5453, R2=0.005). Green line, linear
regression fitting line for individuals with lower TG levels
(P=0.0169, R2=0.053).
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status as 0 and 1 based on the Framingham risk scores
(0 when FRS <4; 1 when FRS ^4). The logistic
regression shows a significant association between
Framingham risk status and sum of CAD risk alleles
(Fig. 4b), but the area under the receiver operating
characteristic (ROC) curve is just 0.60, indicating that
this is not a clinically useful predictor (Fan et al.,
2006).

(iv) Stability of height predictions to number
of included SNPs

We also re-estimated each person’s height predictors
(allelic sum score and weighted allelic effect score)
from the average of 100 bootstrap samples of 50, 75
and 100 SNPs. The estimates are all highly correlated
(Spearman’s rank correlation coefficient r>0.99) and
explain almost the same percentage of variance for
height. Similarly, the BMI predictors from the aver-
age of 100 bootstrap samples of 30, 40 and 49 SNPs
are also highly correlated and contribute similarly to
the BMI variance. This suggests that the increased
estimated variance explained for intermediate number
of SNPs in height and for more than 40 SNPs in BMI
is probably just noise contributing false-positive sig-
nal. A corollary is that while it is tempting to include
all available SNPs in a model, this is not necessarily
guaranteed to yield the most accurate predictor, since,
for example, had we only had the top 80 SNPs for
height available, more variance is explained than is
reasonable given the stepwise increments expected for
each additional SNP. Conversely, the addition of the
last 10 SNPs has markedly reduced the proportion of
variance explained using just the allelic sum score for
height, suggesting that more stable predictors might
sometimes be obtained by considering a range of
numbers of included SNPs.

4. Discussion

According to our results, genotypes ascertained for
the most part in large GWAS meta-analyses are
somewhat predictive of the relevant traits in our small
study cohort of typical residents of Atlanta, Georgia.
In general, however, the amount of variance ex-
plained is smaller than expected, and for CAD and
T2D the genotypes are not significant predictors of
individual disease status. Approximately 4% of
height variance was explained by the 169 SNPs whe-
ther using sum of increasing alleles or using weighted
sum of effects. This contrasts with 10.5% of adult
height variance (using sum of effects method) being
explained by 180 SNPs in the analysis of 133 653 in-
dividuals (Lango Allen et al., 2010). The 700-fold de-
crease in sample size may contribute to the halving of
the variance explained, since inspection of the data
suggests that a small fraction of outliers (taller than
expected men) strongly influence the regression.
Additionally, the Atlanta cohort is ethnically diverse,
and covers three generations that would have experi-
enced very different socio-economic conditions during
growth. On the other hand, it is surprising that the
amount of variance in BMI explained by our 49 SNPs
is similar to the 4.1% of variance in BMI that is ac-
counted for by 56 variants in a 3600 sample discovery
cohort (Peterson et al., 2011). The heritability of BMI
is considerably lower than that of height, and gender
and ethnic differences are strong, yet the genotypic
risk score is more consistent than that for height.

In comparison with the recorded 10% triglyceride
variance explained by common SNPs (Johansen &
Hegele, 2012), the 48 SNPs in our study explained just
4.5% of triglyceride variation. An unexpected finding
was that approximately 4.3 and 3.2% of the variation
of total cholesterol levels could be attributed to the 34
CAD-related SNPs, performing sum of increasing

Fig. 4. (a) Regression of log10(Framingham Risk Score for heart disease) against genotypic log likelihood in males.
Exclusion of five older Caucasian males indicated with asterisks elevates the regression from non-significant (P=0.18,
R2=0.03) to nominally significant (P=0.0065, R2=0.13). (b) Logistic regression of Framingham risk status on sum of
CAD risk alleles in all study participants shows a significant association. (P=0.0221, R2=0.027). Red symbols,
Caucasians; blue, American Indian; green, African Americans ; purple, Asians. Circles females, Triangles males.
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alleles and multiplication of likelihood ratios, re-
spectively. This is the same order of magnitude
of explanation as height and BMI, both of which are
due to SNPs discovered for the respective trait.
The CAD SNPs are related to all forms of CAD,
including atherosclerosis, which is certainly related
to cholesterol levels, but there is no obvious en-
richment in the SNPs for cholesterol metabolism.
Correspondingly, variation in the Framingham risk
score is also partially explained by the likelihood ratio
score from the CAD-related SNPs, at a level only
slightly less than the 4% explained in Peden &
Farrall (2011).

