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Abstract

In 1903 Mirimanoff conjectured that Cauchy–Mirimanoff polynomials En are irreducible over Q for odd
prime n. Polynomials Rn, S n, Tn are introduced, closely related to En. It is proved that Rm, S m, Tm are
irreducible over Q for odd m ≥ 3, and En, Rn, S n are irreducible over Q, for n = 2qm, q = 1, 2, 3, 4, 5, and
m ≥ 1 odd.
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1. Introduction

The study of Cauchy–Mirimanoff polynomials En was initiated by Cauchy and
Liouville [2] in 1839 in the context of Fermat’s last theorem. In 1903 Mirimanoff [6]
conjectured that Ep is irreducible overQ for any odd prime p. Little progress was made
on this subject for more than 90 years, until Helou [3] investigated the Galois group of
En. Helou showed that for odd n ≥ 9, the roots of En occur in sets of six (corresponding
to the six automorphisms of En), and all of the roots of any factor polynomial also
occur in sets of six. In the same paper Helou gave a proof, credited to M. Filaseta,
based on the Newton polygon of En, that E2p is irreducible over Q for any odd prime
p. In 1997 Beukers [1] proved that the Ep are relatively prime to each other. In 2007,
Tzermias [10] proved a necessary condition for the irreducibility of polynomials over
Q (an extension of Pólya and Szegő’s irreducibility theorem) and used this to prove
that Ep is irreducible over Q for any prime p < 1000. Tzermias stated that ‘It is not
unlikely that En is irreducible for all integers n’. In 2010 Irick [4] gave a proof of
the irreducibility of E2p (different from Filaseta’s), proved that E3p is irreducible, and
investigated the irreducibility of E3pi . Other authors have demonstrated properties
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of the Cauchy–Mirimanoff polynomials, including Klösgen [5] and Terjanian [9].
A bibliography of Ribenboim [7, pp. 231–234] lists several more.

In this paper polynomials Rn, S n, Tn ∈ Z[x], close relatives of En, are introduced.
These polynomials have even degree, and all of their coefficients are positive. It is
shown here that all of their roots are simple and lie in the open strip −1 < Re(z) < 0,
that none of the roots are real, and that the polynomials and all of their factors in Z[x]
are Hurwitz stable. It is proved that Rm, S m, Tm are irreducible over Q for odd m ≥ 3,
and En, Rn, S n are irreducible over Q, for n = 2qm, where q = 1, 2, 3, 4, 5 and m ≥ 1 is
odd. It is conjectured that En, Rn, S n, and Tn are irreducible over Q for n ≥ 2.

2. The polynomials En, Rn, Sn and Tn

We define En, Rn, S n, Tn ∈ Z[x] as follows.

(1) For n ≥ 2, (x + 1)n − xn − 1 = x(x + 1)a(x2 + x + 1)bEn, where a = b = 0 if n is
even; while if n is odd, a = 1 and b = 0, 1, 2 according as n ≡ 3, −1, 1 mod 6
(Helou [3]).

(2) For n ≥ 1, (x + 1)n + xn − 1 = x(x + 1)aRn, where a = 0 if n is odd, and a = 1 if n
is even.

(3) For n ≥ 1, (x + 1)n − xn + 1 = (x + 1)aS n, where a = 0 if n is odd and a = 1 if n
is even.

(4) For n ≥ 1, (x + 1)n + xn + 1 = (x + 1)a(x2 + x + 1)bTn, where a = 1 and b = 0 if n
is odd; while if n is even, a = 0 and b = 0, 1, 2 according as n ≡ 0, 2, −2 mod 6.

The coefficients of En, Rn, S n and Tn can be obtained by using the binomial
expansion in their definitions. The following explicit formulae will be used in this
paper.

(1) If n ≥ 2 is even, then Rn =
∑n−2

i=0 αixi, where

αi = (−1)i
i∑

j=0

(−1) j

(
n

j + 1

)
for i = 0, . . . , n − 2. (1)

(2) If n ≥ 1 is odd, then Rn =
∑n−2

i=0 αixi + 2xn−1, where

αi =

(
n

i + 1

)
for i = 0, . . . , n − 2. (2)

(3) If n ≥ 2 is even, then En =
∑n−2

i=0 αixi, where

αi =

(
n

i + 1

)
for i = 0, . . . , n − 2.

https://doi.org/10.1017/S1446788712000195 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000195


[3] Cauchy–Mirimanoff and related polynomials 271

To show the relationships between the polynomials En, Rn, S n, and Tn, it is convenient
to define the following matrices Ai ∈ GL2(Z):

A1 =

(
1 0
0 1

)
, A2 =

(
0 1
1 0

)
, A3 =

(
−1 −1

0 1

)
,

A4 =

(
0 −1
1 1

)
, A5 =

(
−1 0

1 1

)
, A6 =

(
−1 −1

1 0

)
.

