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Abstract

Let Fn be the set of all cuspidal automorphic representations π of GLn with unitary
central character over a number field F . We prove the first unconditional zero density
estimate for the set S = {L(s, π × π′) : π ∈ Fn} of Rankin–Selberg L-functions, where
π′ ∈ Fn′ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subcon-
vexity bound at s = 1

2 for almost all L(s, π × π′) ∈ S; (ii) a strong on-average form of
effective multiplicity one for almost all π ∈ Fn; and (iii) a positive level of distribution
for L(s, π × π̃), in the sense of Bombieri–Vinogradov, for each π ∈ Fn.

1. Introduction and statement of the main result

Let AF be the ring of adèles over a number field F with absolute norm N = NF/Q and abso-
lute discriminant DF . Let Fn be the set of cuspidal automorphic representations π =

⊗
v πv of

GLn(AF ), where the (restricted) tensor product runs over all places of F and π is normalized
so that its central character is trivial on the diagonally embedded copy of the positive reals.
Let qπ be the arithmetic conductor of π, C(π) ≥ 1 the analytic conductor of π (see (3.4)), and
Fn(Q) = {π ∈ Fn : C(π) ≤ Q}. The analytic conductor C(π) is a useful measure for the arith-
metic and spectral complexity of π. Our normalization for the central characters ensures that
|Fn(Q)| is finite.

Given π ∈ Fn and π′ ∈ Fn′ , let L(s, π × π′) be the associated Rankin–Selberg L-function,
and let π̃ ∈ Fn and π̃′ ∈ Fn′ be the contragredient representations. When π′ ∈ {π̃, π̃′}, work
of Brumley [Hum19, Appendix] and the authors [HT22] shows that there exists an effectively
computable constant c1 = c1(n, n′) > 0 such that L(s, π × π′) has a ‘standard’ zero-free region
of the shape

Re(s) ≥ 1 − c1

log(C(π)C(π′)(|Im(s)| + 3)[F :Q])
(1.1)

apart from at most one real simple zero. This is comparable to the classical zero-free region
for Dirichlet L-functions. Brumley (see [Bru06a] and [Lap13, Appendix]) established a much
narrower zero-free region for all choices of π and π′. The generalized Riemann hypothesis (GRH)
asserts that L(s, π × π′) �= 0 for Re(s) > 1

2 . Zeros near the line Re(s) = 1 are typically most
damaging in applications, but even a zero-free region of the shape Re(s) ≥ 1 − δ for some constant
δ = δ(n, n′, [F : Q]) > 0 would be sufficient to obtain many spectacular arithmetic consequences.

Since such strong zero-free regions for Rankin–Selberg L-functions remain out of reach,
it is useful to show that zeros near the line Re(s) = 1 must be ‘sparse’. A suitable quan-
titative formulation can serve as a proxy for a zero-free region of the shape Re(s) ≥ 1 − δ.
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Famous consequences of this philosophy include Hoheisel’s proof [Hoh30] that pn+1 − pn �
p
1−1/33 000
n (where pn is the nth prime) and Linnik’s proof [Lin44] that if gcd(a, q) = 1, then

there exists an absolute, effectively computable constant B > 0 and a prime p ≤ qB such that
p ≡ a (mod q).

To quantify our notion of ‘sparse’, we define for σ ≥ 0 and T ≥ 1 the quantity

Nπ×π′(σ, T ) = |{ρ = β + iγ : L(ρ, π × π′) = 0, β ≥ σ, |γ| ≤ T}|.
Note that Nπ×π′(1

2 , T ) is roughly T log(C(π)C(π′)T ) via the argument principle and the func-
tional equation, and GRH can be restated as Nπ×π′(σ, T ) = 0 for all σ > 1

2 . The zero density
estimate

Nπ×π′(σ, T ) �n,n′,[F :Q] (C(π)C(π′)T [F :Q])10
7(n′n)4(1−σ), (1.2)

follows from work of Soundararajan and Thorner [ST19, Corollary 2.6]. Therefore, while an
arbitrary Rankin–Selberg L-function L(s, π × π′) is not yet known to have the standard zero-free
region (1.1), the bound (1.2) ensures that the number of zeros in the region (1.1) is On,n′,[F :Q](1).

Let S ⊆ Fn, and let S(Q) = {π ∈ S : C(π) ≤ Q}. In this article, we seek a strong averaged
form of (1.2), namely∑

π∈S(Q)

Nπ×π′(σ, T ) �n,n′,[F :Q],ε (Q|S(Q)|C(π′)T [F :Q])A(1−σ)+ε, (1.3)

where A = A(n, n′, [F : Q]) > 0 is a constant and ε > 0. The bound (1.3) follows from the works
of Brumley, Thorner, and Zaman under at least one of the following hypotheses:1

• π′ ∈ F1 is trivial [TZ21, Theorem 1.2];
• max{n, n′} ≤ 4 (see [BTZ22, Theorem 1.3]); or
• π′ and each π ∈ S(Q) satisfy certain unproven partial progress towards the generalized

Ramanujan conjecture (GRC) [BTZ22, Hypothesis 1.1 and Theorem 1.3].2

Here, we prove the first completely unconditional zero density estimate of the form (1.3).

Theorem 1.1. Let n, n′ ≥ 1 and ε > 0. Let S ⊆ Fn and S(Q) = {π ∈ S : C(π) ≤ Q}. If 0 ≤
σ ≤ 1, π′ ∈ Fn′ , and Q,T ≥ 1, then∑

π∈S(Q)

Nπ×π′(σ, T ) �n,n′,[F :Q],ε

(|S(Q)|4(C(π′)QT [F :Q]
)6.15 max{n2,n′n})1−σ+ε

.

Theorem 1.1 is non-trivial when

δS = lim inf
Q→∞

log |S(Q)|
logQ

> 0. (1.4)

This is important because in applications, it is usually convenient to bound Q by a power of
|S(Q)| or vice versa. When S = Fn, we have the bounds

Qn+1 �n,F |Fn(Q)| �ε D
−n2

F Q2n+ε. (1.5)

The upper bound in (1.5) was proved by Brumley et al. [BTZ22, Theorem A.1]. The lower bound
in (1.5) follows from work of Brumley and Milićević [BM18, Theorem 1.1], who computed a con-
stant cn,F > 0 such that if F∗

n(Q) is the subset of π ∈ Fn(Q) that are spherical at the archimedean
places of F , then |F∗

n(Q)| ∼ cn,FQ
n+1. (The lower bound in (1.5) reflects the conjectured order

1 In [BTZ22, ST19], it is assumed that F = Q. Uniformity over F �= Q requires minor modifications.
2 If θn in (3.3) satisfies θn ≤ 1

4
− δn for some δn > 0, then each π ∈ Fn satisfies [BTZ22, Hypothesis 1.1].
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of growth; see [BM18].) Together, Theorem 1.1 and (1.5) imply that∑
π∈Fn(Q)

Nπ×π′(σ, T ) �n,n′,F,ε (|Fn(Q)|C(π′)nTn[F :Q])7.1 max{n,n′}(1−σ)+ε. (1.6)

Furthermore, if n′ = n ≥ 3 and π′ ∈ Fn′ , then Theorem 1.1 and (1.5) together imply that∑
π∈Fn(Q)

Nπ×π′(σ, T ) �ε (C(π′)QT [F :Q])9n
2(1−σ)+ε. (1.7)

2. Applications

We now describe some applications of Theorem 1.1. In what follows, we write f �ν g, f = Oν(g),
and g 
ν f to denote that there exists a constant c > 0 such that |f | ≤ c|g| in the stated range.
The implied constant c, which is effectively computable unless otherwise stated, will depend at
most on ν, n, n′, and [F : Q]. The expression f �ν g means that f �ν g and g �ν f . We use
ε > 0 to denote an arbitrarily small quantity that depends at most on n, n′, and [F : Q].

2.1 Bounds for Rankin–Selberg L-functions
It is a classical problem for Dirichlet L-functions to find strong bounds on the critical line
Re(s) = 1

2 . The Phragmén–Lindelöf convexity principle shows that if qχ is the conductor of a
primitive Dirichlet character χ, then L(1

2 , χ) � q1/4; improving this bound by replacing 1/4 with
a smaller exponent is known as a subconvex bound. The multiplicative version of the classical
large sieve inequality combined with an approximate functional equation shows that for almost
all χ, we have the bound L(1

2 , χ) �ε q
ε
χ for all ε > 0, consistent with the generalized Lindelöf

hypothesis (GLH).
For π ∈ F2, GLH predicts that L(1

2 , π) �ε C(π)ε. Michel and Venkatesh [MV10] proved that
there exists a fixed positive δ > 0 such that L(1

2 , π) �F C(π)1/4−δ, the culmination of several
decades of research. When F = Q, a sharp mean value estimate for Hecke eigenvalues proved
by Deshouillers and Iwaniec [DI82], in conjunction with the approximate functional equation,
implies the bound L(1

2 , π) �ε (qT )ε for almost all π ∈ F2 of arithmetic conductor q, trivial central
character, and archimedean complexity (Laplace eigenvalue or weight squared) lying in the dyadic
interval [T, 2T ]. Note that in this case, C(π) � qT .

For π ∈ Fn with n ≥ 3, the best uniform result towards the bound L(1
2 , π) �ε C(π)ε predicted

by GLH is that of Soundararajan and Thorner [ST19, Corollary 2.7], namely

L(1
2 , π) � C(π)1/4(logC(π))−1/(1017n3). (2.1)

We mention three results that improve upon (2.1) in an average sense, each having complemen-
tary strengths. Jana [Jan21, Theorem 6] extended the GLH-on-average bound of Deshouillers
and Iwaniec to the family of cuspidal automorphic representations of GLn(AQ) of arithmetic con-
ductor 1 and growing analytic conductor. Blomer [Blo23, Corollary 5] proved the corresponding
result for the family of cuspidal automorphic representations of GLn(AQ) of a large given prime
arithmetic conductor q, trivial central character, and whose archimedean components are princi-
pal series representations confined to a compact subset of the unitary dual. Thorner and Zaman
[TZ21, Theorem 1.3] proved that there exists a constant c2 = c2(n, [F : Q]) > 0 such that if ε > 0,
then

|{π ∈ Fn(Q) : |L(1
2 , π)| ≥ c2C(π)1/4−ε/10

16n3}| �F |Fn(Q)|ε. (2.2)
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Unlike the preceding results, (2.2) is uniform in both the arithmetic conductor and spectral
aspects and holds over number fields other than Q, but the savings over (2.1) is not comparable
to GLH on average.

