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0. Abstract. We use the principle of symmetric criticality to connect the Willmore var-
iational problem for surfaces in a warped product space with base a circle, and the free
elastica variational problem for curves on its fiber. In addition we obtain a rational one-
parameter family of closed helices in the anti De Sitter 3-space which are critical points of the
total squared curvature functional. This means they are free elasticae. Also they are space-
like; this allows us to construct a corresponding family of spacelike Willmore tori in a certain
kind of spacetime close to the Robertson-Walker spaces.

1. Introduction. The Willmore functional is defined, on the class of Riemannian (or
Lorentzian) surfaces with or without boundary of a semi-Riemannian manifold {N, g), by

= / ( < H, H > +R)dA + I Kgdt,
Js Jas

where 35 denotes the boundary of the surface S, H its mean curvature vector field, R is the
sectional curvature of M on the tangent plane of S and Kg denotes the curvature function of
dS in M.

It is known (see [8]) that this functional is an invariant under conformal changes of the
ambient metric g. The critical points of W are called Willmore surfaces. For example, the
closed (compact and without boundary) surfaces with H vanishing identically, in particular
minimal and maximal surfaces, are obvious examples of Willmore surfaces. Articles showing
different methods of getting examples of non minimal Willmore surfaces in spheres are
known in the literature (see for example [1, 3, 7, 9, 15] etc.).

In [2], the author gave the first non trivial known examples of Lorentzian Willmore tori
in the standard anti De Sitter 3-space. Other examples of Lorentzian Willmore tori in semi-
Riemannian space forms of low dimension were obtained in [5].

On the other hand, we consider the total squared curvature functional acting on closed
curves (or curves satisfying given first order boundary data) in a semi-Riemannian manifold
{M, g). The extremal points of this functional are called free elastic curves in {M, g) (see [11]
for details of elastic, non necessarily free, curves in real-space-forms).

It is not difficult to understand that both variational problems are strongly related
through the principle of symmetric criticality [14]. U. Pinkall used this idea in [15], it was also
exploited in different contexts (see for instance [1, 2, 7, 5, 12] etc.).

In this paper, once more we exploit this argument to get examples of Riemannian and
Lorentzian Willmore tori in spaces shaped as warped products with base a standard circle.
These examples come from free elastic curves on their fibers, (see Theorem 1). The family of
these spaces includes the Robertson-Walker spaces with closed base.

Moreover we are interested in obtaining non trivial examples of spacelike Willmore tori
in spacetimes. To do this, we deal in most of the paper with the standard anti De Sitter
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3-space, H](— 1). Therefore, we use the Hopf fibration of H\{— 1) on the hyperbolic 2-plane,
H2{—4), to characterize the helices of H](-l) as geodesies of the Hopf tubes (that is complete
horizontal lifts of curves) on curves of constant curvature in H2(-4). Then we determine the
isometry type of the Hopf tori (complete horizontal lifts of closed curves) (see Theorem 2)
and so use it to characterize the closed helices of H\{— 1).

In Section 6, we deal with the free elastica variational problem for closed helices in
H\{— 1). We obtain all the solutions of the Euler-Lagrange equations that are closed helices.
Therefore we get a rational one-parameter family of solutions (see Theorem 3). Lastly we use
these solutions to construct spacelike (that is Riemannian) Willmore tori in the spacetime
S1

 X/H\(— 1), where/denotes any positive function on the unit circle Sx.
The author would like to express his thanks to the referee for his valuable comments and

suggestions. In particular, one of his comments greatly simplifies the proof of Theorem 3.

2. Willmore tori and free elasticae. Let (M,g) be a n dimensional semi-Riemannian
manifold, with metric g. We denote by V the semi-Riemannian connection. Le t / : Sl—>R be
a positive function on the unit circle. On N = S[ x M we consider the semi-Riemannian
metric ge = edt2 +f2g, with obvious meaning and e = ±1 . Then (N,ge) is called the warped
product with warping function/, base or leaf (S1, edt2) and fiber (M, g). When the metrics on
the base and the fiber are understood, then we still use eSl x/M to denote (N,gf), (see [13]
for details about this subject). We notice that the index of (N, ge) coincides with the index of
(M, g) if e = 1 while it increases this index by one if e = - 1 .

Let y be a non null curve (arclength parametrized) in (M, g) with length L > 0, Frenet
frame {T = yi, £2, ... ,£„} and curvatures {K\, .. . ,/c,,_i}. We consider the tube TY = S1 x y
which is immersed in (N,ge). It can be parametrized by <t>(s, t) = (e", y(s)) and the volume
form of the induced metric is

dA=€f{t)dtds.