(3)

For any A =
(a b

c d
)
∈ GL2(Z), define the action of A on Z[x] by mapping f ∈ Z[x] to

f A(x) = (cx + d)dn f ((ax + b)/(cx + d)), where dn = deg f . Then from the definition of
Tn for even n ≥ 2,

Tn = T A2
n = T A3

n = T A4
n = T A5

n = T A6
n ,

and exactly the same formulae hold for En for odd n ≥ 3. For odd n ≥ 1,

Tn = T A2
n .

For even n ≥ 2, En, Rn, S n are related by

Rn = RA3
n , (4)

Rn = EA6
n , (5)

Rn = S A2
n , (6)

S n = S A5
n ,

S n = EA3
n . (7)

For odd n ≥ 1, Rn, S n and Tn are related by

Rn = RA5
n , (8)

Rn = T A3
n , (9)

S n = S A3
n ,

S n = RA2
n . (10)

L 1. En, Rn, S n and Tn have no real roots.

P. From their definitions the polynomials En, Rn, S n and Tn can only have roots
for n ≥ 3. Begin with Rn. First we show that 0 and −1 are not roots of Rn. From the
definition of Rn and the binomial expansion,

(x + 1)aRn(x) =

n−2∑
i=0

(
n

i + 1

)
xi + 2xn−1,

so that Rn(0) = n ≥ 3, that is, x = 0 is not a root of Rn for any n. By (4), for
even n, Rn(−1) = Rn(0) , 0. For odd n, xRn(x) = (x + 1)n + xn − 1 and consequently
Rn(−1) = 2, so −1 is not a root of Rn for odd n either.
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Now suppose that x ∈ R \ {0, −1} is a root of Rn. From the definition of Rn, x
satisfies (x + 1)n + xn = 1, so that x > 0 is clearly impossible. If −1 < x < 0 then for
n ≥ 2, 1 = |(x + 1)n + xn| ≤ |x + 1|n + |x|n < |x + 1| + |x| = 1, a contradiction. For x < −1
replace x by −y − 1 with y > 0 so that (y + 1)n + yn = ±1, depending on the parity of n.
Both cases give a contradiction. Therefore, Rn has no real roots.

By (10) and (6), S n has no real roots because Rn has none. Similarly, by (9), Tn

has no real roots for odd n, and by (5), En has no real roots for even n. A proof
that En has no real roots for n = 6k ± 1 is given by Ribenboim [7, pp. 223–225].
For odd n it remains to prove there are no real roots for n = 6k + 3. In this case
the symmetries En(x) = xdn En(1/x) and En(x) = En(−x − 1) apply, and so Ribenboim’s
proof also applies to n = 6k + 3. Finally, consider the roots of Tn for n even. But there
can be no real root in this case as for all x ∈ R, (x + 1)n + xn + 1 > 1. �

L 2. All of the roots of En, Rn, S n and Tn lie in the open strip −1 < Re(z) < 0.

P. The polynomials En, Rn, S n and Tn are constant for n ≤ 2, so assume that n ≥
3. Let Pn(e, f ; x) = (x + 1)n + exn + f ∈ Z[x], where e, f ∈ {1, −1}. For appropriate
choices of e, f , each of the polynomials En, Rn, S n and Tn is a factor of Pn over
Z. Note that if z is a root of Pn, then |(z + 1)n + ezn| = 1. Let z = a + ib , 0, −1,
with a, b ∈ R, be a root of Pn, so that |(a + 1 + ib)n + e(a + ib)n| = 1. By the (inverse)
triangle inequality, if z1, z2 are any two complex numbers, then |z1 + z2| ≥ ||z1| − |z2||.
In this inequality select z1 = (a + 1 + ib)n and z2 = e(a + ib)n, so that 1 ≥ |((a + 1)2 +

b2)n/2 − (a2 + b2)n/2|.
But if a ≥ 0 (note that b , 0 if a = 0 because it is assumed that z , 0),

then |((a + 1)2 + b2)n/2 − (a2 + b2)n/2| = ((a + 1)2 + b2)n/2 − (a2 + b2)n/2 > 1, for n ≥ 3.
This contradicts the earlier inequality, so it follows that a < 0 if n ≥ 3.