Given π ∈ Fn and π′ ∈ Fn′ , Soundararajan and Thorner [ST19, Corollary 2.7] proved when
F = Q that if C(π × π′) is the analytic conductor of L(s, π × π′), then

L(1
2 , π × π′) � |L(3

2 , π × π′)|2C(π × π′)1/4(logC(π × π′))−1/(1017(n′n)3). (2.3)

As of now, the best general upper bound for |L(3
2 , π × π′)|2 is larger than any fixed power

of logC(π × π′) (see [Li10, Theorem 2]). The factor of |L(3
2 , π × π′)|2 can be removed under

certain partial progress toward GRC. The bound L(1
2 , π × π′) �ε C(π × π′)ε is predicted by

GLH.
In order to improve (2.3) on average with uniformity in π and π′, one might first try to

mimic the approach that worked well for Dirichlet L-functions and GL2 L-functions using trace
formulae, approximate functional equations, the spectral large sieve, Voronŏı summation, etc.
While such methods have seen great success for GLn × GLn′ with n, n′ ∈ {1, 2}, suitably uniform
and flexible versions of these tools do not appear to be available yet in the general setting.
The special case where |n− n′| ≤ 1 exhibits some nice structural properties, lending itself to
approaches via period integrals that completely avoids the aforementioned tools. To describe
work in this direction, let F = Q, Fn ⊆ Fn be the subset of cuspidal automorphic representations
of GLn(AQ) of arithmetic conductor 1, and Fn(Q) = {π ∈ Fn : C(π) ≤ Q}. It follows from work
of Jana [Jan22, Corollary 2.2] that if ε > 0, π′ ∈ Fn, and the spectral parameters of π′ have real
part at least −1/(n2 + 1) (which is far stronger than the best known unconditional lower bound
−1

2 + 1/(n2 + 1) due to Luo, Rudnick, and Sarnak [LRS99]), then

∑
π∈Fn(Q)

∣∣∣∣L(
1
2
, π × π′

)∣∣∣∣2 �π′,ε |Fn(Q)|1+ε. (2.4)

Therefore, for fixed π′ ∈ Fn, GLH for L(1
2 , π × π′) holds on average over the π ∈ Fn. Using

Chebyshev’s inequality, we conclude that for all δ > 0, there exists a constant cπ′,δ > 0 such that

|{π ∈ Fn(Q) : |L(1
2 , π × π′)| ≥ cπ′,δC(π × π′)2δ}| �π′,δ |Fn(Q)|1−δ. (2.5)

See also the work of Blomer [Blo12, Theorem 2], which proves a variant of (2.4) for families of
‘spectrally close’ Hecke–Maaß newforms on SLn(Z).

Along the same lines as (2.2), we use (1.6) to prove the following result.

Theorem 2.1. Let n, n′ ≥ 1 and Q ≥ 1. If ε > 0 and π′ ∈ Fn′ , then

|{π ∈ Fn(Q) : |L(1
2 , π × π′)| ≥ C(π × π′)1/4−ε/(10

10 max{n,n′})}| �ε (C(π′)n|Fn(Q)|)ε.
Remark 2.2. Given a subset S ⊆ Fn, a similar result can be proved for π ∈ S(Q) using
Theorem 1.1. Such a result would depend effectively on δS in (1.4).

In contrast with Jana’s work in (2.5), Theorem 2.1 provides a smaller power-saving improve-
ment over (2.3), but the improvement is uniform in the arithmetic conductor and spectral aspects
as well as in π′. The exceptional set in Theorem 2.1 is a much smaller than in (2.5). Theorem 2.1
removes the requirements that n = n′, that qπ = qπ′ = 1, and that the spectral parameters of π′

have real part at least −1/(n2 + 1). Finally, Theorem 2.1 is proved over any number field, while
[Jan22] is only proved over Q.
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2.2 Effective multiplicity one
Let π =

⊗
v πv and π′ =

⊗
v π

′
v be cuspidal automorphic representations in Fn(Q). Under the

assumption of GRH for L(s, π × π̃) and L(s, π × π′) and that πp and π′p are tempered for all prime
ideals p | qπqπ′ , it is known that if Y = (logQ)2 and πp

∼= π′p for all p � qπqπ′ with Np � Y ,
then π = π′ (see [IK04, Proposition 5.22]). Brumley [Bru06a], improving on work of Moreno
[Mor85], proved that there exists a constant Bn > 0 such that this result holds unconditionally
with Y = QBn . This result makes effective the multiplicity one theorems of Jacquet and Shalika
[JS81, Theorem 4.8] and Piatetski-Shapiro [Pia79]. Any fixed Bn > 2n suffices [LW09].

When n = 2, we have an average result that nearly achieves what GRH predicts.
Specifically, let F�2 be the subset of π ∈ F2 with squarefree conductor and trivial central character,
and let π′ ∈ F�2. For all ε > 0, there exists an effectively computable constant Nε > 0, depending
at most on ε and [F : Q], such that

|{π ∈ F�2(Q) : πp
∼= π′p for all p � qπ with Np ≤ (logQ)Nε}| �ε Q

ε. (2.6)

In particular, the implied constant does not depend on π′. This was proved by Duke and Kowalski
[DK00, Theorem 3] when F = Q in a stronger form under the assumption of GRC. See Brumley’s
Ph.D. thesis [Bru04, Corollary 5.2.2] for a proof that does not use GRC.

If π ∈ F2 and π̃ ∈ F2 is the contragredient, then L(s, π × π̃) = ζF (s)L(s, π,Ad), where ζF (s)
is the Dedekind zeta function of F and Ad is the adjoint square lift from a representation of
GL2(AF ) to a representation of GL3(AF ). The arguments in [Bru04, DK00] rely on two key
results as follows.

(1) Gelbart and Jacquet [GJ78] proved that if π ∈ F2, then L(s, π,Ad) is the L-function of an
automorphic representation of GL3(AF ), denoted Adπ, complete with a criterion by which
one can determine whether Adπ is cuspidal (and lies in F3).

(2) At most Oε(Q1/2+ε) representations π ∈ F2(Q) have the same adjoint lift. In addition,
Ramakrishnan (see [DK00, Appendix] and [Ram00]) proved that Ad: F�2 → F3 is injective.

In attempting to generalize the strategy of Duke and Kowalski to GLn for n ≥ 3, one encoun-
ters some deep open problems. If π ∈ Fn, then for Re(s) sufficiently large, L(s, π × π̃) factors
as ζF (s)L(s, π,Ad), where Ad is the adjoint square lift from GLn to GLn2−1. Apart from some
special cases, the following obstacles arise.

(1) The adjoint lift is not yet known to be automorphic for n ≥ 3, and if it were, there is no
known criterion for cuspidality.

(2) Let Hn ⊆ Fn(Q) be the subset of π ∈ Fn(Q) such that Adπ ∈ Fn2−1. It is not known how
many π ∈ Hn have the same adjoint lift.

Despite these setbacks, we can use (1.7) (more specifically, Corollary 7.1) to prove a GLn
analogue of (2.6) when π′ depends mildly on Q.

Theorem 2.3. Let n ≥ 3 and Q ≥ 1. There exists an absolute, effectively computable constant
c3 > 0 such that if 0 < ε < 1 and π′ ∈ Fn((logQ)c3/(n

2[F :Q]2)), then

|{π ∈ Fn(Q) : πp
∼= π′p for all p � qπqπ′ with Np ≤ (logQ)41n

2/ε}| �ε Q
ε.

Remark 2.4. Given a subset S ⊆ Fn, a similar result can be proved for π ∈ S(Q) using
Theorem 1.1. Such a result would depend effectively on δS in (1.4).

The proof is very flexible. For example, if ε > 0 and C(π′) �ε Q
c3ε2/(n2[F :Q]2), then the same

proof with minor changes in choices of parameters produces the bound

|{π ∈ Fn(Q) : πp
∼= π′p for all p � qπqπ′ with Np ≤ Qε}| �ε Q

ε.
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While the number of p for which one needs to check that πp
∼= π′p is larger, the range of C(π′) is

greatly extended, and the threshold Np ≤ Qε (reminiscent of Vinogradov’s conjecture on the size
of the least quadratic non-residue) still greatly improves on the unconditional range Np �ε Q

2n+ε

from [LW09].

2.3 Automorphic level of distribution
Let Λ(m) be the von Mangoldt function, equal to log p if m is a power of a prime p and zero
otherwise. The celebrated Bombieri–Vinogradov theorem states that if θ < 1

2 is fixed, then for
all A > 0, we have ∑

q≤xθ

max
gcd(a,q)=1

max
y≤x

∣∣∣∣∣ ∑
m≤y

m≡a (mod q)

Λ(m) − y

ϕ(q)

∣∣∣∣∣ �A
x

(log x)A
. (2.7)

This may be viewed as an average form of GRH for Dirichlet L-functions. As part of his proof
[Bom65], Bombieri proved a strong form of the zero density estimate in Theorem 1.1 for Dirichlet
L-functions. We call any θ for which (2.7) holds a level of distribution for the primes. Elliott and
Halberstam conjectured that any fixed θ < 1 is a level of distribution for the primes.

Number theorists have proved several interesting extensions and variations of (2.7). For
example, Murty and Murty [MM87] proved that primes in the Chebotarev density theorem have
a positive level of distribution. To describe a different direction for automorphic representations
over Q, we let n ≥ 2 and consider π ∈ Fn with conductor qπ. Let Λ(m) be the von Mangoldt
function, and define the numbers aπ(m) by

−L
′

L
(s, π) =

∑
p

∞∑
k=1

∑n
j=1 αj,π(p)

k log p
pks

=
∞∑
n=1

aπ(m)Λ(m)
ms

, Re(s) > 1.

Note that aπ(p) = λπ(p). For fixed θ < 1/(n2 − 2), Wong [Won20, Theorem 9] proved that if π
satisfies GRC and L(s, π × (π̃ ⊗ χ)) has no Landau–Siegel zero for all Dirichlet characters χ,
then for any A > 0,∑

q≤xθ

max
gcd(a,q)=1

max
y≤x

∣∣∣∣∣ ∑
m≤y

gcd(m,qπ)=1
m≡a (mod q)

|aπ(m)|2Λ(m) − y

ϕ(q)

∣∣∣∣∣ �A,π
x

(log x)A
. (2.8)

This conditionally endows L(s, π × π̃) with a positive level of distribution θ. The hypotheses for
(2.8) hold for π attached to non-CM holomorphic cuspidal newforms on congruence subgroups
of SL2(Z).

Let π ∈ Fn. Using (1.7), we unconditionally endow L(s, π × π̃) with a notion of positive level
of distribution. In particular, we avoid recourse to unproven progress toward GRC or the absence
of Landau–Siegel zeros.

Theorem 2.5. Let F = Q and π ∈ Fn. Fix θ < 1/(9n3). If A > 0, then∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤x

∣∣∣∣∣ ∑
m≤y

m≡a (mod q)

|aπ(m)|2Λ(m) − y

ϕ(q)

∣∣∣∣∣ �A,π
x

(log x)A
.

The implied constants are ineffective.

Remark 2.6. One can prove an analogue of Theorem 2.5 with F �= Q, replacing residue classes
modulo q with ray classes modulo q. We restrict to F = Q for notational simplicity.
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Overview of the paper
In § 3, we recall basic properties of standard L-functions and Rankin–Selberg L-functions that
we use in our proofs. In § 4, we prove a large sieve inequality for the Dirichlet coefficients of
L(s, π × π′)−1 and a corollary on mean values of Dirichlet polynomials, which we use in our proof
of Theorem 1.1 in § 5. We then prove Theorem 2.1 in § 6, Theorem 2.3 in § 7, and Theorem 2.5
in § 8.

3. Properties of L-functions

We recall some standard facts about L-functions arising from automorphic representations and
their Rankin–Selberg convolutions. See [Bru06a, GJ72, JPS83, MW89, ST19].

3.1 Standard L-functions
Given π ∈ Fn, let π̃ ∈ Fn be the contragredient representation and qπ be the conductor of π. We
express π as a restricted tensor product

⊗
v πv of smooth admissible representations of GLn(Fv),

where v varies over places of F . When v is a non-archimedean place corresponding with a
prime ideal p, then the local L-function L(s, πp) is defined in terms of the Satake parameters
Aπ(p) = {α1,π(p), . . . , αn,π(p)} by

L(s, πp) =
n∏
j=1

(1 − αj,π(p)Np−s)−1 =
∞∑
k=0

λπ(pk)
Npks

. (3.1)

We have αj,π(p) �= 0 for all j whenever p � qπ, and when p | qπ, it might be the case that there
exist j such that αj,π(p) = 0. The standard L-function L(s, π) associated to π is of the form

L(s, π) =
∏
p

L(s, πp) =
∑

n

λπ(n)
Nns

.

