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ZEROS OF NONLINEAR MONOTONE OPERATORS IN 
HILBERT SPACE* 

BY 

R. SCHÔNEBERG 

1. Introduction. Around 1960, the Russian mathematician Kachurovski [1] 
introduced the notion of monotone operators in Hilbert spaces: Let E be a 
Hilbert space and X c £ , An operator T:X-*E is said to be monotone, iff 

Re<T(x ) -T(y ) ,x -y>>0 for all x,yeX. 

This class of mappings turned out to be very important in application to Partial 
Differential Equations and has been studied by a number of authors (e.g. 
Brézis, Browder, Crandall, de Figueiredo, Dolph, Gossez, Gupta, Hess, Kato, 
Lions, Martin, Minty, Opial, Pazy, Rockafellar, and Vidossich). 

The purpose of the present paper is to establish some general sufficient 
conditions for the existence of zeros of demicontinuous monotone operators, 
which are defined on the closure of an open (not necessarily convex) subset of a 
Hilbert space. 

Our investigations are motivated by the following simple fact: 

PROPOSITION 1. Let E be a Hilbert space, JJ^Ebe open and let T:cl(l7) —» E 
be a monotone mapping which has a zero in U, Then the following conditions are 
satisfied: 

(Ax) There is x0eU such that T(x)# t(x-x0) for all xedU, t<0. 
(A2) There is x0eU such that Re(T(x), x - x o } ^ 0 for all xedU. 
(A3) There is x0e U such that for all xedU, ||T(x)||2<Re<T(x), T(x0)> only if 
T(x) = 0. 
(Note that (A2) implies (AJ) . 

We shall show that under mild boundedness assumptions each of the 
conditions (At) imply that T has a zero in cl(U), if T is demicontinuous. 

These results (and its consequences) extend and unify several known ones 
and are based on a lemma due to Crandall-Pazy [2] and the Browder-Minty 
invariance of domain theorem for demicontinuous locally strongly monotone 
mappings. 
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2. Preliminaries. To make this paper self-contained we will first briefly 
introduce some terminology and notation: Let E be a Hilbert space, X c £ , 
T:X^E, xeE and r>0 . 

(a) Kr(x) denotes the closed ball of radius r with center x. We use cl(X) to 
denote the closure of X and dX to denote the boundary of X. "—>" resp. "—*" 
indicates strong resp. weak convergence. 

(b) T is said to be nonexpansive iff 

l |TW-T(y ) | |< | | x -y | | for all x,yeX. 

(c) T is said to be pseudo-contractive iff 

Re<T(x)-T(y), x - y > < | | x - y | | 2 for all x,yeX. 

(d) T is said to be strongly monotone iff there is c > 0 such that 

Re<T(jc)-T(y), x-y>=>c| |x-y | | 2 for all x , y e X 

(e) T is said to be monotone iff 

Re<T(x)-T(y), x -y)> iO for all x , y e X 

(f) T is said to be demicontinuous iff for every sequence (yn) in X, yn —» y e X 
implies T(y n )^T(y) . 
For reference we state the following lemmas. The first is due to Crandall and 
Pazy and the second to Browder and Minty. 

LEMMA 1. Let E be a Hilbert space, (xn) a bounded sequence in E and (rn) a 
strictly decreasing sequence in (0,<») such that 

Re<rnxn-rmxm ,xn-xm><0 for all n,meN. 

Then (xn) converges strongly to some xeE. 

Proof. [2]. 

LEMMA 2. Let E be a Hilbert space, U<=-E be open and let T:U-^E be 
demicontinuous and locally strongly monotone. Then T[U] is open. 

Proof. [3]. 

3. RESULTS. 

THEOREM 1. Let E be a Hilbert space, U^E be open and let T:c\(U) —» E be 
demicontinuous and strongly monotone. If KczE is connected such that 
K(1T[U]*0 andKCiT[dU] = 0, thenKczT[U]. 

Proof, let s : = I+T. Since T is strongly monotone, we have ( + ) Re(S(x) -
S ( y ) , x - y ) > ( l + c) | |x-y | | 2 for all x,yecl( l / ) . Hence S is strongly 
monotone and demicontinuous, too. Let D: = S[U]. Then D is open by 
Lemma 2 and since S[cl ([/)] is closed (by ( + )), we see that c l (D)c S[cl(l/)]. 
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Therefore dDcS[dU] and we may define g:cl(D)->E by g(x): = S-1(x). 
Then ( + ) implies that g is a mapping with Lipschitz constant (1 + c)"1. By 
Kirszbraun's theorem [4], g may be extended to a mapping G:E-+E which 
has Lipschitz constant (1 + c)-1, too. It is easily seen (using dD<=S[dl/]) that 
K(l(I-g)[D]^0 and KCl(I-g)[dD] = 0. Since K is connected and J - G is 
a homeomorphism of E onto E, this implies K<=(I-G)[D] = (I-g)[D], 
Hence K c T[17], completing the proof of Theorem 1. 