THEOREM 1. Let y : [0, L]—>M be a non-null curve. The tube TY = S1 x y is a Willmore
surface in (TV, g6) ;/ and only if y is a free elastica in (M, g). In particular Ty = S1 x y is a
Willmore torus in (N, g() if and only if y is a closed free elastica in (M, g).

Proof. To compute the Willmore functional of TY = S1 x y in (TV, ge), we first calculate
its second fundamental form, say a. We use parametrization <J> and well known relationship
for warped products, [13], to obtain

a(<D,, 0,) = ff(<&,, $,) = 0,

Now the squared mean curvature function of Ty = S1 x y in (N, ge) is

where 82 denotes the causal character of £2-
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The second term in the Willmore integral is the sectional curvature of (TV, ge) relative to
the tangent plane of Ty = S] x y. It is not difficult to see that R — —C. Therefore

It is clear that KS vanishes identically; in fact if dTY is not empty (this happens if y is not
closed), then it is made up of a couple of leaves and the leaves are geodesies in (N, ge). We
also use the lemma of Hopf to get

It is obvious that S' acts on Ty = S x y through homotheties. If we consider the
manifold of immersions of a torus in (N,ge), the symmetric points under the above men-
tioned 5 ' action on this manifold are immersions of the type TY = S1 x y for a given non-
null closed curve in (M, g). Hence one can apply the principle of symmetric criticality [14] to
get the statement of the Theorem. •

REMARK 1. It should be noticed that Ty = S1 x y never has constant mean curvature
unless both K\ and / a r e constants. Moreover given y in (M,g), one can choose/in such a
way that W(TY) < 2n2 and this fact contrasts with the well known Willmore conjecture.

The complete classification of closed free elasticae in the standard 2-sphere was achieved
by J. Langer and D. A. Singer [11]. It can be briefly described as follows. Up to rigid motions
in the unit sphere, the family of closed free elasticae is made up of the w-fold cover y% of a
geodesic y0, say the equator, and an integer two-parameter family [ym<n \ (m, ri) 6 Z2; 0 < m
< n], where y,,,,,, indicates that it closes up after n periods and m trips around the equator y0

(see [11] for details).

COROLLARY 1. For any positive function f on the unit circle, there exist infinitely many
Willmore tori in the 3-dimensional warped product eSl x/S1. This family includes {Ty%\
m € Z — {0}} and {TYmn \ {m, n) e Z2; 0 < m < n). These tori are Riemannian or Lorentzian
according as e = 1 or e = — 1 respectively.

If M = H2 is the hyperbolic 2-plane endowed with its canonical metric of constant
Gaussian curvature, say —1, then the complete classification of free elasticae is also achieved
by [11]. Besides the m fold cover rf" of the so called hyperbolic equator, r)0 (that is a geodesic
circle of radius sinh~'(l) in H1), there exist an integer 2-parameter family of free elasticae,
{i\m,n\m> 1 and 3 < 7 < 2 ̂  (see o n c e m o r e W^\ f° r a geometrical description of this
family).

COROLLARY 2. For any positive function f on the unit circle, there exist infinitely many
Willmore tori in the 3-dimensional warped product eS1 xy/ / 2 . This family includes {Tym\
m e Z — {0}} and (T,)mn | m > 1 and j <^ < %£)• These tori are Riemannian or Lorentzian
according as € — 1 or e = — 1 respectively.
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3. The hyperbolic Hopf fibration. The 4-dimensional pseudo-Euclidean space with index
2, Rj, can be identified with C2 — {z = (z\, z2) \z\, z2 e C) endowed with the usual inner
product < z, w >= Re(zi»vi — Z2W2). The 3-dimensional anti De Sitter space is the hyper-
quadric H](-\) = {z e R\ \ < z, z >= -1}, and the induced metric defines a Lorentzian
structure with constant sectional curvature - 1 , on H](-\). The circle of radius one, S1,
regarded as the set of unit complex numbers, acts naturally (multiplication coordinate to
coordinate) on H\{— 1). The space of orbits, under this action, can be identified with the
hyperbolic 2-plane of Gaussian curvature - 4 , say H2(-4). The natural projection
n : H\{— 1)—>H2{—4) gives a semi-Riemannian submersion.

A global unit timelike vector field V, can be defined on H](— 1), by putting Vz — iz for
all z 6 H\{— 1), (of course / = V—T). The V flow is made up of fibers, which are unit circles
with negative defined metric. We will use the standard notation and terminology of [13],
relative to semi-Riemannian submersions. In particular one has the splitting T, = V, © Hz,
z e H](-\), where Tz is the tangent 3-space to H](-\) in z, V, = Span(Vz) is the vertical line
and Hz is the horizontal subspace (JHZ = H,). Recall that V, = Ker(jnz) and dUz restricted
to Hz gives an isometry between Hz and the tangent plane to H2(—4) at n(z). Overbars will
denote the horizontal lifts of corresponding objects on H2(—4). The semi-Riemannian con-
nections V and V of H](-l) and H2(-4) respectively satisfy

ViY=S7xY+{g0(JX,Y)oU)V (1)

WyV=VvX=iX (2)

V K K=0, (3)

where J and g0 denote the standard complex structure and metric of H2(—4) respectively.
Notice that the third equation gives the geodesic character of the fibers in H](— 1).