Now note that Pn(e, f ; −x − 1) = (−x)n + e(−x − 1)n + f = (−1)nePn(e, e f (−1)n; x).
Therefore, the previous argument demonstrating the impossibility of a ≥ 0 also works
for a ≤ −1, and it follows that −1 < a < 0. That is, if n ≥ 3, all of the roots of Pn must
lie in the open strip −1 < Re(z) < 0, with the possible exception of z = 0, z = −1.

Even if z = 0, z = −1 are roots of Pn, they cannot be roots of En, Rn, S n or Tn because
these polynomials have no real roots (Lemma 1). Then from their definitions En, Rn,
S n and Tn share the same roots as Pn (for appropriate values of e and f ) with the only
exceptions being z = 0, z = −1, and possibly the roots of z2 + z + 1, but the latter lie in
−1 < Re(z) < 0 anyway. �

D 3. A Hurwitz (or Hurwitz stable) polynomial H ∈ R[x] is defined by the
property that all of its roots have negative real part.

Note that a Hurwitz polynomial is sometimes defined to have all of its coefficients
the same sign, but Lemma 4 below shows that this is a consequence of the property
given in the above definition. Also, for a polynomial to have all of its coefficients
the same sign is not sufficient for the Hurwitz property to apply, for example H(x) =

x3 + x2 + 4x + 30 has roots 1 ± 3i.
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L 4. All of the coefficients of any Hurwitz polynomial H, have the same sign.
Every factor of H over Z is Hurwitz.

P. By definition H ∈ R[x] and all of its roots have negative real part. Let H
have leading coefficient an(,0) ∈ R, so it is enough to consider the monic polynomial
P = H/an. Now P can be factored into linear factors x + r corresponding to the real
roots of P, and quadratic factors (x + c)(x + c̄) = x2 + ax + b corresponding to the
complex roots. The real numbers r, a, b are positive because every root has negative
real part. Therefore all of the coefficients of P are positive, and so all of the coefficients
of H have the same sign. Also, all of the roots of any factor g ∈ Z[x] of H must also
belong to H, so by definition g is also Hurwitz. �

C 5. En, Rn, S n and Tn are Hurwitz polynomials. All of their coefficients are
positive, and each of their factors in Z[x] are Hurwitz polynomials of even degree. All
of the coefficients of each of these polynomials have the same sign.

P. From their definitions En, Rn, S n and Tn have positive leading coefficients,
and by Lemma 2 all of their roots have negative real part. Then, by definition, these
polynomials are Hurwitz. It follows from Lemma 4 that all of their factors in Z[x]
are Hurwitz, and all of the coefficients of any such factor have the same sign. From
Lemma 1 all of the roots of En, Rn, S n and Tn occur in conjugate pairs, and since any
pair belongs to the same polynomial, each factor of En, Rn, S n and Tn over Z must
have even degree. �

L 6. All of the roots of En, Rn, S n and Tn are simple.

P. From their definitions each of the polynomials En, Rn, S n and Tn is a factor
(over Z) of Pn(e, f ; x) = (x + 1)n + exn + f , for appropriate values of e, f ∈ {1, −1}.
Assume that Pn(e, f ; x) has a complex root z, with non-zero imaginary part (none
of the roots of En, Rn, S n and Tn are real by Lemma 1) and of multiplicity at least
2. Then Pn(e, f ; z) = 0 and P′n(e, f ; z) = 0, where a prime denotes the derivative.
Then (z + 1)n + ezn + f = 0 and (z + 1)n−1 + ezn−1 = 0. Multiplying the second of these
equations by z + 1 and subtracting the result from the first equation gives zn−1 = f /e =

±1. Substituting this into the second equation gives (z + 1)n−1 = − f = ±1. Therefore
z and z + 1 are complex (n − 1)th roots of ±1, and |z| = |z + 1| = |1 + 1/z| = 1. These
last conditions require that z = −(1 ±

√
−3)/2, so that z3 = 1 and (z + 1)3 = −1. Then

zn−1 = f /e implies that n = 3 j + 1 for some integer j with e = f , and (z + 1)n−1 = − f
implies that f = (−1) j+1. The requirement that e = f immediately implies that Rn and
S n (for which e , f ) must have only simple roots. In the case of En, e = f = −1 so
that f = (−1) j+1 implies that j must be even, that is, n = 6k + 1 for integer k. It is
proved by Ribenboim [7, pp. 220–221] that g = x2 + x + 1 does not divide En for any
n = 6k ± 1 and therefore z = −(1 ±