COROLLARY 1. Let E be a Hilbert space, U^Ebe open and let T:d(U)-^ E 
be demicontinuous and strongly monotone. Then T has a zero in U iff there is 
x0eU such that ||T(x0)||^||T(x)|| for allxedU. 

Proof. Apply Theorem 1 to K :={tT(xo):te[091]}. 

An easy but useful consequence of Corollary 1 is 

THEOREM 2. Let E be a Hilbert space, [ / c £ be open and let H:[0, 
l]xd(U)-*E satisfy 
(1) For fixed te[0,l],H(t,-) is demicontinuous and strongly monotone. 
(2) H(t,x) is continuous in t, uniformly for xecl(U). 
(3) H(t,x)*0 for all te (0,1), xedU. 
(4) There is x0e U with ||H(0,xo)M|H(0,x)|| for allxedU. Then H(1,-) has a 
unique zero in c\(U). 

Proof. We may assume that H(l,x)^=0 for xedU. This implies 

X:=inf{||Hax)||:te[0,l],x€dU}>0. 

(Otherwise H(tk, xk)-> 0 for some sequences (tk) in [0, 1] and (xk) in dU. We 
may assume tk->t. Then by (2) H(t,xk)->0. Since H(t,-) is strongly monotone, 
we get xk-+ xedU. But H(t,-) is demicontinuous, so that H(t,x) = 0, a con
tradiction). 
Let 

M: ={te[0,l]:H(t,-) has a zero in U}. 

Since 0 G M (by (4) and Corollary 1), it suffices to show that M is both open and 
closed in [0, 1]. To show that M is closed, we need only reproduce the 
argument which we used to prove that 2 > 0 . To prove that M is open, let 
t0eM and y0eU with H(to,yo) = 0. Since H(-,y0) is continuous (by (2)), there 
is a neighborhood N of t0 in [0,1] such that teN implies ||H(f,y0)||<2. By 
definition of X we get (observing Corollary 1) N<^M. Therefore M is open in 

[0,1]-
We are now in the position to prove our first result for mappings, which are 

merely monotone. 
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THEOREM 3. Let E be a Hilbert space, [/<= E be open and let T:cl(U) —> E be 
a demicontinuous monotone mapping such that (I- T)[c\(U)] is bounded. Then 
T has a zero in cl(l/); if (A^ is fulfilled. 

Proof. By replacing T(x) with T(x + x0) and U by U-x0, one may take x0 = 0 
in (Aa) (and thus 0 e U). If we define 

M:={xecl(l/): T(x) = tx for some t<0}, 

then M is bounded (indeed, if x e M , we get ||T(x)||<||T(0)|l, since T is 
monotone, and thus | |x | |^ | |x-T(x) | | + ||T(0)||). Hence we may assume that U is 
bounded. For neN let now T n :c l ( l / ) -* E be defined by Tn(x): = 
T(x) + (l/n)x. Then Tn is a demicontinuous strongly monotone mapping which 
satisfies (A^, too. Hence Tn has a unique zero xnec\(U) by Theorem 2 (use 
H(t,x): = (l-t)x + tTn(x)). Since T is monotone, we get for n ,meN 

R e ( - x n x m , x n - x m ) = -Re<T(x n ) -T(x m ) , x n - x m ) < 0 . 
\n m I 

Therefore (xn) converges strongly to some X€cl(l7) by Lemma 1. Since 
T(xn) = - (l/n)xn —> 0, we have T(x) = 0, completing the proof of Theorem 3. 

COROLLARY 2. Let E be a Hilbert space, U<^E be open and let f:c\(U) —» E 
be a demicontinuous pseudo-contractive mapping such that f[cl(U)] is bounded. 
Suppose there is x0eU such that 

f(x)-x0j=t(x-x0) for all xedU, t>\. 

Then f has fixed point in cl([/). 

Proof. Apply Theorem 3 to T = I-f. 

Corollary 2 generalizes Theorem 3 of Browder [5], where f is assumed to be 
nonexpansive and U is an open ball, and Theorem 4 of Reinermann-
Schôneberg [6], where in addition / is assumed to be a fc-set-contraction (in the 
sense of the Kuratowski-measure of noncompactness) for some k > 0. 

COROLLARY 3. Let E be a Hilbert space, r > 0 and let / :K r (0 ) -»E be 
nonexpansive. Then f has a fixed point in Kr(0) iff 

(*) f(x)?tx for all ||jt||=r, t>\. 

