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In any field of nonlinear analysis Nemytskij operators, the superposition operators
generated by appropriate functions, play a crucial part. Their analytic properties depend
on the postulated properties of the defining function and on the function space in which
they are considered. A rich source for related questions is the monograph by J. Appell
and P. P. Zabrejko [2] and the survey paper by J. Appell [1].

Nemytskij operators mapping a Holder space Hy[a, b], 0 < v < l , into another
Holder space //M[a, b], O<;U<1, have interesting and sometimes surprising properties.
Some hints in this direction can be found, particularly, in [3]. The purpose of this short
note is to show that each function / e Cl(R) generates a Nemytskij operator Fy(t) =
f(y(t))> which as a mapping in Hv[a, b], 0 < v < 1, is continuous, and that for / e C2(R)
the same Nemytskij operator is continuously Frechet-differentiable. The results proved
show that at least in the autonomous case considered the assumptions of the recent paper
[7] can be relaxed. In [1, §6] a necessary and sufficient condition for Nemystskij operators
acting in Holder spaces to be Frechet-differentiable can be found; our proof is
independent of this criterion. An application of the results in an optimal control problem
for a nonlinear singular integral equation is given in [6].

In what follows v e (0, 1] is fixed, || • ||v denotes the usual norm in Hv[a, b],

=max |y(0 l + sup l y ( r ) y , y€Hv[a,b],
te[a,b] t,se[a,b] \t — S\

and Z£{Hv[a, b\) the set of all linear bounded operators mapping Hv[a, b] into itself.

THEOREM 1. / / / e C\R), then the Nemytskij operator Fy(t) =f(y{t)) maps Hv[a, b]
continuously into itself.

Proof. 1. Let y e Hv[a, b] be fixed. With the constants

a = min{y(s) + r(y(t) - y(s)) \t,se [a, b], x e [0, 1]},

jB = max{y(s) + x(y(t) - y(s)) \t,se [a, b], x e [0, 1]},

we find

\Fy(t)-Fy(s)\ = \f(y(t))-f(y(s))\

y(s))) dx

^Y\y(t)~y{s)\ for alU s e [a, b],

and therefore Fy e Hv[a, b].
2. We show the continuity of F : Hv[a, b]^>Hv[a, b] at an arbitrary y e Hv[a, b]. To

this end we take a positive number 80 and define a function h = h(s, t, u, v) by setting

h(s, t, u, v) =/(y(0 + u) - / (y(0) -f(y(s) + v) +f(y(s))
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for each {s, t, u, v} e Q := [a, b] X [a, b] x [-d0, 50] x [-d0, <50]. According to V. A.
Bondarenko and P. P. Zabrejko [4, Theorem 3] it is sufficient to prove that for arbitrary
fixed e > 0 there exists a 8 = 5(e) e (0, 80) such that

\h(s, t, u , v)\ < e(\t - s \ v + 8 ~ l \ u - v \ ) f o r a l l {s, t, u , u } e Q w i t h | « | , | u | < 6. ( 1 )

The Lagrange formula yields

h(s, t, u, v)

= (y(t) + u- y(s) - v) I f'(y(s) + v + x(y(t) + u-y(s)- v)) dx
h

~ (y(t) ~ y(s)) I f'(y(s) + x{y{t) - y{s))) dx
Jo

= (y(0 - y ( s [

f'(y(s) + x(y(t) -y(s)) + v + x(u- v)) dx

= (y(t) ~y(s)) I [g(s, t, u, v, x)-g(s, t, 0, 0, T)] dx
Jo

-(u-v)l g(s, t, u, v, x) dx, (2)
Jo

where we have put

g(s, t, u, v, x) =f'(y(s) + x(y(t)-y(s)) + v + x(u- v)).

Since g is uniformly continuous on Q x [0, 1], there exists a d^s) e (0, <50) such that

\g(s, t, u, v, x) - g(s, t, 0, 0, T)| < ek~l

for all {s, t, u,v,x}eQx [0, 1] with |M|, |U| < d^e), where the constant k > 0 denotes
the Holder coefficient of y, and there exists a <52(e) e (0, 80) such that

6\g(s, t, u, v, x)\ < e

for all {s, t, u, v, x} e Q x [0, 1] and for all 8 e (0, 82(e)). Using both these inequalities
in (2) we get (1) provided 6 = minl^^e), <52(e)}. •

The proof just given is essentially based on [4]. Probably a direct proof along the
lines of P. Drabek [5] is possible too. Since in that paper the situation is in a way
analogous to the case considered here, I expect that our assumption f eC\R) cannot be
weakened.