Weighting the allelic effects by the effect sizes re-
ported on dbGaP did not notably improve the pre-
diction of height, BMI, triglycerides or cholesterol.
This is perhaps not surprising since there is large
variance in the estimation of effect sizes, and to some
extent including them in the model adds as much
noise as it does signal. In addition, the effect sizes re-
corded in dbGaP were obtained from the studies that
are usually composed of one specific ethnicity (gen-
erally European). Even in a few studies whose samples
contain more than one ethnicity, the compositions
are different from ours. For example, Gudbjartsson
et al. (2008) recorded effect sizes for 35 of our height
SNPs in a study composed of 25 174 Icelanders, 2876
Dutch, 1770 European Americans and 1148 African
Americans, which is obviously different from the
ethnicity composition in our study, 19% African
American and 6% Asian. These differences in eth-
nicity composition could result in the different effect
sizes of the SNPs, further reducing the accuracy of
the weighted allelic effect scores. It should also
be recognized that reduced linkage disequilibrium
in Africans is expected to decrease the proportion of
causal effects captured by tagging SNPs, which will
tend to reduce the variance explained in the full
model.

The identification of subsets of outlier individuals
who do not fit the general correlation between geno-
type and phenotype has implications both for im-
proved estimation of individual genetic effects, and
also for prediction. To the extent that shared proper-
ties of such individuals can be identified, those
properties can be considered as covariates in statisti-
cal models, either as regular environmental effects
or sources of genotype-by-environment interaction.
This conclusion is prima facie at odds with arguments
that GrE is unlikely to contribute strongly to ex-
plained genetic variance (Hill et al., 2008) or predic-
tion (Aschard et al., 2012), but formally interactions
such as those implied in Fig. 2 are between the en-
vironmental property shared by the outliers, and
the genotypic risk score, rather than with single
genotypes. Since the risk score is the sum of 30 or
more effects, individual genotype-by-environment

interactions can be small, and if they only affect a few
individuals, they will not make a substantive con-
tribution to risk averaged across the population.

One of the conundrums of predictive health gen-
etics is that it is by now well appreciated that the
variants that exceed GWAS thresholds only explain a
small fraction of the heritability (Kraft & Hunter,
2009; Manolio et al., 2009), and yet there is wide-
spread intention to use these variants to classify in-
dividuals with respect to disease risk. A possible
rationale for this can be seen in the result that most of
the genetic signal is actually due to the SNPs with the
strongest effect sizes. This is clearly the case for
height, and to some extent triglycerides and choles-
terol, although we do not yet have data on whether
the addition of a further 100 SNPs would improve the
BMI prediction. Intuitively, if effect sizes are Poisson-
distributed, then the contributions of the top 30 SNPs
are likely to be much greater than those of the next
100 SNPs, which may just tend to cancel one another
out and contribute noise. While whole genome re-
gression methods show that inclusion of undiscovered
variants can improve genetic prediction (Yang et al.,
2010; Makowsky et al., 2011), our results suggest that
for individually ascertained SNPs, the top few dozen
variants will often be as good as the top few hundreds.
Although they only explain a small fraction of the
variance, in keeping with individually small effect si-
zes, it is nevertheless notable that the effects are sig-
nificant across multiple traits even in a cohort of fewer
than 200 people.

The generation of genotypes was funded by start-up funds
to GG from the Georgia Tech Research Institute. JZ was
partially supported by NIH award R01-HL085481. The
Center for Health Discovery and Well-Being is funded
jointly by Emory University and Georgia Institute of
Technology. We are particularly grateful to Jennifer
Vazquez and Lynn Cunningham for administrative and
managerial support.

5. Supplementary material

The online data can be found available at http://journal-
s.cambridge.org/GRH
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