The Euler product and Dirichlet series converge absolutely when Re(s) > 1.
At each archimedean place v of F , there are n Langlands parameters μj,π(v) ∈ C such that

L(s, π∞) =
∏
v|∞

n∏
j=1

Γv(s+ μj,π(v)), Γv(s) :=

{
π−s/2Γ(s/2) if Fv = R,

2(2π)−sΓ(s) if Fv = C.

By combining the work in [BB11, BB13, LRS99, MS04], we know that there exists

0 ≤ θn ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if n = 1,
7/64 if n = 2,
5/14 if n = 3,
9/22 if n = 4,
1/2 − 1/(n2 + 1) if n ≥ 5,

(3.2)

such that

|αj,π(p)| ≤ Npθn and Re(μj,π(v)) ≥ −θn. (3.3)

GRC asserts that in (3.2), one may take θn = 0. We have qπ = qπ̃, and for each p and each v,
we have the equalities of sets {αj,π̃(p)} = {αj,π(p)} and {μj,π̃(v)} = {μj,π(v)}.

Let rπ be the order of the pole of L(s, π) at s = 1. The completed L-function

Λ(s, π) = (s(s− 1))rπ(Dn
FNqπ)s/2L(s, π)L(s, π∞)
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is entire of order 1, and there exists a complex number W (π) of modulus 1 such that for all
s ∈ C, we have the functional equation Λ(s, π) = W (π)Λ(1 − s, π̃). Let d(v) = 1 if Fv = R and
d(v) = 2 if Fv = C. The analytic conductor of π (see [IS00]) is given by

C(π, t) := Dn
FNqπ

∏
v|∞

n∏
j=1

(3 + |it+ μj,π(v)|d(v)), C(π) := C(π, 0). (3.4)

Since Λ(s, π) is entire of order 1, there exist complex numbers aπ and bπ such that

Λ(s, π) = eaπ+bπs
∏

Λ(ρ,π)=0

(
1 − s

ρ

)
es/ρ.

The zeros ρ in the above Hadamard product are the non-trivial zeros of L(s, π), and the zeros
of L(s, π) that arise as poles of srπL(s, π∞) are the trivial zeros.

3.2 Rankin–Selberg L-functions
Let π ∈ Fn and π′ ∈ Fn′ . At each prime ideal p, Jacquet et al. [JPS83] associate to πp and π′p a
local Rankin–Selberg L-function

L(s, πp × π′p) =
n∏
j=1

n′∏
j′=1

(1 − αj,j′,π×π′(p)Np−s)−1 =
∞∑
k=0

λπ×π′(pk)
Npks

(3.5)

and a local conductor qπp×π′
p
. If p � qπqπ′ , then we have the equality of sets

{αj,j′,π×π′(p)} = {αj,π(p)αj′,π′(p)}. (3.6)

The Rankin–Selberg L-function L(s, π × π′) associated to π and π′ and its arithmetic conductor
are

L(s, π × π′) =
∏
p

L(s, πp × π′p) =
∑

n

λπ×π′(n)
Nns

, qπ×π′ =
∏
p

qπp×π′
p
.

At an archimedean place v of F , Jacquet, Piatetski-Shapiro, and Shalika associate n′n complex
Langlands parameters μj,j′,π×π′(v) to πv and π′v, from which one defines

L(s, π∞ × π′∞) =
∏
v|∞

n∏
j=1

n′∏
j′=1

Γv(s+ μj,j′,π×π′(v)).

Using the explicit descriptions of αj,j′,π×π′(p) and μj,j′,π×π′(v) in [Hum19, ST19], one sees that

|αj,j′,π×π′(p)| ≤ Npθn+θn′ , Re(μj,j′,π×π′(v)) ≥ −θn − θn′ . (3.7)

Let rπ×π′ = −ords=1L(s, π × π′). By our normalization for the central characters of π and
π′, we have that rπ×π′ = 0 if and only if π �= π̃′, and rπ×π̃ = 1 otherwise. The function

Λ(s, π × π′) = (s(s− 1))rπ×π′ (Dn′n
F Nqπ×π′)s/2L(s, π × π′)L(s, π∞ × π′∞) (3.8)

is entire of order 1, and there exists a complex number W (π × π′) of modulus 1 such that
Λ(s, π × π′) satisfies the functional equation Λ(s, π × π′) = W (π × π′)Λ(1 − s, π̃ × π̃′). As with
L(s, π), the analytic conductor of L(s, π × π′) is given by

C(π × π′, t) := Dn′n
F Nqπ×π′

∏
v|∞

n∏
j=1

n′∏
j′=1

(3 + |it+ μj,j′,π×π′(v)|d(v)), C(π × π′) := C(0, π × π′).

(3.9)
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The combined work of Bushnell and Henniart [BH97] and Brumley [Hum19, Appendix] yields

C(π × π′, t) � C(π × π′)(3 + |t|)[F :Q]n′n, C(π × π′) � C(π)n
′
C(π′)n. (3.10)

Since Λ(s, π × π′) is entire of order 1, there exist complex numbers aπ×π′ and bπ×π′ such that
the Hadamard factorization

Λ(s, π × π′) = eaπ×π′+bπ×π′s
∏

Λ(ρ,π×π′)=0

(
1 − s

ρ

)
es/ρ (3.11)

holds. The zeros ρ in (3.11) are the non-trivial zeros of L(s, π × π′), and the zeros of L(s, π × π′)
that arise as poles of srπ×π′L(s, π∞ × π′∞) are the trivial zeros.

It follows from work of Li [Li10, Theorem 2] (with minor adjustments when F �= Q) that
there exists an absolute and effectively computable constant c4 > 0, which we assume to be
sufficiently large for future convenience, such that

lim
σ0→σ

(σ0 − 1)rπ×π′L(σ0, π × π′) � exp
(
c4n

′n[F : Q]
logC(π × π′)

log logC(π × π′)

)
, σ ∈ [1, 3]. (3.12)

We can change π′ to π′ ⊗ |det |it; at the archimedean places, this has the effect of adding it to each
μj,j′,π×π′(v). We then apply functional equation, the Phragmén–Lindelöf convexity principle, and
(3.10) to obtain for all σ ≥ 0

lim
σ0→σ

(
σ0 + it− 1
σ0 + it+ 1

)rπ×π′
L(σ0 + it, π × π′)

�ε C(π × π′, t)max{1−σ,0}/2+ε/n′n[F :Q]

�ε (C(π)n
′
C(π′)n(3 + |t|)n′n[F :Q])max{1−σ,0}/2+ε/n′n[F :Q]. (3.13)

Lemma 3.1. If π ∈ Fn, X ≥ 3, and ε > 0, then
∑

Nn≤X λπ×π̃(n)/Nn �ε C(π)ε logX.

Proof. Since λπ×π̃(n) ≥ 0 for all n by [HR95, Lemma a], we observe by (3.12) that∑
Nn≤X

λπ×π̃(n)
Nn

≤ e
∑

n

λπ×π̃(n)
Nn1+1/logX

� (logX) Res
s=1

L(s, π × π̃).

The desired bounded now follows from (3.13) with σ = 1, t = 0, and π′ = π̃. �

Lemma 3.2. Let J ≥ 1 be an integer. For all j ∈ {1, . . . , J}, let tj ∈ R; nj , n
′
j be positive integers;

and πj ∈ Fnj and π′j ∈ Fn′
j
. Let

D(s) =
J∏
j=1

L(s+ itj , πj × π̃′j), Δ(s) =
J∏
j=1

Λ(s+ itj , πj × π̃′j), Q =
J∏
j=1

C(πj)n
′
jC(π′j)

nj .

Let R = −ords=1D(s). If 1 < σ < 2 and the nth Dirichlet coefficient of −(D′/D)(s) is non-
negative when gcd(n,

∏J
j=1 qπjqπ′

j
) = OF , then

∑
Δ(ρ)=0

Re
(

1
σ − ρ

)
<

R

σ − 1
+

∑
1≤j≤J

πj=π
′
j , tj 	=0

σ − 1
(σ − 1)2 + t2j

+O(logQ).
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Proof. Let 1 < σ < 2 and

D∞(s) =
J∏
j=1

L(s, (πj)∞ × (π̃′j)∞), qD =
J∏
j=1

qπj×π̃′
j
.

By comparing the logarithmic derivative of Δ(s) with the logarithmic derivative of its Hadamard
factorization

Δ(s) = eaD+bDs
∏

Δ(ρ)=0

(
1 − s

ρ

)
es/ρ,

we find that∑
Δ(ρ)=0

(
1

σ − ρ
+

1
ρ

)
+ bD

=
D′

D
(σ) +

log NqD

2
+

R

σ − 1
+

∑
1≤j≤J
πj=π

′
j

(
1

σ + itj − 1
+

1
σ + itj

)
+
D′∞
D∞

(σ).

Since Re(bD) = −∑
Δ(ρ)=0 Re(ρ−1) (see [IK04, Proposition 5.7(3)]), we take real parts and obtain∑

Δ(ρ)=0

Re
(

1
σ − ρ

)
= Re

(
D′

D
(s) +

log NqD

2
+

R

σ − 1
+

∑
1≤j≤J
πj=π

′
j

tj 	=0

σ − 1
(σ − 1)2 + t2j

+
D′∞
D∞

(s)
)

+O(1).

By (3.3), (3.7), and (3.10), the bound Re((D′/D)(σ)) � logQ (respectively, (D′∞/D∞)(σ) �
logQ) follows from our hypothesis on the Dirichlet coefficients of −(D′/D)(s) (respectively,
Stirling’s formula). �

3.3 Rankin–Selberg combinatorics
A partition μ = (μi)∞i=1 is a sequence of non-increasing nonnegative integers μ1 ≥ μ2 ≥ · · ·
with only finitely many non-zero entries. For a partition μ, let �(μ) be the number of non-
zero μi, and let |μ| =

∑∞
i=1 μi. For a set {α1, . . . , αn} of real numbers and a partition μ with

�(μ) ≤ n, let sμ({α1, . . . , αn}) be the Schur polynomial det[(αλ(j)+n−j
i )ij ]/det[(αn−ji )ij ] associ-

ated to μ. If |μ| = 0, then sμ({α1, . . . , αn}) is identically one. By convention, if �(μ) > n, then
sμ({α1, . . . , αn}) is identically zero.

Let π ∈ Fn and π′ ∈ Fn′ . By (3.5), (3.6), and Cauchy’s identity [Bum13, Theorem 38.1], we
have

∞∑
k=0

λπ×π′(pk)
Npks

= L(s, πp × π′p) =
∑
μ

sμ(Aπ(p))sμ(Aπ′(p))
Nps|μ|

, p � qπqπ′ ,

where the sum ranges over all partitions. This yields

λπ×π′(pk) =
∑
|μ|=k

sμ(Aπ(p))sμ(Aπ′(p)), p � qπqπ′ .

For an integral ideal n with factorization n =
∏

p pordp(n) (with ordp(n) = 0 for all but finitely
many p), the multiplicativity of λπ×π′(n) tells us that if gcd(n, qπqπ′) = OF , then

λπ×π′(n) =
∏
p

λπ×π′(pordp(n)) =
∑

(μp)p∈μ[n]

∏
p

sμp (Aπ(p))sμp (Aπ′(p)), (3.14)
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where (μp)p denotes a sequence of partitions indexed by prime ideals and

μ[n] := {(μp)p : |μp| = ordp(n) for all p}. (3.15)

Define the numbers μπ×π′(n) on unramified prime powers by

∞∑
k=0

μπ×π′(pk)
Npks

= L(s, πp × π′p)
−1 =

n∏
j=1

n′∏
j′=1

(1 − αj,π(p)αj′,π′(p)Np−s), p � qπqπ′ .