√
−3)/2, which are the roots of g, cannot be roots

of En. Therefore En has only simple roots. The final case to consider is e = f = 1,
which corresponds to Tn. In this case j is odd so that n = 6k − 2 for integer k.
By the definition of Tn for n = 6k − 2, Pn(1, 1; x) = g(x)2Tn(x). If z = −(1 ±

√
−3)/2
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are roots of Tn, then g must be a factor of Tn and so z must have multiplicity
at least 3 in Pn(1, 1; x). Then P′′n (1, 1; z) = 0, which gives (z + 1)n−2 + zn−2 = 0.
Multiplying by z + 1 gives (z + 1)n−1 + zn−1 + zn−2 = 0, and also (z + 1)n−1 + zn−1 = 0
from P′n(1, 1; z) = 0. Subtraction gives zn−2 = 0, which is impossible. Therefore Tn has
only simple roots. �

Before investigating the irreducibility of En, Rn, S n and Tn in the next section,
some simple polynomial properties need to be established. In the following cont( f ),
the content of f ∈ Z[x], is the gcd of all of the coefficients of f .

L 7. If A ∈ GL2(Z) and f ∈ Z[x], then cont( f ) = cont( f A), and f is irreducible
over Z if and only if f A is irreducible over Z.

L 8. Let f ∈ Z[x], with λ = cont( f ), be such that f A = ± f , where A ∈ GL2(Z).
Assume that f is not proportional to a pure power of an irreducible polynomial in
Z[x]. Then either:

(1) there exist distinct primitive polynomials g1, g2 ∈ Z[x], with degree at least 1,
such that f = ±λg1g2, with gA

1 = ±g1 and gA
2 = ±g2; or

(2) there exist an integer k ≥ 2 and distinct primitive polynomials gi ∈ Z[x] for
i = 1, . . . , k, all with the same degree (at least 1), such that f = ±λg1 · · · gk,
with gA

i = gi+1 for i = 1, . . . , k − 1 and gA
k = ±g1. Also, every gi is the same pure

power of an irreducible polynomial in Z[x].

P. Write f as a product of distinct primitive polynomials f = λF1 · · · FN where
Fi = f ni

i and each fi ∈ Z[x] is distinct, primitive and irreducible over Z (with degree at
least 1). Then FA

i is a distinct primitive factor of f A, and hence of f . So the action of A
permutes the factors Fi of f (with a possible sign change). Since det A = ±1 the action
A has an inverse, so it generates the action of a cyclic group on Z[x]. The Fi form orbits
under this action. Let Gi ∈ Z[x] be the product of such elements (including Fi) in one
such orbit, that is, Gi = Fi · FA

i · F
A2

i · · · F
Aki−1

i , where ki ≥ 1 is the length of the orbit.
Then Gi is a pure power of a primitive polynomial with the property that GA

i = ±Gi,
and each Gi is distinct. It follows that if f has at least two orbits (so deg f ≥ 2) then
there exist distinct primitive polynomials g1, g2 ∈ Z[x] of degree at least 1 (g1, g2 are
products, not necessarily unique, of the polynomials Gi) such that f = ±λg1g2, where
gA

1 = ±g1 and gA
2 = ±g2.

If f has only one orbit (so f is proportional to a pure power of a product of
distinct, primitive and irreducible polynomials all with the same degree), then f =

±λF · FA · FA2
· · · FAk−1

, where F is a pure power of a primitive irreducible polynomial
in Z[x] (of degree at least 1), and k ≥ 1 is the length of the orbit. The special case of
a single orbit of length k = 1 is excluded by an assumption of the lemma, because it
corresponds to f being proportional to a pure power of an irreducible polynomial. For
a single orbit of length k ≥ 2, set gi = FAi−1

for i = 1, . . . , k. Then each distinct gi is a
pure power of a primitive irreducible polynomial with the property that gA

i = gi+1 for
i = 1, . . . , k − 1 and gA

k = ±g1. �
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C 9. If A2 = I2 and A , ±I2, then take k = 2 and gA
2 = g1 in Lemma 8.

P. Assuming that Lemma 8 applies to f , and that f has only one orbit with respect
to A, then its length is k ≥ 2. In the proof of the lemma gi = FAi−1

for i = 1, . . . , k. If
A2 = I2 then gA

2 = FA2
= F = g1, and since A , ±I2 the length of the orbit can be taken

to be k = 2. �

Note that the Ai defined by Equations (3) satisfy A2
2 = A2

3 = A2
5 = I2 so that the

Corollary can be applied to these cases.