Proof. If / satisfies (*), then / has a fixed point in Kr(0) by Corollary 2. 
Conversely, suppose / has a fixed point, say xoeKr(0), and let ||x|| = r and f > 0 
with /(x) = tx. We have to show that f < l . Since / is nonexpansive, we get 

\\tx-x0\\
2 = \\f(x)-f(x0Wmx-x0\\\ 

i.e., 

2(1-0Re<x,xo>< (1-0(1 +OH*»2. 
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If f > l , this implies (using Re(x, x0)^||x||2) l + f^2, i.e., f ^ l , a contradiction. 
Hence f < l . 

THEOREM 4. Let E be a Hilbert space, U<^E be open and bounded and let 
T:cl(U)-+ E be demicontinuous and monotone. Then T has a zero in cl(l7), if 
the condition (A2) or (A3) is satisfied. 

Proof. We may assume T(x)^0 for all xedU. Let S:=I+T. Since T is 
monotone, we have 

(++) Re<S(x)-S(y),x-y>>||x-y||2 for all x,yecl(U). 

If g and D are defined as in the proof of Theorem 1, then (+ +) implies that g 
is nonexpansive. Let x0e U be the point specified in the statement of (A2) resp. 
(A3) and let x0:=S(x0). In view of Corollary 2 it suffices to show that the 
assumption g(x)-x0~ t(x-x0) for some xedD, t>l leads to a contradiction. 
Let x:=g(x). Then xedU (recall dD<=S[dt/]) and x = x + T(x). Therefore 
(t-i)T(x0) = (t-l)(x-x0) + tT(x). (A2): The monotonicity of T implies 

0<Re<r(x)-T(xo),x-xo> 

= R e / r ( x ) - ( x - x 0 ) - y ^ j T(x), x-x 0V 

i.e., 
Re<T(x) ,x-x o )^- ( t - l ) | |x -x o | r<0 , 

a contradiction. 

(A3): Again the monotonicity of T implies, using f - l > 0 , 

0<(r-l)Re<T(x)-T(xo),x-xo) 

= Re<T(x)-T(xo),(r-l)(x-x0)) 

= Re<T(x)- T(x0), (*- l)T(x0)- tT(x)), 
hence 

Re<T(x)- T(x0), T(x0))<-r ||T(x)- T(x0)||
2 

<-||T(x)-T(x0)||2, 
i.e., 

Re<T(x)- T(x0), T(x0)> + ||T(x)- T(x0)||2^ 0. 

But this is equivalent to ||T(x)||2<Re<T(x), T(x0)>. Hence T(x) = 0 by (A3), 
contradicting our assumption. 

COROLLARY 4. Let E be a Hilbert space, U^E be open and bounded and let 
T:cl(l/)—> E be a demicontinuous and monotone mapping. Suppose there is 
x0eU such that ||T(x0)||<||T(x)|| for all xedU. Then T has a zero in U. 

Proof. (A3) is fulfilled. 
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Corollary 4 is a sort of a minimum principle for monotone mappings. It has 
been proved by Kirk-Schôneberg [7] (for accretive mappings in general Banach 
spaces) under the additional assumptions that T is continuous and cl(t7) has 
the fixed-point property with respect to nonexpansive self-mappings. 

COROLLARY 5. Let E be a Hilbert space, U<^E be an open bounded symmetric 
neighborhood of the origin and let T:cl(U)—>E be demicontinuous and 
monotone. If T(x) =-T(-x) for all xedU, then T has a zero in c\(U). 

Proof. Since T is monotone, we get for xedU 

Re<T(jc)-T(0),jc)>0 
and 

Re<T(0) -T( -x) ,x>>0. 
Hence 

2Re(T(x),Jc>>0. 

Therefore (A2) is fulfilled. 

Corollary 5 extends Theorem 5 of Browder [5], where U is an open ball and 
T is assumed to be defined on all of E. It generalizes Theorem 7 of 
Reinermann-Stallbohm [8], where T = I-f with / nonexpansive, and Theorem 
5 of Reinermann-Schôneberg [6], where T is in addition assumed to be 
lipschitzian. 

4. Concluding remarks. For clarity of exposition, we have restricted our
selves to the investigation of monotone operators in Hilbert spaces. Some of 
our results however, hold also for the class of accretive mappings in reflexive 
(7r)!-spaces that admit a weakly continuous duality mapping. This depends 
mainly on the fact that a lemma of Crandall-Pazy type is true in reflexive 
Banach spaces having a weakly continuous duality mapping (see Krauthausen 
et al. [9]). The reader, who is interested in these slight generalizations, can 
easily carry through the proofs using the ideas of this paper and the results of 
[9] and [10]. 
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