By multiplicativity, this defines μπ×π′(n) when gcd(n, qπqπ′) = OF . For a partition μ = (μi)∞i=1,
let μ∗ = (μ∗i )

∞
i=1 be the dual partition defined by μ∗i = |{j : μj ≥ i}|. It follows from the dual

Cauchy identity [Bum13, Chapter 38] and (3.6) that
∞∑
k=0

μπ×π′(pk)
Npks

=
∑
μ

sμ(Aπ(p))sμ∗(−Aπ′(p))
Np|μ|s

, p � qπqπ′ ,

where −Aπ′(p) = {−α1,π′(p), . . . ,−αn,π′(p)}. Hence, we have

μπ×π′(n) =
∑

(μp)p∈μ[n]

∏
p

sμp (Aπ(p))sμ∗p (−Aπ(p)), gcd(n, qπqπ′) = OF . (3.16)

Lemma 3.3. If gcd(n, qπqπ′) = OF , then we have |μπ×π′(n)| ≤ 1
2(λπ×π̃(n) + λπ′×π̃′(n)).

Proof. We apply the inequality of arithmetic and geometric means to (3.16):

|μπ×π′(n)| ≤ 1
2

( ∑
(μp)p∈μ[n]

∣∣∣∣ ∏
p

sμp (Aπ(p))
∣∣∣∣2 +

∑
(μp)p∈μ[n]

∣∣∣∣ ∏
p

sμ∗p (−Aπ′(p))
∣∣∣∣2).

The first sum equals λπ×π̃(n) by (3.14). For the second sum, note that since |μ| = |μ∗|, we have
(μp)p ∈ μ[n] if and only if (μ∗p)p ∈ μ[n]. Hence, by rearranging, we see that∑

(μp)p∈μ[n]

∣∣∣∣ ∏
p

sμ∗p (−Aπ′(p))
∣∣∣∣2 =

∑
(μp)p∈μ[n]

∣∣∣∣ ∏
p

sμp (−Aπ′(p))
∣∣∣∣2 = λπ×π̃′(n), (3.17)

where the last equality holds because αj,π′(p)αj′,π′(p) = (−αj,π′(p))(−αj′,π′(p)). �

4. A new mean value estimate

Our proof of Theorem 1.1 uses the following new mean value estimate for the Dirichlet coefficients
of L(s, π × π′) and L(s, π × π′)−1. Let S ⊆ Fn, and let S(Q) = {π ∈ S : C(π) ≤ Q}.
Theorem 4.1. Let b be a complex-valued function supported on the integral ideals of OF . Let
n, n′ ≥ 1, and let π′ ∈ Fn′ . Let Q,T ≥ 1, ε > 0, and x ≥ 1. Both∑

π∈S(Q)

∣∣∣∣ ∑
Nn∈(x,xe1/T ]

gcd(n,qπqπ′ )=OF

μπ×π′(n)b(n)
∣∣∣∣2 and

∑
π∈S(Q)

∣∣∣∣ ∑
Nn∈(x,xe1/T ]

gcd(n,qπqπ′ )=OF

λπ×π′(n)b(n)
∣∣∣∣2

are

�ε Q
ε

(
x

T
+Q4n2θn+nT (1/2)n2[F :Q]+ε|S(Q)|

) ∑
Nn∈(x,xe1/T ]

gcd(n,qπ′ )=OF

λπ′×π̃′(n)|b(n)|2,

where θn ∈ [0, 1
2 − 1/(n2 + 1)] is the best known exponent towards GRC for π ∈ S.
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Remark 4.2. If π′ = 1 and S = Fn, then Theorem 4.1 recovers [TZ21, Theorem 1.1]:3∑
π∈Fn(Q)

∣∣∣∣ ∑
Nn∈(x,xe1/T ]
gcd(n,qπ)=OF

λπ(n)b(n)
∣∣∣∣2

�ε Q
ε

(
x

T
+Q4n2θn+nT (1/2)n2[F :Q]+ε|Fn(Q)|

) ∑
Nn∈(x,xe1/T ]

gcd(n,qπ′ )=OF

|b(n)|2.

One could try to prove Theorem 4.1 starting with this, replacing b(n) with λπ′(n)μF (n)b(n) (where
μF (n) is the nth Dirichlet coefficient of ζF (s)−1), and try to recover a version of Theorem 4.1
with μπ×π′(n) replaced by λπ(n)λπ′(n)μF (n). Note that μπ×π′(n) = λπ(n)λπ′(n)μF (n) when n is
squarefree and coprime to qπqπ′ . Otherwise, equality is not guaranteed. If one wants to approx-
imate L(s, π × π′) with

∑
n squarefree λπ(n)λπ′(n)Nn−s and extend into the critical strip when

π, π′ ∈ Fn and n ≥ 5, then one must have progress towards GRC well beyond what is known
unconditionally [Bru06b, DK00]. Such progress would then be a hypothesis for Theorem 1.1.

Theorem 4.1 provides the first non-trivial unconditional mean value estimates of large sieve
type for the Dirichlet coefficients λπ×π′(n) or μπ×π′(n) for arbitrary n and n′. Theorem 4.1 follows
from a more general result, Proposition 4.3, for sequences of products of Schur polynomials
evaluated on the set Aπ(p) of Satake parameters of π at p. We begin with a mean value estimate
for the Satake parameters of π as π ∈ S varies. Let

a :
⋃

x<Nn≤xe1/T

μ[n] → C, α : S(Q) → C (4.1)

be functions that are not identically zero. Their �2 norms ‖a‖2 and ‖α‖2 are defined by

‖a‖2 =
( ∑
x<Nn≤xe1/T

∑
(μp)p∈μ[n]

|a((μp)p)|2
)1/2

, ‖α‖2 =
( ∑
π∈S(Q)

|α(π)|2
)1/2

.

For convenience, we define 1(n,q) to equal one when gcd(n, q) = OF and zero otherwise.

Proposition 4.3. Let x ≥ 1 and Q,T ≥ 1. Define

C(Q,T, x) := sup
‖a‖2 	=0

1
‖a‖2

2

∑
π∈S(Q)

∣∣∣∣ ∑
x<Nn≤xe1/T

gcd(n,qπ)=OF

∑
(μp)p∈μ[n]

[ ∏
p

sμp (Aπ(p))
]
a((μp)p)

∣∣∣∣2.
We have the bound C(Q,T, x) �ε Q

ε(T−1x+Q4n2θn+nTn
2[F :Q]/2+ε|S(Q)|).

Proof. We observe that

C(Q,T, x) = sup
‖a‖2=1

∑
π∈S(Q)

∣∣∣∣ ∑
x<Nn≤xe1/T

∑
(μp)p∈μ[n]

[∏
p

sμp (Aπ(p))
]
1(n,qπ)a((μp)p)

∣∣∣∣2. (4.2)

By the duality principle for bilinear forms, (4.2) is bounded by the supremum over the functions
α : S(Q) → C such that ‖α‖2 = 1 of∑

x<Nn≤xe1/T

∑
(μp)p∈μ[n]

∣∣∣∣ ∑
π∈S(Q)

[∏
p

sμp (Aπ(p))
]
1(n,qπ)α(π)

∣∣∣∣2. (4.3)

3 The factor Q4n2θn+n fixes a minor error in the proof of [TZ21, Theorem 1.1], which led to a factor of Qn2+n

instead.
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Let φ be a fixed smooth test function, supported in a compact subset of [−2, 2], such that φ(t) = 1
for t ∈ [0, 1] and φ(t) ∈ [0, 1) otherwise. Then (4.3) is at most∑

n

∑
(μp)p∈μ[n]

∣∣∣∣ ∑
π∈S(Q)

[ ∏
p

sμp (Aπ(p))
]
1(n,qπ)α(π)

∣∣∣∣2φ(
T log

Nn

x

)
. (4.4)

We expand the square, interchange the order of summation, and apply (3.14) to find that (4.4)
equals∑
π,π′∈S(Q)

α(π)α(π′)
∑

n

∑
(μp)p∈μ[n]

[ ∏
p

sμp (Aπ(p))
][ ∏

p

sμp (Aπ′(p))
]
1(n,qπ)1(n,qπ′ )φ

(
T log

Nn

x

)

=
∑

π,π′∈S(Q)

α(π)α(π′)
∑

gcd(n,qπqπ′ )=OF

λπ×π̃′(n)φ
(
T log

Nn

x

)
. (4.5)

Let κπ×π′ = Ress=1L(s, π × π′)
∏

p|qπqπ′ L(s, πp × π′p)−1. Note that κπ×π′ ≥ 0, with equality
if and only if π′ �= π̃. Since |αj,j′,π×π′(p)| ≤ Np, we have the bound

∏
p|qπqπ′

|L(1, πp × π′p)|−1 =
∏

p|qπqπ′

n∏
j=1

n′∏
j′=1

∣∣∣∣1 − αj,j′,π×π′(p)
Np

∣∣∣∣ ≤ ∏
p|qπqπ′

2n
′n.

Since |{p : p | n}| � (log Nn)/log log Nn (see [Wei83, Lemma 1.13b]), it follows from (3.12) that

κπ×π̃ �ε C(π)ε. (4.6)

Let φ̂(s) =
∫

R
φ(y)esy dy. It follows from a standard contour integral calculation using (3.7)

and (3.13) that (4.5) equals∑
π,π′∈S(Q)

α(π)α(π′)
(

1
2πiT

∫ 3+i∞

3−i∞
L(s, π × π̃′)∏

p|qπqπ′ L(s, πp × π̃′p)
xsφ̂(s/T ) ds

)

=
∑

π,π′∈S(Q)

α(π)α(π′)
(
κπ×π̃′x

φ̂(1/T )
T

+
1

2πiT

∫ 1/4 log(ex)+i∞

1/4 log(ex)−i∞
L(s, π × π̃′)xsφ̂(s/T )∏

p|qπqπ′ L(s, πp × π̃′p)
ds

)

=
∑

π,π′∈S(Q)

α(π)α(π′)
(
κπ×π̃′x

φ̂(1/T )
T

+Oφ,ε(Q4n2θn+n+εT (1/2)n2[F :Q]+ε)
)
. (4.7)

Recall that κπ×π̃′ > 0 when π = π′, and κπ×π̃′ = 0 otherwise. Since ‖α‖2 = 1 and φ is fixed, it
follows from the inequality of arithmetic and geometric means that (4.7) equals

φ̂(1/T )
T

x
∑

π∈S(Q)

|α(π)|2κπ×π̃′ +Oφ(Q4n2θn+n+εT (1/2)n2[F :Q]+ε|S(Q)|)

�φ,ε
x

T
max
π∈S(Q)

κπ×π̃′ +Q4n2θn+n+εT (1/2)n2[F :Q]+ε|S(Q)|.

We estimate the maximum using (4.6), and the desired result follows. �

We use Proposition 4.3 to prove Theorem 4.1.
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Proof of Theorem 4.1. For the sum involving μπ×π′(n), we apply Proposition 4.3 with

a((μp)p) = b

( ∏
p

Np|μp |
)
1(

∏
p Np|μp |,qπ′ )

∏
p

sμ∗p (−Aπ′(p)).

If (μp)p ∈ μ[n], then by (3.15), we have that |μp| = ordp(n) and

a((μp)p) = b(n)1(n,qπ′ )
∏
p

sμ∗p (−Aπ′(p)).

By (3.16), the left-hand side of Proposition 4.3 becomes∑
π∈S(Q)

∣∣∣∣ ∑
x<Nn≤xe1/T

gcd(n,qπ)=OF

∑
(μp)p∈μ[n]

[ ∏
p

sμp (Aπ(p))
]
a((μp)p)

∣∣∣∣2

=
∑

π∈S(Q)

∣∣∣∣ ∑
x<Nn≤xe1/T

gcd(n,qπ)=OF

b(n)1(n,qπ′ )
∑

(μp)p∈μ[n]

∏
p

sμp (Aπ(p))sμ∗p (−Aπ′(p)
∣∣∣∣2

=
∑

π∈S(Q)

∣∣∣∣ ∑
x<Nn≤xe1/T

gcd(n,qπqπ′ )=OF

μπ×π′(n)b(n)
∣∣∣∣2.