3. Irreducibility of En, Rn, Sn, Tn

In this section it is proved that Rm, S m, Tm are irreducible over Q for odd m ≥ 3
(Theorem 10), and En, Rn, S n are irreducible over Q, for n = 2qm, q = 1, 2, 3, 4, 5, and
m ≥ 1 odd (Theorem 15). It is conjectured that En, Rn, S n, Tn are irreducible over Q
for all values of n ≥ 2.

As mentioned in the introduction, Filaseta proved that for any odd prime p, E2p is
irreducible over Q (this appears to be the first proof that En is irreducible over Q for
an infinite number of values of n). For even n, according to (5) and (7) respectively,
Rn = EA6

n and S n = EA3
n . It follows from Lemma 7 that R2p and S 2p are irreducible over

Q. Also, by (2), if p is any odd prime,

Rp(x) =

p−2∑
i=0

(
p

i + 1

)
xi + 2xp−1.

Then Rp is irreducible over Q by the Eisenstein irreducibility criterion (Stewart and
Tall [8, p. 19]). For odd n, according to (10) and (9) respectively, S n = RA2

n and
Rn = T A3

n , and it follows from Lemma 7 that S p and Tp are irreducible over Q.
Theorems 10 and 15 extend all of these results.

T 10. Rn, S n and Tn are irreducible over Q for odd n ≥ 3.

P. Suppose that n is odd, so that Rn is primitive (leading coefficient 2, odd constant
coefficient), and Rn(x) = (x + 1)n−1Rn(−x/(x + 1)) by (8). Also, by Lemma 6, Rn has
only simple roots so it cannot be proportional to a power (at least 2) of an irreducible
polynomial in Z[x]. Assume now that Rn is reducible over Q (and therefore over Z
by the Gauss polynomial lemma). Corollary 9 can be applied to Rn with A = A5 (note
that the content λ = 1 because Rn is primitive). From Lemma 8 there exist primitive
relatively prime polynomials g1, g2 ∈ Z[x], of degree r ≥ 1 and s ≥ 1 respectively, such
that Rn = g1g2, with either:

(1) g1(x) = (x + 1)rg1(−x/(x + 1)) and g2(x) = (x + 1)sg2(−x/(x + 1)); or
(2) g1(x) = (x + 1)sg2(−x/(x + 1)) and g2(x) = (x + 1)rg1(−x/(x + 1)).

Note that the signs have been dropped by applying Corollary 5, and r, s are even (so
r, s ≥ 2) with r = s in case (2).
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Set g1(x) = ar xr + · · · + a0 and g2(x) = bsxs + · · · + b0, where all ai, b j ∈ Z
+ by

Corollary 5. The leading coefficient of Rn is 2 so that arbs = 2. In case (1), g1(1) =

2rg1(−1/2) = ar(−1)r + 2ar−1(−1)r−1 + · · · + 2ra0 and g2(1) = 2sg2(−1/2) = bs(−1)s +

2bs−1(−1)s−1 + · · · + 2sb0. In case (2), g1(1) = 2sg2(−1/2) = bs(−1)s + 2bs−1(−1)s−1 +

· · · + 2sb0 and g2(1) = 2rg1(−1/2) = ar(−1)r + 2ar−1(−1)r−1 + · · · + 2ra0 (with r = s).
Since one of ar, bs must be 1, and the other 2, in both cases one of g1(1), g2(1) must

be odd and the other even. But from the definition of Rn, Rn(1) = 2n = g1(1)g2(1), so
that one of g1(1), g2(1) must be 1. Since g1, g2 both have degree at least 2, and all of
their coefficients are positive, it follows that g1(1) > 1 and g2(1) > 1, a contradiction.
Therefore, for odd n, Rn is irreducible over Q. According to (10) and (9) respectively,
S n = RA2

n and Rn = T A3
n , and it follows from Lemma 7 that S n and Tn are irreducible

over Q. �

L 11. Let p be any prime, let J, K ∈ Z+ be such that K ≤ p − 1, and assume that
J is not divisible by p. Let r ≥ s ≥ 0 be any integers such that K pr ≥ Jps. If vp(x) is
the p-adic valuation of x, then

vp

((
K pr

Jps

))
= r − s.

