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ON TWO OPEN PROBLEMS ABOUT STRONGLY CLEAN RINGS
ZHOU WANG AND JIANLONG CHEN

A ring is called strongly clean if every element is the sum of an idempotent and a unit
which commute. In 1999 Nicholson asked whether every semiperfect ring is strongly
clean and whether the matrix ring of a strongly clean ring is strongly clean. In this
paper, we prove that if R = {m/n € Q: n is odd}, then M,(R) is a semiperfect ring
but not strongly clean. Thus, we give negative answers to both questions. It is also
proved that every upper triangular matrix ring over the ring R is strongly clean.

Throughout this paper all rings are associative with unit. For a ring R, let U(R) be
the group of units of R, M,{R) the n X n matrix ring over R, and T,,(R) the n x n upper
triangular matrix ring over R, respectively. The identity matrix of M,(R) is denoted by
I. Q means the field of rational numbers. A ring R is called clean if every element of R
is a sum of an idempotent and a unit. The ring is called strongly clean if every element
is the sum of an idempotent and a unit which commute. It is shown by Camillo and Yu
[2, Theorem 9] that every semiperfect ring is clean. Han and Nicholson [4, Corollary 1]
showed that every matrix ring M,(R) over a clean ring is again clean.

Nicholson asked whether every semiperfect ring is strongly clean [5, Question 5] and
whether the matrix ring of a strongly clean ring is strongly clean [5, Question 3]. In this
paper, we prove that if R = {m/n € Q : n is odd}, then M;(R) is a semiperfect ring but
not strongly clean. Thus, we answer the two questions above, both in the negative. Also
we prove that every upper triangular matrix ring over the ring R is strongly clean. Thus,
we obtain a new class of strongly clean rings.

ExXAMPLE 1. Let R={m/n € Q:n is odd}. Then M,(R) is a semiperfect ring but it
is not strongly clean.

PROOF: Since R is a commutative local ring, it is semiperfect and strongly clean.
Since semiperfect rings are Morita invariant, M;(R) is semiperfect. By direct computa-
tion, we find all nontrivial idempotents in the matrix ring M,(R) are of the following

types:

(a b ), where a,b,c € R and bc = a — a®.
c l-a
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) 8 6 . 8 6 7 6 .
Consider (3 7) € M,y(R). Since (3 7) and (3 6) are not units in M,(R), we can
write :
8 6 [a b + 8—~a 6-0b
37/ \c 1-a 3—c 6+a/’
(1) bc = a — a?

a b 8—a 6-0b _ 8—a 6-b a b
¢c l—a 3—¢c 64+a] \3—c¢c 6+al\c 1-a/"

By comparing the (1, 1)-entry and (2, 1)-entry on both sides, we obtain

where a,b,¢c € R and

Suppose that

(2) : a{8 —a)+b(3-¢c)=(8—a)a+ (6 —b)c
(3) c8—a)+(1—a)83-¢c)=(B-cla+(6+a)c

By (1), (2) and (3), we obtain
73a® — 73a + 18 = 0.

The equation has no solutions in R, so M,(R) is not strongly clean. 0

REMARK 2. The above example gives negative answers to both questions of Nicholson.

By Nicholson (5], every strongly m-regular ring or local ring is strongly clean, and
they seem to be all known examples of strongly clean rings up to now. Here we give a
new class of strongly clean rings which are neither strongly m-regular nor local. A ring R
is called uniquely clean if every element of R is a sum of an idempotent and a unit and
the presentation is unique. This concept was introduced in [1]. Similarly, we can define
uniquely strongly clean rings.

THEOREM 3. Let R be a commutative local ring. Then R is uniquely clean ring
if and only if T,,(R) is uniquely strongly clean for every n 2 1.