Similarly, the right-hand side of Proposition 4.3 becomes

Qε
(
x

T
+Q4n2θn+nT (1/2)n2[F :Q]+ε|S(Q)|

) ∑
Nn∈(x,xe1/T ]

gcd(n,qπ′ )=OF

|b(n)|2
∑

(μp)p∈μ[n]

∣∣∣∣ ∏
p

sμ∗p (−Aπ′(p))
∣∣∣∣2.

The desired result now follows from (3.17). Apart from the new choice of

a((μp)p) = b

( ∏
p

Np|μp |
)
1(

∏
p Np|μp |,qπ′ )

∏
p

sμp (Aπ′(p)),

the result for the sum involving λπ×π′(n) is handled in the same manner. �

Corollary 4.4. Let π′ ∈ Fn′ , Q,T ≥ 1, and ε > 0. If Y ≥ e and

X ≥ Q4n2θn+n+εT (1/2)n2[F :Q]+1+ε|S(Q)|, log Y �ε logX,

then ∑
π∈S(Q)

∫ T

−T

∣∣∣∣ ∑
Nn>X

gcd(n,qπqπ′ )=OF

μπ×π′(n)
Nn1+1/log Y+iv

∣∣∣∣2 dv �ε C(π′)εQε logX,

∑
π∈S(Q)

∫ T

−T

∣∣∣∣ ∑
Nn≤X

gcd(n,qπqπ′ )=OF

μπ×π′(n)
Nn1/2+iv

∣∣∣∣2 dv �ε C(π′)εQεX logX.

Proof. We prove the first result; the second result is proved completely analogously. A formal
generalization of [Gal70, Theorem 1] to number fields tells us that if c(n) is a complex-valued
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function supported on the integral ideals of OF with
∑

n |c(n)| <∞, then∫ T

−T

∣∣∣∣ ∑
n

c(n)
Nnit

∣∣∣∣2 dt� T 2

∫ ∞

0

∣∣∣∣ ∑
Nn∈(x,xe1/T ]

c(n)
∣∣∣∣2dxx .

We choose b(n) = Nn−1−1/log Y if Nn > X and b(n) = 0 otherwise, which leads to∑
π∈S(Q)

∫ T

−T

∣∣∣∣ ∑
Nn>X

gcd(n,qπqπ′ )=OF

μπ×π′(n)
Nn1+1/log Y+it

∣∣∣∣2 dt
� T 2

∫ ∞

0

∑
π∈S(Q)

∣∣∣∣ ∑
Nn∈(x,xe1/T ]

μπ×π′(n)b(n)
∣∣∣∣2dxx .

Theorem 4.1 and the fact that λπ′×π̃′(n) ≥ 0 for all n imply that the above display is

�ε Q
ε

∑
Nn>X

gcd(n,qπ′ )=OF

λπ′×π̃′(n)
Nn1+2/log Y

(
1 +

Q4n2θn+nT (1/2)n2[F :Q]+1+ε|S(Q)|
Nn

)

�ε Q
ε

∑
Nn>X

λπ′×π̃′(n)
Nn1+2/log Y

.

The desired result now follows from Lemma 3.1 and our choices of X and Y . �

5. Proof of Theorem 1.1

Let n, n′ ≥ 1, ε > 0, T ≥ 3, Q ≥ 3, π ∈ S(Q), and π′ ∈ Fn′ . Define

X := C(π′)εQ4n2θn+n+εT (1/2)n2[F :Q]+1+ε|S(Q)|,
Y :=

(
(C(π′)n/2Qn

′/2(C(π′)Q)2n
′nmax{0,θn+θn′−1/2}|S(Q)|Tn′n[F :Q]/2+1)1+ε/4n

′n[F :Q]X
)1/(3−2σ)

,

Lur(s, π × π′) := L(s, π × π′)
∏

p|qπqπ′

L(s, πp × π′p)
−1,

MX(s, π × π′) :=
∑

Nn≤X
gcd(n,qπqπ′ )=OF

μπ×π′(n)
Nns

,

LMX(s, π × π′) := Lur(s, π × π′)MX(s, π × π′). (5.1)

Note that log(C(π)C(π′)T ) � logX �ε log Y . We assume that T ≥ 2(log Y )2 since the proof
does not change appreciably otherwise. In this section, ε might vary from line to line, and terms
of size (C(π′)QT [F :Q]|S(Q)|)ε and polynomials in log(C(π′)QT [F :Q]|S(Q)|) might be bounded by
Xε without mention.

If t ∈ [−T, T ], then

|{ρ = β + iγ : β ≥ 0, |γ − t| ≤ 1}| � logC(π × π′, t) � log(C(π)C(π′)T )

by [IK04, Proposition 5.7]. We observe that the rectangle [σ, 1] × [−T, T ] is covered by O(T )
boxes of the form [σ, 1] × [y, y + 2(log Y )2], each containing O((log(C(π)C(π′)T ))3) zeros. If we
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write nπ×π′ for the number of such boxes containing at least one zero ρ of L(s, π × π′), then

Nπ×π′(σ, T ) � (log(C(π′)QT ))3nπ×π′ .

If π′ = π̃, then it suffices to assume that |ρ− 1| > 1 since there are O(log(C(π′)QT )) zeros ρ
such that |ρ− 1| ≤ 1.

Let ρ = β + iγ be a zero of L(s, π × π′), in which case LMX(ρ, π × π′) = 0. We compute

e−1/Y =
1

2πi

∫ 1−β+1/log Y+i∞

1−β+1/log Y−i∞
(1 − LMX(ρ+ w, π × π′)Γ(w)Y w dw

+
1

2πi

∫ 1/2−β+i∞

1/2−β−i∞
LMX(ρ+ w, π × π′)Γ(w)Y w dw

+ κπ×π′Γ(1 − ρ)Y 1−ρ ∑
Nn≤X

gcd(n,qπqπ′)=OF

μπ×π′(n)
Nn

. (5.2)

It follows from (3.13) and Lemmas 3.1 and 3.3 that if Re(w) = 1 − β + 1/log Y , then

|1 − LMX(ρ+ w, π × π′)|
= |Lur(ρ+ w, π × π′)| · |Lur(ρ+ w, π × π′)−1 −MX(ρ+ w, π × π′)|

�ε C(π × π′, |γ + Im(w)| + 1)ε
∑

Nn>X
gcd(n,qπqπ′ )=OF

|μπ×π′(n)|
Nn1+1/log Y

�ε C(π × π′, |γ + Im(w)| + 1)ε
∑

Nn>X
gcd(n,qπqπ′ )=OF

λπ×π̃(n) + λπ′×π̃′(n)
Nn1+1/log Y

�ε C(π)εC(π′)ε(|γ + Im(w)| + 1)ε logX. (5.3)

Therefore, we deduce from Stirling’s formula that∣∣∣∣ 1
2πi

∫ 1−β+1/log Y+i∞

1−β+1/log Y−i∞
(1 − LMX(ρ+ w, π × π′))Γ(w)Y w dw

− 1
2πi

∫ 1−β+1/log Y+i(log Y )2

1−β+1/log Y−i(log Y )2
(1 − LMX(ρ+ w, π × π′))Γ(w)Y w dw

∣∣∣∣ � 1
Y
.

The other terms in (5.2) are handled similarly. Since e−1/Y = 1 +O(1/Y ), it follows that

1 � 1
2πi

∫ 1−β+1/log Y+i(log Y )2

1−β+1/log Y−i(log Y )2
(1 − LMX(ρ+ w, π × π′))Γ(w)Y w dw

+
1

2πi

∫ 1/2−β+i(log Y )2

1/2−β−i(log Y )2
LMX(ρ+ w, π × π′)Γ(w)Y w dw + κπ×π′Y 1−σ logX

max{1, |γ|3} . (5.4)

Write the first integral in (5.4) as I1 and the second as I2. A simple optimization calculation
shows that if c ≥ 1 and c−1 ≤ |I1| + |I2|, then c−1 ≤ 2c(|I1|2 + |I2|). We estimate |I1|2 using the
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Cauchy–Schwarz inequality, thus obtaining the bound

1 � (log Y )2Y 2(1−σ)

∫ γ+(log Y )2

γ−(log Y )2

∣∣∣∣1 − LMX

(
1 +

1
log Y

+ iv, π × π′
)∣∣∣∣2 dv

+ Y 1/2−σ
∫ γ+(log Y )2

γ−(log Y )2

∣∣∣∣LMX

(
1
2

+ iv, π × π′
)∣∣∣∣ dv + κπ×π′Y 1−σ logX

max{1, |γ|3} .

Since T ≥ 2(log Y )2 by hypothesis, we conclude that

nπ×π′ � (log Y )2Y 2(1−σ)

∫ T

−T

∣∣∣∣1 − L

(
1 +

1
log Y

+ iv

)
MX

(
1 +

1
log Y

+ iv

)∣∣∣∣2 dv
+ Y 1/2−σ

∫ T

−T

∣∣∣∣L(
1
2

+ iv

)
MX

(
1
2

+ iv

)∣∣∣∣ dv + κπ×π′Y 1−σ logX + 1. (5.5)

Note that κπ×π′ = 0 unless π′ = π̃, which occurs for at most one π ∈ S(Q). When κπ×π′ �= 0,
it satisfies κπ×π′ = κπ×π̃ �ε C(π)ε per (4.6). Therefore, summing (5.5) over π ∈ S(Q), we find
that ∑

π∈S(Q)

Nπ×π′(σ, T ) � (logC(π)C(π′)T )3
∑

π∈S(Q)

nπ×π′

�ε X
ε

(
Y 2(1−σ)

∫ T

−T

∑
π∈S(Q)

∣∣∣∣1 − LMX

(
1 +

1
log Y

+ iv, π × π′
)∣∣∣∣2 dv

+ Y 1/2−σ
∫ T

−T

∑
π∈S(Q)

∣∣∣∣LMX

(
1
2

+ iv, π × π′
)∣∣∣∣ dv + Y 1−σ

)
. (5.6)

For the first integral in (5.6), we deduce from (3.13) that∣∣∣∣1 − LMX

(
1 +

1
log Y

+ it, π × π′
)∣∣∣∣2

=
∣∣∣∣Lur

(
1 +

1
log Y

+ it, π × π′
)∣∣∣∣2∣∣∣∣ 1

Lur(1 + 1
log Y + it, π × π′)

−MX

(
1 +

1
log Y

+ it, π × π′
)∣∣∣∣2

�ε X
ε

∣∣∣∣ ∑
Nn>X

gcd(n,qπqπ′ )=OF

μπ×π′(n)
Nn1+1/log Y

∣∣∣∣2.
For the second integral in (5.6), it follows from the Cauchy–Schwarz inequality that∫ T

−T

∑
π∈S(Q)

∣∣∣∣LMX

(
1
2

+ iv, π × π′
)∣∣∣∣ dv ≤

( ∫ T

−T

∑
π∈S(Q)

∣∣∣∣Lur

(
1
2

+ iv, π × π′
)∣∣∣∣2 dv)1/2

×
(∫ T

−T

∑
π∈S(Q)

∣∣∣∣ ∑
Nn≤X

gcd(n,qπqπ′)=OF

μπ×π′(n)
Nn1/2+iv

∣∣∣∣2 dv)1/2

.
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We bound the second moment of Lur(1
2 + iv, π × π′) trivially as∫ T

−T

∑
π∈S(Q)

∣∣∣∣Lur

(
1
2

+ iv, π × π′
)∣∣∣∣2 dv

�ε (QC(π′))2n
′nmax{0,θn+θn′−1/2}+εQn

′/2C(π′)n/2Tn
′n[F :Q]/2+1+ε|S(Q)| �ε

Y 3−2σ

X

using (3.7) (to bound the ramified Euler factors) and (3.13). In summary, we find that∑
π∈S(Q)

Nπ×π′(σ, T ) �ε X
ε

(
Y 2(1−σ)

∫ T

−T

∑
π∈S(Q)

∣∣∣∣ ∑
Nn>X

gcd(n,qπqπ′)=OF

μπ×π′(n)
Nn1+1/log Y+iv

∣∣∣∣2 dv
+ Y 1/2−σ

(
Y 3−2σ

X

∫ T

−T

∑
π∈S(Q)

∣∣∣∣ ∑
Nn≤X

gcd(n,qπqπ′)=OF

μπ×π′(n)
Nn1/2+iv

∣∣∣∣2 dv)1/2

+ Y 1−σ
)
.