P. For any prime p and positive integers n, m, a theorem of Kummer (Ribenboim
[7, pp. 75–77]) can be put into the form vp

((n
m
))

= N, for n ≥ m, where N is the number
of integers j ≥ 0 for which {m/p j} > {n/p j}, where {x} denotes the fractional part of
a real number x. Setting n = K pr and m = Jps, then N is the number of integers
j ≥ 0 for which {Jps− j} > {K pr− j}. For j = 0, . . . , s the inequality is not satisfied as
both sides are zero. Since, by assumption, p does not divide J, K, the inequality is
satisfied for j = s + 1, . . . , r because then {Jps− j} > 0 while {K pr− j} = 0. For j > r,
{K pr− j} ≥ {Jps− j} as 0 < K pr− j < 1 (because it is assumed that K ≤ p − 1) so that
{K pr− j} = K pr− j, and K pr ≥ Jps by assumption. Therefore N = r − s. �

L 12. Let n = 2qm with q ≥ 1 ∈ Z and odd m ≥ 1, and let i ∈ Z be such that
0 ≤ i ≤ 2q − 2. Then

v2

((
n

i + 1

))
= q − t, (11)

where i = 2tN − 1, t ≥ 0 and N ≥ 1 is odd. Consequently,

v2

((
n

i + 1

)) = q − t + 1 if i = 2t−1 − 1,

> q − t + 1 if 2t−1 − 1 < i ≤ 2t − 2.
(12)

P. First note that for any integers a, b with a, b , 0,

v2(a ± b)

= min(v2(a), v2(b)) if v2(a) , v2(b)

≥ v2(a) + 1 if v2(a) = v2(b).
(13)
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Also, v2(a/b) = v2(a) − v2(b) and v2(ab) = v2(a) + v2(b). Suppose that 0 ≤ i ≤ 2q − 2,
and let k ∈ Z such that 0 < k ≤ i. Then v2(k) < q = v2(n) so that v2((n − k)/k) = v2(n −
k) − v2(k) = 0 by (13). Taking the 2-adic valuation of(

n
i + 1

)
= (n/(i + 1))

i∏
k=1

((n − k)/k)

gives

v2

((
n

i + 1

))
= v2(n/(i + 1)) +

i∑
k=1

v2((n − k)/k) = q − v2(i + 1).

There exist unique t, N ∈ Z such that i = 2tN − 1 with N ≥ 1 odd and t ≥ 0, and
since i ≤ 2q − 2 it follows that t ≤ q − log2(N) ≤ q. Then v2(i + 1) = t and (11) is
proved. In particular, replacing t by t − 1, and putting N = 1 so that i = 2t−1 − 1, then
v2

(( n
i+1

))
= q − t + 1 by (11); this is the first case of (12). If i = 2t0 N − 1 for some odd

N ≥ 1 and integer t0 ≥ 0 such that 2t−1 − 1 < i ≤ 2t − 2, then 2t0 ≤ (2t − 1)/N < 2t, so
t0 < t. But if t0 = t − 1 then 2t−1 < 2t−1N ≤ 2t − 1, so N ≥ 2 by the left inequality. But
then the right-hand inequality 2t−1N ≤ 2t − 1 is impossible. Therefore t0 < t − 1 and
v2

(( n
i+1

))
= q − t0 > q − t + 1, the second case of (12). �

L 13. Let n = 2qm with q ≥ 1 and m ≥ 1 odd. Write Rn(x) =
∑n−2

i=0 αixi with αi

given by Equation (1). Then

v2(αi) = q − t + 1 for 2t−1 − 1 ≤ i ≤ 2t − 2, t = 1, . . . , q, (14)

and consequently v2(αi) ≤ v2(αi−1) for i = 1, . . . , 2q − 2. In particular, if n = 2q then
the 2-adic valuations of all of the αi are obtained from (14).

P. From equation (1),

αi =

(
n

i + 1

)
− αi−1, i = 1, . . . , n − 2. (15)

Proceed by induction on t. Clearly (14) is true for t = 1 as α0 = 2qm. Assume that (14)
is true for some q > t ≥ 1, so in particular v2(αi0 ) = q − t + 1 for i0 = 2t − 2. Let i1 =

i0 + 1 = 2t − 1. Then replacing t by t + 1 in (12), v2
(( n

i1+1
))

= q − (t + 1) + 1 = q − t.
From (15), αi1 =

(( n
i1+1

))
− αi0 , and taking the 2-adic valuation using (13),

v2(αi1 ) = min
(
v2

((
n

i1 + 1

))
, v2(αi0 )

)
= min(q − t, q − t + 1) = q − t.