To prepare our main result we now consider the parameter integral

G(t)= I g{t, x)dx, te[a,b],
Jo

and prove the following lemma.
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LEMMA. If the integrand g — g(t, x) satisfies the assumptions
(i) g e C([a, b] x [0, 1]),

(ii) \g(t, x) -g(s, x)\ < c | f - s | v for all t,se[a,b] and for all x e [0, 1], with c a
positive constant,

then

GeHv[a,b] with ||G||V< ||g(-, T)||V dr.

Proof. The first statement is obvious. By definition of || • ||v we have

\s(t T^ — e(s T^I

M-, *)||v a= \g(t, *)l + SK' , ;_ ,1 ' for all r, s e [a, b] and for all x e [0, 1],
|j s\

and, after integrating this inequality,

f ||g(-,T)||vdT>[ Ig^TjIrfT + r-^—;f \g{t,T)-g(s,T)\dx
Jo JQ I ' " * ! Jo

for all / , j € [a, 6], from which the desired inequality follows. •

THEOREM 2. Let the Nemytskij operator Fy(t)=f(y(t)) be generated by f eC2(R).
Then at each point y e Hv[a, b] the operator F : Hv[a, b]^>Hv[a, b] has a continuous
Frechet derivative F'(y) given by

F'(y)z(t)=f'(y(t))z(t) for all z eHv[a, b].

Proof. 1. We define a Nemytskij operator by setting Fy{t)=f'{y{t)). Because of
Theorem 1 we certainly have

F, F: Hv[a, b]^>Hv[a, b] are continuous. (3)

For any given y e Hv[a, b] we define another operator Ay by

Ayz{t) = Fy{t)z{t), zeHv[a,b}.

Since Hv[a, b] is a Banach algebra (cf. ProBdorf [8, p. 93]), we have

Ay : Hv[a, b]-* Hv[a, b] with | | ^ z | | v < ||Fy||v||z||v for all z eHv[a, b].

This implies

Ay € %(Hv[a, b]) with | | / y *(„>,„„ < \\Fy\\v for ally € Hv[a, b]

and, consequently,

~ Fz\\v for ally, z e Hv[a, b].

Therefore, because of (3), y<-+Ay is a continuous map from Hv[a, b] into Z£{Hv[a, b]).
2. It remains to show that Ay = F'(y) for any fixed y e Hv[a, b]. Again by means of
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Lagrange's formula we get

F(y + z)(t)-Fy(t)-Ayz(t)

=f(y(t) + z(t)) -f(y(t)) -f'(y(t))z(t)

= z(t)Gz(t), (4)

for all z e Hv[a, b] and for all t e [a, b], with the parameter integral

Gz(t)=fg{t,x)dx,
Jo

g(t, r) =f'{y(t) + TZ(0) -f'(y(t)) = F(y + xz){t) - Fy(t).

In virtue of (3), and because

\F(y + xz){t) - F(y + xz)(s)\

=s [\y(t)-y(s)\ + r\z(t) - z(s)\] f \f"(y(s) + TZ(S) + o(y(t) + xz(t)-y(s) - xz(s)))\ dx

<k\t-s\v

for all t,s e[a, b] and for all x e [0, 1], where A: is a positive constant depending on y and
z only, the Lemma yields Gz eHv[a, b] with

/•I

||GZ||V^ \\F(y + xz)-Fy\\vdx for all z e Hv[a, b\ (5)
Jo

Now let £ > 0 be given. Then, by (3), there exists 6 = 6(E) > 0 such that

\\F(y + xz) - Fy ||v < e for all z e Hv[a, b] with ||z||v < 8 and for all x e [0, 1]. (6)

Combining (4)-(6) we obtain

\\F(y + z) - Fy - Ayz\\v < ||Gz||v||z||v for all z e Hv[a, b] with ||z||v < 5,

which proves the statement. •
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