We bound the two v-integrals using Corollary 4.4 and (5.1), thus obtaining∑
π∈S(Q)

Nπ×π′(σ, T ) �ε Y
2(1−σ)Xε.

Theorem 1.1 now follows from (5.1), the bounds for θn and θn′ in (3.2), and (1.5).

6. Bounds for Rankin–Selberg L-functions

In this section, we prove Theorem 2.1. Let π′ ∈ Fn′ and Q ≥ 1. In (1.6), we rescale ε to ε/72 and
define α = ε/(7.2 max{n, n′}) so that

|{π ∈ Fn(Q) : Nπ×π′(1 − α, 6) = 0}| ≤
∑

π∈Fn(Q)

Nπ×π′(1 − α, 6) �F,ε (C(π′)n|Fn(Q)|)ε. (6.1)

Let π ∈ Fn(Q). Proceeding as in the proof of [ST19, Theorem 1.1], we obtain4

log
∣∣∣∣L(

1
2
, π × π′

)∣∣∣∣ ≤ (
1
4
− α

109

)
logC(π × π′) + 2 log

∣∣∣∣L(
3
2
, π × π′

)∣∣∣∣
+

α

107
Nπ×π′(1 − α, 6) +O(1).

By (3.12) and (3.13), we find that there exists an effectively computable constant c5 =
c5(n, n′, [F : Q], ε) > 0 such that if C(π × π′) ≥ c5, then

log
∣∣∣∣L(

1
2
, π × π′)

∣∣∣∣ ≤ (
1
4
− 9α

1010

)
logC(π × π′) +

α

107
Nπ×π′(1 − α, 6). (6.2)

Theorem 2.1 now follows from (6.1) and (6.2).

7. Effective multiplicity one on average

In this section, we prove Theorem 2.3. We consider the family of cuspidal automorphic represen-
tations Fn(Q) over a number field F . Recall our convention that implied constants are allowed
to depend on n ≥ 3, [F : Q], and ε unless specifically mentioned otherwise.

4 Small modifications are required to work over F �= Q, none of which substantially changes the proof.
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To prove Theorem 2.3, we use Theorem 1.1 to build large zero-free regions for almost all
L-functions L(s, π × π′) with π ∈ Fn varying. If π′ ∈ {π̃, π̃′}, then L(s, π × π′) has the standard
zero-free region (1.1) apart from a possible Landau–Siegel zero, which must be both real and
simple. In all other cases, only Brumley’s much narrower zero-free region is known (see [Bru06a]
and [Lap13, Appendix]). We can use Theorem 1.1 to establish a much stronger zero-free region
for L(s, π × π′) for all π ∈ Fn(Q) with very few exceptions. Here is a simple example.

Corollary 7.1. Let ε > 0, n ≥ 3, and π′ ∈ Fn(Q). For all π ∈ Fn(Q) with Oε(Qε) exceptions,
the L-function L(s, π × π′) is non-zero in the region

Re(s) ≥ 1 − ε

20n2
, |Im(s)| ≤ logQ.

Proof. This follows from (1.7) (once we rescale ε to ε/21) with C(π′) ≤ Q, T = logQ, and σ =
1 − ε/(20n2). �

For π1, π2 ∈ Fn define the numbers Λπ1×π2(n) by the Dirichlet series identity (for Re(s) > 1)∑
n

Λπ1×π2(n)
Nns

= −L
′

L
(s, π1 × π2) =

∑
p

∞∑
k=1

∑n
j=1

∑n
j′=1 αj,j′,π1×π2(p)k log Np

Npks
. (7.1)

Lemma 7.2. Let π′ ∈ Fn. There exist absolute and effectively computable constants c6 ∈ (0, 1),
c7, c8, c9, c10 ≥ 1, and c11 ∈ (0, 1) such that the following are true.

(1) The L-function L(s, π′ × π̃′) has at most one zero, say β1, in the region

Re(s) ≥ 1 − c6

log(C(π′)n(|Im(s)| + e)n2[F :Q])
.

If β1 exists, then it must be real and simple and satisfy β1 ≤ 1 − C(π′)−c7n.
(2) If A ≥ c8, log logC(π′) ≥ c9n

4[F : Q]2, and x ≥ C(π′)c10A2n3[F :Q] log(en[F :Q]), then

∑
x/2<Nn≤x

Λπ′×π̃′(n) =

⎧⎪⎨⎪⎩
x

2
(1 − ξβ1−1)(1 +O(e−c11A)) if β1 exists,

x

2
(1 +O(e−c11A)) otherwise,

where ξ ∈ [x/2, x] satisfies xβ1 − (x/2)β1 = β1(x/2)ξβ1−1 and the implied constants are
absolute and effectively computable.

Proof. This is [HT22, Theorem 2.1] with δ = 0 and x replaced with x/2. �
Lemma 7.2 informs the following choices of parameters that we will use throughout the rest

of this section. Let 0 < ε < 1, let Q be sufficiently large with respect to ε, and let

c7 ≥ c28c10
3240

, A =
√

3240c7
c10ε

, B =
41n2

ε
, x =

1
2
(logQ)B,

π ∈ Fn(Q), π′ ∈ Fn
(
x1/A2c10n4[F :Q]2

)
= Fn

(
(2−ε/41n

2
logQ)41/3240c7n

2[F :Q]2
)
.

(7.2)

Corollary 7.3. Under the notation and hypotheses of (7.2), there holds∑
x/2<Nn≤x

gcd(n,qπqπ′ )=OF

Λπ′×π̃′(n) 
ε x
1−2c7/A2c10n3[F :Q]2 .

Proof. Let π, π′ ∈ Fn(Q). In Lemma 7.2, the lower bound on C(π′) only serves to ensure
that the implied constants are absolute. This was pertinent in [HT22], but it is not
pertinent here. Thus, we may replace the two conditions log logC(π′) ≥ c9n

4[F : Q]2 and
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x ≥ C(π′)A2c10n3[F :Q] log(en[F :Q]) with the single condition C(π′) � x1/(A2c10n4[F :Q]2). We want to
refine Lemma 7.2 so that one only sums over n such that gcd(n, qπqπ′) = OF . Using (3.3) and
(3.7), we find that the contribution to Lemma 7.2(2) arising from n such that gcd(n, qπqπ′) �= OF

is ∑
x/2<Nn≤x

gcd(n,qπqπ′ ) 	=OF

Λπ′×π̃′(n) �
∑

p|qπqπ′

∑
log(x/2)/log Np<j≤log x/log Np

Npj(1−2/(n2+1))

� logQ
log logQ

x1−2/(n2+1),

which is � x1−1/(n2+1). In the worst case, where β1 in Lemma 7.2(1) exists, it follows from
Lemma 7.2(2) and the above discussion that if C(π′) �n,[F :Q] x

1/(A2c10n3[F :Q] log(en[F :Q])), then∑
x<Nn≤2x

gcd(n,qπqπ′ )=OF

Λπ′×π̃′(n) 
 x(1 − ξβ1−1) 
n,[F :Q] xmin{1, (1 − β1) logC(π′)} 
 x logC(π′)
C(π′)c7n

.

The desired result now follows. �

Lemma 7.4. Let n ≥ 3. Assume the notation and hypotheses in (7.2). Let Φ be a fixed smooth
function supported on a compact subset of [14 , 2] such that 0 ≤ Φ(t) ≤ 1 for all t ∈ [14 , 2] and
Φ(t) = 1 for t ∈ (1

2 , 1]. If L(s, π × π′) is entire and does not vanish in the region Re(s) ≥ 1 −
ε/(20n2) and |Im(s)| ≤ logQ, then∑

gcd(n,qπqπ′)=OF

Λπ×π̃′(n)Φ(Nn/x) �B x1+2/B−ε/20n2
.

Proof. Writing Φ̂(s) =
∫ ∞
0 Φ(t)ts−1 dt for the Mellin transform of Φ (which is an entire function

of s), we observe via Mellin inversion that∑
gcd(n,qπqπ′ )=OF

Λπ×π̃′(n)Φ(Nn/x) =
1

2πi

∫ 2+i∞

2−i∞
−(Lur)′

(Lur)
(s, π × π̃′)Φ̂(s)xs ds,

where Lur(s, π × π̃′) = L(s, π × π̃′)
∏

p|qπqπ′ L(s, πp × π̃′p)−1. A standard contour integral calcu-
lation using the argument principle shows that the above display equals

−
∑

Lur(ρ,π×π̃′)=0

Φ̂(ρ)xρ,

where ρ ranges over all zeros of Lur(s, π × π̃′).
Since Φ is compactly supported and Φ̂ is entire, it follows that for any R ≥ 2, we have

|Φ̂(s)| �R min{1, |s|−ReRe(s)}. Note that the reciprocals of the Euler factors of L(s, π × π̃′) at
prime ideals p | qπqπ′ and all of the trivial zeros of L(s, π × π̃′) have real part no larger than
1 − 2/(n2 + 1) per (3.3) and (3.7). Since for any t ∈ R there are � logQ+ log(|t| + 2) zeros
ρ = β + iγ of Lur(s, π × π̃′) that satisfy 0 < β < 1 and |γ − t| ≤ 1, we find for any T ≥ 1, R ≥ 2,
and σ0 ≥ 1 − 2/(n2 + 1) that∑

Lur(ρ,π×π̃′)=0

Φ̂(ρ)xρ =
∑

Lur(ρ,π×π̃′)=0
β≥σ0

|γ|≤T

Φ̂(ρ)xρ +O(T 1−R log(QT )x+ T log(QT )xσ0). (7.3)
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We choose T = logQ = (2x)1/B and σ0 = 1 − ε/(20n2), in which case our hypotheses imply that
the sum over zeros on the right-hand side of (7.3) is empty and∣∣∣∣ ∑

Lur(ρ,π×π̃′)=0

Φ̂(ρ)xρ
∣∣∣∣ �B x1+(2−R)/B + x2/B+σ0 .

The desired result follows from choosing R = max{B(1 − σ0), 3}. �
Proof of Theorem 2.3. Suppose to the contrary that π �= π′ and πp

∼= π′p for all p � qπqπ′ with
Np ≤ 2x. Then Aπ(p) = Aπ′(p) for all p � qπqπ′ with Np ≤ 2x. By (3.6) and (7.1), it follows that
Λπ×π̃′(n) = Λπ′×π̃′(n) for all n such that gcd(n, qπqπ′) = OF and Nn ≤ x. Since Λπ′×π̃′(n) ≥ 0 for
all such n, the same holds for Λπ×π̃′(n). It follows that∑

x/2<Nn≤x
gcd(n,qπqπ′ )=OF

Λπ′×π̃′(n) =
∑

x/2<Nn≤x
gcd(n,qπqπ′ )=OF

Λπ×π̃′(n).