PROOF: “«<”. Let n =1. Then R is uniquely strongly clean. Since R is commuta-
tive, R is uniquely clean.
“=”. When n = 1, the claim holds trivially. Let n > 2 and let A € T,,(R). Write

an G2 - Qin

Rl
: : : 0 ann
0 0 cr Qpn
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By induction hypothesis, A; can be uniquely expressed as A, = E + U where E?
= FE € T,_1(R) and U is a unit in T,,_;(R) and EU = UE. Moreover, a,, = €+ u
where €2 = e € R and u is a unit in R. Thus,

F+U « F o U o
A= = .
( 0 e+u) (O e)+<0 u)

Let F = (ﬁ a ,V = v o: . Then V € T,(R) is a unit. We next show that there
e

0
exist a;, a; such that F2 = F and FV = VF. It is clear that
(4) F?=F & Ea)+aie=o
(5) FV =VF & Ea; + aqyu = Ua; + aze

Note that a = a; + as.
CASE 1. a,, € R is a unit. Since R is uniquely clean, e = 0 and u = a,,. In this case,
(4) becomes Ea; = o) and (5) becomes E(a — ay) + aqyu = Uay. Then
Ea=(U+E~-ul)ay=(U+FE-ul)Eoy
=(UE+E-uE)a, = (U+ (1 —u))Ea, = (U +(1 —u))a;.

Since R is uniquely clean, if v is a unit, then 1 — u is not a unit, otherwise 1 — u
=0+ (1 —u) =1+ (—u) implies that 1 = 0. Let

Uy 1z Uin-1
0 wup -+ Uzp_a
U=
0 o .- Un-—1,n—-1

Since u;; is a unit, u; + (1 — u) is also a unit. Hence U + (1 — u)/ is a unit. So we can
let ay = (U+(1-uw))"'Eaand oy =a — (U + (1 ~u)I)"'Ea.

CASE 2. g, is not a unit in R. Then e = 1 and ¥ = ayp, — 1. In this case, (4) becomes
Ea; =0, and (5) becomes E(a ~ a;) + equ = Uy + (@ — o). Hence,
(E-DNa=(U-ul~({-E))oy=(U-ul-(I-E){I-E)
=[(U~-u)I~E)=(I-E)]ey =(U —ul - I){(I - E)ey
=U-ul —Nay = U~ (v+ 1))y

Since u + 1 = a,, is not a unit. Let

Uiy U2 - Ui n-1
0 wuxp -+ Upp
U=
0 o .- Un-1,n-1
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Then u; is a unit. So is u; — (u + 1). Hence, U — (u + 1)1 is a unit. So let a;
=U-(u+ 1)1)_1(E —Naandaz=a- (U - (u+ l)I)-l(E— Da.

Now to show that T,,(R) is uniquely strongly clean, let A = F +V = D+ N where
D?= D, N € T,(R) is a unit and DN = ND. Write D = (1(7)‘ : ‘3) and N = (]z‘ Z)
Then D? = Dy, d*> = d, N,,t are units, and D\N, = N,D,, and an, = d + t, and
A; = D; + N;. By induction hypothesis, Dy, N, are unique, and d, ¢ are unique. So, from
the above proof, 3, v are unique. Thus, D, N are unique. 0

COROLLARY 4. Let R = {m/n € Q : n is odd }. Then T,(R) is a uniquely
strongly clean ring for every n 2> 1.

In {5, Proposition 2(3)] Nicholson showed that if 2 € U(R), then R is strongly clean
if and only if every element is the sum of a unit and a square root of 1 which commute.
In fact 2 € U(R) is also necessary.

PROPOSITION 5. A ring R is strongly clean and 2 € U(R) if and only if every
element is the sum of a unit and a square root of 1 which commute.

PROOF: We only need prove that 2 € U(R) is necessary. Leta € Randa=z+u
where 72 = 1, u € U(R) and zu = uz. Similarly, z = y + v where y2 = 1, v € U(R) and
yv = vy. Thus 22 = (y +v)2 = y2 + 2yv +v2, then 2y = —v € U(R). Hence 2 € U(R). [l
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