The mapping FT : H\{— 1)—>H2(—4) is also a principal fibre bundle on H2{—4) with
structure group S1 (a circle bundle). We define a connection on this bundle by assigning to
each z € H\{-\) the horizontal 2-plane Hz. The Lie algebra u(\) of S1 = U{\) is identified
with R, so Fis the fundamental vector field 1* corresponding to 1 e w(l).

We denote by co and £1 the connection 1-form and the curvature 2-form of this connec-
tion respectively. It is well known that there is a unique R valued 2-form 0 on H2{—4) such
that Q = n*(0). We also put dA to denote the canonical volume form on H2{—4), in parti-
cular d_A{X, JX) = 1 for any unit vector field X on H2{-4). It is clear that @(X, JX) =
Q(X, iX) and so we can use the structure equation, the horizontality of X, and iX and the
formula (1) to obtain

, iX) = dco(X, iX) = -co([X, iX]) = -2o)(F> = - 2 ,

and consequently

0 = -IdA. (4)

4. Hopf tubes and Hopf tori. Let a : [0, L]—>H2(—4) be an immersed curve with length
L > 0. We always assume that a is parametrized by arclength. The complete lift Ca = n~'(a)
will be called the Hopf tube associated with a and it can be parametrized as follows. We start
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from a horizontal lift a : [0, L]—>H](— 1) of a and then we get all the horizontal lifts of a by
acting 51 over a. Therefore we have * : [0, L] x R—>H](-\) with

*(j, 0 = e"a(s).

It is not difficult to see that Ca is a Lorentzian flat surface which is isometric to [0, L] x S1

(where the second factor is endowed with its negative defined standard metric). In particular,
if a is closed, then Ca is a Lorentzian flat torus (the Hopf torus associated with a). It will be
embedded in H\{—\) if a is so in / / 2 ( -4 ) , and its isometry type depends not only on L but
also on the area A > 0 in H2(—4) enclosed by a.

THEOREM 2. Let a be a closed immersed curve in H2(—4) of length L and enclosing an area
A. The corresponding Hopf torus Ca is isometric to L?/T, where Y is the lattice in the Lor-
entzian plane L? = R2, generated by (0, 2n) and (L, 2A).

Proof. Let a be any horizontal lift of a and * : R2—>Ca C H](-\) the semi-Rie-
mannian covering defined by ty(s, i) = e"a. The lines parallel to the / axis in L2 are mapped
by 4/ onto the fibres of n , while the lines parallel to the s axis in L2 are mapped by * onto
the horizontal lifts of a. These curves are not closed because the holonomy of the involved
connection, which was defined above. However the non-closedness of the horizontal lifts of
closed curves is measured just for the curvature as follows, (we will apply, without major
details, a well known argument which is nicely exposited in [10 (vol. II, p. 293)]: there exists
8 e [—JT, 7r) such that a(L) = e'sa(0) (for any horizontal lift). The whole group of deck
transformations of * is so generated by the translations (0, 2n) and (L, 8). Finally we have
8 = — fc®, where c is any 2-chain on H2(—4) with boundary 3c = a. In particular, from (4),
we get 8 = 2A and it proves the statement. •

5. Helices. From now on, we assume that a is an arclength parametrized curve with
constant curvature K in H2{—4). Then Ca = n~'(a) is a Lorentzian flat surface with constant
mean curvature. Moreover it admits an obvious parametrization ty(s, t) by means of fibers (s
constant) and horizontal lifts of a (t constant). Let /3 be a non-null geodesic of Ca; it is
determined from its slope g, (which is measured with respect to * ) . It is not difficult to see
that fi is a helix in H](—l), with curvature and torsion given respectively by

i -g2

where e = ±1 represents the causal character of /S.
We also have a converse of this fact, namely, given any helix /} in H](—l) with curvature

p and torsion v, then it can be regarded as a geodesic in a certain Hopf tube of H](—\).
Indeed, just consider the Hopf tube Ca = n~'(a) , where a is a curve in H2(—4) with constant
curvature K = ^p ~ \ where e denotes the causal character of fi; then choose a geodesic in
Ca with slope g=P-e-^.
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We suppose that a is closed, that is, it is a geodesic circle of a certain radius r > 0 in
H2{—4). Then its curvature is K = —2coth2r (notice we choose orientation to get negative
values for curvature). The length of a is L = 7rsinh2r and the enclosed area in H2(—4) is
A = |(cosh2r - 1). As we already know the Hopf torus Ca = n~'(a) comes from a lattice in
L2 which is generated by (0, 2it) and (L, 2A). Now a geodesic fi(s) of Ca = I"I~'(a) is closed if
and only if there exists s0 > 0 such that *~'(/}(.?<,)) e F. Consequently

In

where q is a rational number.
The slope of closed helices can be also written in terms of K as follows:

g = q^K2-4--K, (8)

where q e Q - {0}.