By (7.2), we have that

C(π′) � x1/(A2c10n4[F :Q]2). (7.4)

Therefore, if L(s, π × π̃′) �= 0 in the region {s ∈ C : Re(s) ≥ 1 − ε/(20n2), |Im(s)| ≤ logQ}, then
by Corollary 7.3 and Lemma 7.4, we have that

x1−2c7/A2c10n3[F :Q]2 �
∑

x/2<Nn≤x
gcd(n,qπqπ′ )=OF

Λπ′×π̃′(n) =
∑

x/2<Nn≤x
gcd(n,qπqπ′ )=OF

Λπ×π̃′(n) �B x1+2/B−ε/20n2
.

This implies that

1 − 2c7
A2c10n3[F : Q]2

≤ 1 +
2
B

− ε

20n2
,

which contradicts our choices of A and B in (7.2). The desired result now follows from
Corollary 7.1. �

8. Automorphic level of distribution

In this section, we prove Theorem 2.5. In what follows, let F = Q. If n = 2, then L(s, π × π̃)
is the L-function of an isobaric automorphic representation of GL4(AQ) whose cuspidal con-
stituents have rank at most 3. Since the L-function any Dirichlet character twist of any cuspidal
constituents of rank 2 or 3 have no Landau–Siegel zero by [Ban97, HR95], a stronger result than
Theorem 2.5 follows from a minor variation of the proof of [JLTW23, Theorem 1.1]. Therefore,
we may restrict our consideration to n ≥ 3.

Let π ∈ Fn have arithmetic conductor qπ, and let χ be a primitive Dirichlet character
modulo q. We allow π to be fixed, so for notational compactness, we introduce Lχ(s) :=
L(s, π × (π̃ ⊗ χ)) and L1(s) := L(s, π × π̃). If q and qπ are coprime, then Lχ(s) is entire if and
only if χ is non-trivial, since π̃ ⊗ χ �= π̃, which is clear by comparing the arithmetic conductors
of qπ̃⊗χ and qπ̃. If χ is trivial, then Lχ(s) = L1(s). We also define Λχ(s) := Λ(s, π × (π̃ ⊗ χ)) and
Λ1(s) := Λ(s, π × π̃).

8.1 Preliminaries
We define aπ(m) and aπ×π̃(m) by the Dirichlet series identities

∞∑
n=1

aπ(m)Λ(m)
ms

= −L
′

L
(s, π),

∞∑
n=1

aπ×π̃(m)Λ(m)
ms

= −L
′

L
(s, π × π̃), Re(s) > 1.
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The local calculations in [LRS95, Lemma 2.1] show that if χ (mod q) is a primitive Dirichlet
character and gcd(q, qπ) = 1, then for all primes p, we have that

L(s, πp × (π̃ ⊗ χ)p) =
n∏
j=1

n∏
j′=1

(1 − αj,j′,π×π̃(p)χ(p)p−s)−1. (8.1)

It follows from (3.6) and (8.1) that if gcd(m, qπ) = 1, then aπ×(π̃⊗χ)(m) = |aπ(m)|2χ(m). We
now provide a convenient expression for −L′

χ(s)/Lχ(s).

Lemma 8.1. Let π ∈ Fn. Let ψ (mod q) be a Dirichlet character with q such that gcd(q, qπ) = 1
and χ be the primitive Dirichlet character that induces ψ. Let δ(χ) = 1 if χ is trivial and δ(χ) = 0
otherwise. There exists a function Hπ(s;χ, ψ) such that in the region Re(s) ≥ 1 − 1/n2:

(1) Hπ(s;χ, ψ) is holomorphic;
(2) |Hπ(s;χ, ψ)| �π log(q(3 + |Im(s)|)); and
(3) we have the identity

∞∑
m=1

|aπ(m)|2ψ(m)Λ(m)
ms

=
δ(χ)
s− 1

− Λ′
χ

Λχ
(s) +Hπ(s;χ, ψ).

Proof. Suppose first that ψ is primitive, in which case ψ = χ and the function Hπ(s;χ, ψ) is

log qπ×(π̃⊗χ)

2
+
L′

L
(s, π∞ × (π̃ ⊗ χ)∞) +

δ(χ)
s

+
∑
p|qπq

L′

L
(s, πp × (π̃′ ⊗ χ)p)

−
∑
p|qπq

∑
1≤j≤n
1≤j′≤n

αj,π(p)αj′,π′(p)χ(p) log p

ps − αj,π(p)αj′,π(p)χ(p)
.

This is holomorphic and bounded as claimed for Re(s) ≥ 1 − 1/n2 by (3.7), (3.10), and Stirling’s
formula. If ψ is not primitive and χ is the primitive character that induces ψ, then in the same
region, we have∣∣∣∣ ∞∑

m=1

|aπ(m)|2ψ(m)Λ(m)
ms

−
∞∑
m=1

|aπ(m)|2χ(m)Λ(m)
ms

∣∣∣∣ ≤ ∑
p|q

∑
k≥1

|aπ(pk)|2 log p
pkRe(s)

,

which is bounded as desired using (3.7) again. �

We use the following zero-free region for Lχ(s) and Siegel-type bound on any real exceptional
zeros. We prove this theorem later.

Theorem 8.2. Let Q ≥ 3 and π ∈ Fn. There exists an effectively computable constant
c12 = c12(π) > 0 such that for all primitive Dirichlet characters χ (mod q) with q ≤ Q and
gcd(q, qπ) = 1 with at most one exception, the L-function L(s, π × (π̃ ⊗ χ)) does not vanish
in the region

Re(s) ≥ 1 − c12
log(Q(|Im(s)| + 3))

.

If the exceptional character χ1 (mod q1) exists, then L(s, π × (π̃ ⊗ χ1)) has at most one zero, say
β1, in this region; β1 is both real and simple; and χ1 must be quadratic. Moreover, for all ε > 0,
there exists an ineffective constant cπ(ε) > 0 such that β1 ≤ 1 − cπ(ε)q−ε1 .
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8.2 Proof of Theorem 2.5
We follow Gallagher’s proof of the Bombieri–Vinogradov theorem in [Gal68], with n ≥ 2 and
π ∈ Fn fixed at the onset. Note that the function

ψk(y; q, a) :=
1
k!

∑
m≤y

m≡a (mod q)

|aπ(m)|2Λ(m)
(

log
y

m

)k
is monotonically increasing as a function of y for each k ≥ 0. Thus, if 0 < λ ≤ 1, then

1
λ

∫ y

e−λy
ψk−1(t; q, a)

dt

t
≤ ψk−1(y; q, a) ≤ 1

λ

∫ eλy

y
ψk−1(t; q, a)

dt

t
.

The integrals, which equal ψk(y; q, a) − ψk(e−λy; q, a) and ψk(eλy; q, a) − ψk(y; q, a), respectively,
both have the same asymptotic expansion, namely

(λ+O(λ2))
y

ϕ(q)
+O

(
max
y≤ex

|rk(y; q, a)|
)
, rk(y; q, a) := ψk(y; q, a) − y

ϕ(q)
,

where ϕ is Euler’s totient function. Thus, we have the bounds

max
y≤x

|rk−1(y; q, a)| � λx

ϕ(q)
+

1
λ

max
y≤ex

|rk(y; q, a)|

and ∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤x

|rk−1(y; q, a)| � λx log x+
1
λ

∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤ex

|rk(y; q, a)|.

It follows by induction on k that∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤x

|r0(y; q, a)| �k λx log x+
1

λ2k−1

∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤ex

|rk(y; q, a)|.

Proposition 8.3. If θ < 1/(9n3) is fixed and k = 9n2 + 1, then for any B > 0, we have∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤ex

|rk(y; q, a)| �π,B
x

(log x)B
.

Proposition 8.3 implies Theorem 2.5. It follows from Proposition 8.3 that∑
q≤xθ

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤x

|r0(y; q, a)| �π,B λx log x+
1

λ2k−1

x

(log x)B
.

To finish, we choose B = 2k(A+ 1) − 1 and λ = (log x)−(B+1)/2k
. �

8.3 Proof of Proposition 8.3
Let π ∈ Fn, k = 9n2 + 1, Q = xθ for some fixed 0 < θ < 1/(9n3), and q ≤ Q. We have the
decomposition

1
k!

∑
m≤y

m≡a (mod q)

|aπ(m)|2Λ(m)
(

log
y

m

)k
=

1
k!

∑
ψ (mod q)

ψ(a)
ϕ(q)

∑
y≤m

|aπ(m)|2Λ(m)ψ(n)
(
log

y

m

)k
.

1063

https://doi.org/10.1112/S0010437X24007085 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007085


P. Humphries and J. Thorner

By Lemma 8.1 and Mellin inversion, this equals

1
ϕ(q)

∑
ψ (mod q)

∑
χ primitive
χ induces ψ

χ(a)
2πi

∫ 3+i∞

3−i∞

(
− Λ′

χ

Λχ
(s) +Hπ(s;χ, ψ)

)
ys

sk+1
ds.

Since a primitive character χ (mod q) induces characters to moduli that are a multiple of q, it
follows from the bound

∑
f≤Q, q|f ϕ(f)−1 � (logQ)/ϕ(q) that

∑
q≤Q

gcd(q,qπ)=1

max
gcd(a,q)=1

max
y≤x

∣∣∣∣ 1
k!

∑
m≤y

m≡a (mod q)

|aπ(m)|2Λ(m)
(

log
y

m

)k

− y

ϕ(q)

∣∣∣∣
�

∑
q≤Q

gcd(q,qπ)=1

logQ
ϕ(q)

∑
χ (mod q)
χ primitive

max
y≤x

∣∣∣∣ 1
2πi

∫ 3+i∞

3−i∞

(
− Λ′

χ

Λχ
(s) +Hπ(s;χ, χ)

)
ys

sk+1
ds

∣∣∣∣. (8.2)

Observe that by Lemma 8.1 and our range of θ, (8.2) equals∑
q≤Q

gcd(q,qπ)=1

logQ
ϕ(q)

∑
χ (mod q)
χ primitive

max
y≤x

∣∣∣∣ − ∑
Lχ(ρ)=0

yρ

ρk+1
+

1
2πi

∫ 1−1/n2+i∞

1−1/n2−i∞
Hπ(s;χ, χ)

ys

sk+1
ds

∣∣∣∣
�π,B logQ

∑
q≤Q

gcd(q,qπ)=1

1
ϕ(q)

∑
χ (mod q)
χ primitive

∑
Lχ(ρ)=0

yβ

|ρ|k+1
+

x

(log x)B
, (8.3)

where ρ = β + iγ ranges over the non-trivial zeros of Lχ(s). In light of the bounds 1/q ≤
1/ϕ(q) � (log(eq))/q, we dyadically decompose [1, Q] into O(logQ) subintervals and find that
(8.3) is

�π,B x(logQ)2 sup
3≤R≤Q

∑
q≤R

gcd(q,qπ)=1

1
ϕ(q)

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ

xβ−1

|ρ|k +
x

(log x)B

�π,B x(logQ)3 sup
3≤R≤xθ

1
R

∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ

xβ−1

|ρ|k +
x

(log x)B

�π,B x(log x)3 sup
3≤R≤xθ

1
R

(
xβ1−1

βk1
+

∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ 	=β1

xβ−1

|ρ|k
)

+
x

(log x)B
.

(8.4)

where β1 is the exceptional zero in Theorem 8.2. The term xβ1−1/βk1 is omitted if β1 does not
exist.