So (14) is confirmed for t + 1 and i = i1, the lowest value of i in its range. For the rest
of the values of i, that is, for i j = i0 + j and 2 ≤ j ≤ 2t, so that 2t − 1 < i j ≤ 2t+1 − 2,
Equation (12) gives that v2

(( n
i j+1

))
> q − t. For j = 2 from (15),

v2(αi2 ) = min
(
v2

((
n

i2 + 1

))
, v2(αi1 )

)
= min

(
v2

((
n

i2 + 1

))
, q − t

)
= q − t.

This may be continued for the rest of the values of j, so (14) is true for t + 1. �
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L 14. For n even, cont(En) = cont(Rn) = 2h, where h = 1 if n is a pure power of 2,
and h = 0 otherwise.

P. According to (5), for n even, Rn = EA6
n . Then, from Lemma 7,the content of Rn

is the same as that of En. From the definition of Rn it suffices to compute the content of
Fn = (x + 1)n + xn − 1. Since the coefficient of xn in Fn is 2, the content must be either
1 or 2. Let n = 2qm for q ≥ 1 and m ≥ 1 odd. Since (x + 1)2q

≡ x2q
+ 1 mod 2, it follows

that Fn ≡ (x2q
+ 1)m + x2qm − 1 mod 2. When m > 1, the coefficient of x2q

mod 2 is
m, which is odd, and therefore cont(Rn) = 1. When m = 1 (n = 2q), Fn ≡ 0 mod 2, so
cont(Rn) = 2. �

T 15. Rn, S n and En are irreducible over Q for n = 2qm ≥ 4, where q =

1, 2, 3, 4, 5, and m ≥ 1 is odd.

P. Direct computation shows that R4, R8, R16 and R32 are irreducible over Q.
Therefore, setting n = 2qm ≥ 4, where q = 1, 2, 3, 4, 5, it may be assumed that n is not
a pure power of 2, that is, m ≥ 3.

For n even, recall that Rn =
∑n−2

i=0 αixi, where αi is given by (1). Note that Rn(0) =

α0 = n, and from the definition of Rn, Rn(1) = 2n−1. According to (4), Rn = RA3
n so that

Rn(x) = Rn(−x − 1) and therefore Rn(−2) = 2n−1.
Assume that Rn is reducible over Q. Applying Corollary 9 to f = Rn with A = A3,

there exist primitive relatively prime polynomials g1, g2 ∈ Z[x], of degree r ≥ 1 and
s ≥ 1 respectively, such that Rn = λg1g2, where λ ∈ Z is the content of Rn, with
either (1) g1(x) = g1(−x − 1) and g2(x) = g2(−x − 1), or (2) g1(x) = g2(−x − 1) and
g2(x) = g1(−x − 1) (with r = s in case (2)). The signs have been dropped by applying
Corollary 5, and since r and s are even, we have r, s ≥ 2. From Lemma 14, since n is
assumed not to be a pure power of 2, set h = 0 and λ = 1.

Put

g1(x) =

r∑
i=0

aix
i and g2(x) =

s∑
i=0

bix
i,

where ai, b j ∈ Z
+. Identifying coefficients in Rn = g1g2 gives αi =

∑
j+k=i a jbk. Since

deg Rn = n − 2 = r + s ≥ 4, we have n ≥ 6. But in case (2), r + s = 2r = n − 2 =

2(2q−1m − 1) so that r = 2q−1m − 1, which is odd for q > 1. From this contradiction
case (2) is impossible for q > 1.

Since a0b0 = α0 = 2qm with q ≥ 1, then at least one of a0, b0 must be even. In fact
both a0 = g1(0) and b0 = g2(0) are even, as follows. Suppose that one of a0, b0 is odd,
and the other even. Then one of g1(−2) or g2(−2) is odd. In case (1) g1(1) = g1(−2) and
g2(1) = g2(−2), while in case (2) g1(1) = g2(−2) and g2(1) = g1(−2). Then in both cases
one of g1(1), g2(1) must be odd, and Rn(1) = g1(1)g2(1) = 2n−1 so that the odd one of
g1(1), g2(1) must be equal to 1. But since all of the coefficients of g1, g2 are positive,
and since their degrees are r ≥ 2 and s ≥ 2, it follows that g1(1) > 1 and g2(1) > 1.
From this contradiction it follows that both a0 and b0 are even. Let Ai = v2(ai) and
Bi = v2(bi) for i = 0, 1, 2, . . . , so that ai = 2Ai Mi and bi = 2Bi Ni where Mi, Ni ≥ 1 are
odd. Then, in particular, A0 ≥ 1, B0 ≥ 1, A0 + B0 = q and M0N0 = m.
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Since q = A0 + B0 ≥ 2, the assumption that Rn is reducible over Z must be false for
n = 2m (q = 1). According to (5) and (6), Rn = EA6

n and Rn = S A2
n , so it follows from

Lemma 7 that E2m and S 2m are irreducible over Q.
Since a0, b0 are even, g1(−2) and g2(−2) are both even, and since g1(1)g2(1) =