6. Closed helices being free elasticae. We recall that a free elastica y of a semi-Rie-
mannian manifold M is a critical point of the functional,

HY)
j /

where K denotes the curvature function of y. Of course this functional acts on a manifold
consisting only of regular closed curves or curves which satisfy given first order boundary
data, (see [11]). The term free was introduced in [11] to describe the critical points with no
constraint on the arclength of the curves. The Euler-Lagrange equations for free elasticae in
a semi-Riemannian manifold with constant curvature were obtained in [4]. These equations
reduce the study of free elasticae in semi-Riemannian real-space-forms to two or three
dimensional spaces. The curvature K and the torsion r of an extremal point of the functional
T must satisfy the following Euler-Lagrange equations:

0 (9)

K2 x — constant, (10)

where e\, e2 and e3 denote the causal characters of the curve, its normal and its binormal
respectively, and c is the curvature of the ambient space.

Now if /S is a helix in H](-\) with curvature p > 0 and torsion v ̂  0, then $ is a free
elastica if and only if

P
.2 2 v 2 - 2 = 0, (11)

that is in the (p, v) plane of helices in H](-l), the total squared curvature has exactly one
ellipse of critical points. To determine the closed helices in H](-\) which are in the above

https://doi.org/10.1017/S0017089500032596 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032596


WARPED PRODUCT SPACES 271

ellipse, we use the discussion we made in the last section; in particular the Euler-Lagrange
equations can be written in terms of K and the slope g, as follows

4Kg3 + (2K2 + 12)g2 + &Kg + K2 = 0. (12)

The following theorem shows the existence of a rational one-parameter family of closed
helices which are free elasticae in H](-\).

THEOREM 3. For any non-zero rational number q, there exists a closed helix Pq in H\(—\)
which is a free elastica in H*(—l). Moreover all these helices are spacelike.

Proof. First we notice that the left hand of (12) factors into (K + 2g)(2icg2 + 6g + K).
Since K2 > 4 and q ^ 0, the equation (8) gives that K + 2g ̂  0 and so the Euler-Lagrange
equations become 2Kg2 + 6g + K = 0. This formula is combined with (8) to show that a
closed helix p is a free elastica in H](—\) if and only if regarded as a geodesic of rational
slope q in a Hopf torus on a geodesic circle a in H2(-4) with curvature K, both parameters
give a zero of the following function,

F(K, q) = (4q2 + iyV* 2 - 4 - 4q(K2 - 3). (13)

It is not difficult to see that for any non-zero rational number q, there exists a real number
K e (—oo, —2) such that F(K, q) — 0. We choose a geodesic circle in / / 2 ( -4 ) with curvature K
and a geodesic in Ca — U~l(a) whose slope is g = 2£(q + £), where L and A are respectively
the length of a and the enclosed area by a in H2(—4). Certainly /5 is a closed helix in H\{— 1)
and its curvature and torsion satisfy the Euler-Lagrange equations for free elasticae. We also
see that these helices are spacelike because 1 - g2 > 0. •

REMARK 2. It is easy to deduce from F(K, q) = 0 that the relationship between q and K is
given by

(14)

where 4 < K2 < | .
From this equation, one can see that every real number q ^ 0 occurs for exactly one K,

while each K determines exactly two values of q, except when K2 = \ (which corresponds to
q — i or q = - 5). The product of these two values of q is always \, therefore when one of the
two is rational the other one must also be rational. Thus the corresponding Hopf tori possess
transverse foliations by closed free elastic helices.

COROLLARY 3. For any positive function f on the unit circle and any non-zero rational
number q there exists a Willmore tori Tpq in the 4-dimensional warped product eS1 x/H](-\).
It is Riemannian or Lorentzian according to e = 1 or e = - 1 respectively.

REMARK 3. We can use the usual Hopf fibration of the 3-dimensional unit sphere 53(1)
on the 2-sphere to get a rational one-parameter family of closed helices being free elasticae in
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53(1), [6, 15]. Therefore we can get Willmore tori in the warped product eS{ x/53(l), for any
positive function/on the unit circle.
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