2n−1 = g1(−2)g2(−2), put g1(−2) = 2t1 and g2(−2) = 2t2 , for integers t1, t2 where t1 ≥ 1,
t2 ≥ 1 and t1 + t2 = n − 1 ≥ 5. Then,

g1(−2) = 2A0 M0 − 2a1 + 4a2 − · · · + (−2)rar = 2t1 , (16)

g2(−2) = 2B0 N0 − 2b1 + 4b2 − · · · + (−2)sbs = 2t2 , (17)

and

g1(−2) = g1(1) = 2A0 M0 + a1 + a2 + · · · + ar = 2t1 , (18)

g2(−2) = g2(1) = 2B0 N0 + b1 + b2 + · · · + bs = 2t2 . (19)

Since all of the ai, b j are at least 1, it follows from (18) and (19) that 2t1 ≥ 2A0 M0 + r
and 2t2 ≥ 2B0 N0 + s, where r ≥ 2 and s ≥ 2. Therefore t1 ≥ A0 + 1 and t2 ≥ B0 + 1.
Note from (14) that

v2(α0) = q, v2(α1) = v2(α2) = q − 1, v2(α3) = v2(α4) = q − 2. (20)

Assume that q = 2 (n = 4m). Since A0 + B0 = q = 2, we have A0 = B0 = 1 so t1 ≥ 2 and
t2 ≥ 2. Since 4|2t1 and 4|2t2 , it follows from (16) and (17) respectively that M0 − a1

and N0 − b1 are even, so a1 and b1 are odd. Now α1 = a0b1 + a1b0 = 2(M0b1 + N0a1),
and since M0, N0, a1, b1 are odd, v2(α1) ≥ 2. But from (20), v2(α1) = 1. From this
contradiction, R4m is irreducible over Q. Again applying Lemma 7 with (5) and (6), it
follows that E4m and S 4m are irreducible over Q.

Assume that q = 3 (n = 8m). Since A0 + B0 = q = 3, either A0 = 1, B0 = 2, or A0 = 2,
B0 = 1. Without loss of generality, assume that A0 = 1 and B0 = 2 so t1 ≥ 2 and t2 ≥ 3.
Then a1 is odd and b1 even by (16) and (17), respectively. Put b1 = 2b11. Now

α1 = a0b1 + a1b0 = 4(M0b11 + N0a1),

and, since v2(α1) = 2, v2(M0b11 + N0a1) = 0. Therefore v2(b11) ≥ 1, that is, b11 is even,
so v2(b1) ≥ 2. Since 8|2t2 it follows from (17) that N0 − b11 + b2 must be even, so b2 is
odd. Since v2(a0b2) = 1, v2(a1b1) ≥ 2 and v2(a2b0) ≥ 2, applying (13) gives

v2(α2) = v2(a0b2 + a1b1 + a2b0) = 1.

But from (20), v2(α2) = 2. From this contradiction R8m is irreducible over Q. As
previously, applying Lemma 7 with (5) and (6), E8m and S 8m are also irreducible
over Q.

For the sake of brevity, the detailed proofs of the cases q = 4 and q = 5 are omitted.
They are proved in the same way as the previous cases, by comparing v2(αi) =

v2(
∑

j+k=i a jbk) with the valuation given from (20). Only the possibilities A0 + B0 = q
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need to be considered. For q = 4 this means A0 = 1, B0 = 3 and A0 = 2, B0 = 2. The
values of αi for i = 0, . . . , 3 are needed to prove q = 4 impossible. For q = 5 the
values of v2(αi) for i = 0, . . . , 4 are required. It seems likely, but not certain, that
the method could be applied successfully to q > 5 with the length of proofs growing
approximately quadratically with q, as v2(αi) is required for i = 0, . . . , q − 1, and for
each i the number of pairs of values for A0 ≥ 1, B0 ≥ 1 to be considered is bq/2c. �
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