If β1 exists as in Theorem 8.2 and the supremum is achieved when R ≤ (log x)4B, then
we apply Theorem 8.2 with ε = 1/8B and conclude that the contribution from such a zero is
absorbed in our error term. If the supremum is achieved when R > (log x)4B, then contribution
from β1 is trivially absorbed in our error term. Hence, (8.4) is

�π,B x(log x)3 sup
3≤R≤xθ

1
R

∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ 	=β1

xβ−1

|ρ|k +
x

(log x)B
. (8.5)
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Now let us consider the zeros ρ with |ρ| < 1
4 . The number of such zeros is � R2 logR. From

the consideration of the corresponding zeros 1 − ρ of Lχ(s), we deduce that |ρ| 
 x−1/(4k). Thus,
the contribution from these zeros is � Rx1/4+k/4k logR� Qx1/2 logQ�B x(log x)−B. Define
T0 = 0 and Tj = 2j−1 for j ≥ 1. The above discussion shows that (8.5) is

�π,B x(log x)3 sup
3≤R≤xθ

1
R

∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ 	=β1

|ρ|> 1
4

xβ−1

|ρ|k +
x

(log x)B

�π,B x(log x)3 sup
3≤R≤xθ

1
R

∞∑
j=1

∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑′

ρ=β+iγ 	=β1

|ρ|≥ 1
4

Tj−1≤|γ|≤Tj

xβ−1

|ρ|k +
x

(log x)B
. (8.6)

If |ρ| ≥ 1
4 and Tj−1 ≤ |γ| ≤ Tj , then |ρ| ≥ max{Tj−1,

1
4} ≥ Tj/4 and |ρ| 
 |γ| + 3. Therefore,

if δ = min{1 − 9n3θ, 1
2}, then

xβ−1|ρ|−k � T
−1/2
j (|γ| + 1)−1/2x−(1−β)δ(x1−δT k−1

j )−(1−β)

� T
−1/2
j (|γ| + 1)−1/2x−(1−β)δ(R(1−δ)/θT k−1

j )β−1.

Since ρ = β + iγ �= β1, it follows from Theorem 8.2 that

(|γ| + 1)−1/2x−δ(1−β) ≤ e−δηπ(x,R), ηπ(x,R) := inf
t≥3

[
cπ

log x
log(Rt)

+ log t
]
,

so (8.6) is

�π,B x(log x)3 sup
3≤R≤xθ

e−δη(x,R)

R

∞∑
j=1

T
−1/2
j

×
∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ 	=β1

|γ|≤Tj

(R(1−δ)/θT k−1
j )β−1 +

x

(log x)B
.

Define

N∗
π(σ, T,R) =

∑
q≤R

gcd(q,qπ)=1

∑
χ mod q

χ primitive

|{ρ = β + iγ : β ≥ σ, |γ| ≤ T, Lχ(ρ) = 0}|.

By (3.10), there exists an effectively computable constant c13 = c13(n) > 0 such that

{π̃ ⊗ χ : χ (mod qχ) primitive, gcd(qχ, qπ) = 1, qχ ≤ Q} ⊆ Fn(c13C(π)Qn).

Thus, by (1.7), we have N∗
π(σ, T,R) �π,ε (RnT )9n

2(1−σ)+ε. Partial summation yields∑
q≤R

gcd(q,qπ)=1

∑
χ (mod q)
χ primitive

∑
ρ=β+iγ 	=β1

|γ|≤Tj

(R(1−δ)/θT k−1
j )−(1−β)

� (R(1−δ)/θT k−1
j )−1N∗

π(0, Tj , R) + log(RTj)
∫ 1

0
(R(1−δ)/θT k−1

j )−σN∗
π(1 − σ, Tj , R) dσ

�π,ε (RTj)ε
(

(R(1−δ)/θT k−1
j )−1RTj +

∫ 1

0
(R(1−δ)/θT k−1

j )−σ(RnTj)9n
2σdσ

)
. (8.7)
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Our choices for θ, k, and δ ensure that (8.7) is �π,ε (RTj)ε. Thus, (8.6) is

�π,B,ε x(log x)3 sup
3≤R≤xθ

e−δηπ(x,R)R
ε

R

∞∑
j=1

T
−1/2+ε
j +

x

(log x)B

�π,B,ε x(log x)3 sup
3≤R≤xθ

e−δηπ(x,R)R
ε

R
+

x

(log x)B
. (8.8)

A small calculation (cf. [TZ19, § 4]) shows that there is a constant c14 = c14(π) > 0 such that
e−δηπ(x,R) �π,B,ε exp(−c14 log x/logR) + exp(−c14

√
log x), and Theorem 2.5 follows.

8.4 Proof of Theorem 8.2
Although the proof of Theorem 8.2 contains only standard techniques, such zero-free regions for
Lχ(s) are new even in the case when χ is trivial. The case when χ is trivial was only recently
handled unconditionally in [HT22].

Lemma 8.4 [HT22, Theorem 2.1(1)]. Let π ∈ Fn. There exists an absolute and effectively
computable constant c15 > 0 such that L1(s) has at most one zero, say β1, in the region
Re(s) ≥ 1 − c15/log(C(π)n(|Im(s)| + e)n

2
). If β1 exists, then it must be real and simple, and

there exists an absolute and effectively computable constant c16 such that β1 ≤ 1 − C(π)−c16n.

We prove the corresponding result for Lχ(s). The ideas in [HT22] inform our approach here.

Lemma 8.5. Let π ∈ Fn. Let χ (mod q) be a non-trivial primitive Dirichlet character such that
gcd(q, qπ) = 1. There exists an effectively computable constant c17 = c17(n) > 0 such that Lχ(s)
has at most one zero, say β1, in the region

Re(s) ≥ 1 − c17
log(qC(π)(|Im(s)| + 3))

. (8.9)

If the exceptional zero β1 exists, then it is real and simple, and χ is quadratic.

Proof. Let χ (mod q) be a primitive non-trivial Dirichlet character, let ψ be the primitive char-
acter that induces χ2, and let β + iγ be a non-trivial zero of Lχ(s). Define Πχ = π � π ⊗ χ| ·
|it � π ⊗ χ| · |−it, and define

D(s) = L(s,Πχ × Π̃χ) = L1(s)3Lχ(s+ iγ)2Lχ(s− iγ)2Lψ(s+ 2iγ)Lψ(s− 2iγ). (8.10)

The factor L1(s)3 has a pole of order 3 at s = 1, and the hypothesis that gcd(q, qπ) = 1 ensures
that Lχ(s+ iγ)2Lχ(s− iγ)2 is entire. If ψ is complex, then Lψ(s+ 2iγ)Lψ(s− 2iγ) is entire;
otherwise, it has poles of order 1 at s = 1 ± 2iγ. The additional poles when ψ is real require some
additional casework when γ is close to zero. For notational compactness, let Qγ = qC(π)(|γ| + 3).
Note that −(D′/D)(s) has non-negative Dirichlet coefficients per [HR95, Lemma a].

The functional equation for Lχ(s) together with the fact that L(s, π × π̃) is a self-dual
L-function (even if L(s, π) itself is not self-dual) implies that if ρ is a zero of Lχ(s), then ρ is a
zero of Lχ(s). Thus, we have that

ord
s=β

D(s) ≥ 4. (8.11)

Let ω denote a non-trivial zero of D(s), δ(ψ) = 1 if ψ is trivial, and δ(ψ) = 0 otherwise. We
apply Lemma 3.2 and (3.10) to (8.10), concluding that if 1 < σ < 2, then∑

ω

Re
(

1
σ − ω

)
<

3
σ − 1

+ δ(ψ)
2(σ − 1)

(σ − 1)2 + 4γ2
+ c18 logQγ , (8.12)
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where c18 = c18(n) > 1 is a suitable implied constant. Since β < 1 is, by hypothesis, one of the
zeros in the sum in (8.12), we have by (8.11) and non-negativity that

4
σ − β

<
3

σ − 1
+ δ(ψ)

2(σ − 1)
4γ2 + (σ − 1)2

+ c18 logQγ . (8.13)

Case 1: Either χ is real and |γ| ≥ 1/7c22 logQ0 or χ is complex. If σ = 1 + 1/5c18 logQγ , then

δ(ψ)
2(σ − 1)

4γ2 + (σ − 1)2
≤ 490

149
c18 logQγ .

Thus, (8.13) becomes
4

1 + 1/5c18 logQγ − β
≤ 2874

149
c18 logQγ .

Upon solving for β, we conclude that β ≤ 1 − 1/136c18Qγ .

Case 2: χ is real and γ = 0. We start at (8.12) with δ(ψ) = 1, γ = 0, and σ = 1 + 1/3c18 logQ0.
If there are N zeros β (with multiplicity) of D(s) such that β ≥ 1 − 1/96c18 logQ0, then by
(8.12),

32
11
c18N logQ0 =

N

σ − (1 − 1/96c18 logQ0)
≤ 5
σ − 1

+ c18 logQ0 = 16c18 logQ0.

It follows that (since N is an integer) N ≤ �11
2 � = 5. By the bound (8.11), Lχ(s) has at most

one real zero β, necessarily simple, satisfying β ≥ 1 − 1/96c18 logQ0.

Case 3: χ is quadratic and 0 < |γ| < 1/7c22 logQ0. We apply Lemma 3.2 to L1(s)Lχ(s). The
only singularity is a simple pole at s = 1. Both L1(s) and Lχ(s) are self-dual, so if β + iγ is a
non-trivial zero of L1(s)Lχ(s) = 0, then so is β − iγ. By (8.1), the mth Dirichlet coefficient of
−L′

1/L1(s) − L′
χ/Lχ(s) is (1 + χ(m))aπ×π̃(m)Λ(m) ≥ 0, so Lemma 3.2 yields

2
σ − β

(σ − β)2 + γ2
≤ 1
σ − 1

+ c18 logQγ . (8.14)

If σ = 1 + 1/2c18 logQγ and 0 < |γ| < 1/7c18 logQ0 in (8.14), then β ≤ 1 − 1/8c18 logQγ . �
We now prove a Siegel-type bound for β1 in Lemma 8.5 (if it exists) using the ideas of

Hoffstein and Lockhart [HL94]. This is new for all π ∈ Fn with n ≥ 3. We begin with an auxiliary
calculation. Let χ (mod q) and χ′ (mod q′) be distinct non-trivial quadratic Dirichlet characters
such that gcd(q′q, qπ) = 1, and let ψ be the primitive character that induces χ′χ (whose conductor
is necessarily coprime to qπ). These coprimality restrictions ensure that π �= π ⊗ χ, π �= π ⊗ χ′,
π �= π ⊗ ψ, qπ⊗χ = qπq

n, qπ⊗χ′ = qπ(q′)n, and qπ⊗ψ = qψq
n. We also have that qψ|qχqχ′ . Let

L(s,Π�) = L1(s)Lχ(s)Lχ′(s)Lψ(s). (8.15)

By the above discussion, L(s,Π�) is holomorphic apart from a simple pole at s = 1. It follows
from (8.1) that if k ≥ 1, then the pkth Dirichlet coefficient of logL(s,Π�) equals

k−1aπ×π̃(pk)(1 + χ(pk) + χ′(pk) + ψ(pk)) ≥ 0.

The non-negativity of 1 + χ(pk) + χ′(pk) + ψ(pk) follows from the fact that this sum is a Dirichlet
coefficient of the Dedekind zeta function of a biquadratic field. Upon exponentiating, we find
that the mth Dirichlet coefficient λΠ�(m) of L(s,Π�) is non-negative.
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Lemma 8.6. If π ∈ Fn and χ is a primitive non-trivial real Dirichlet character, then Lχ(1) > 0
and the Dirichlet coefficients of L1(s)Lχ(s) are non-negative.

Proof. Let K be the quadratic field associated to χ. If πBC is the base change of π to an automor-
phic representation of GLn(AK), then L(s, πBC × π̃BC) = L1(s)Lχ(s). Since L(s, πBC × π̃BC) is
holomorphic on C − {1} apart from a simple pole at s = 1, the same holds for L1(s)Lχ(s). Since
gcd(q, qπ) = 1 (hence, Lχ(s) is entire), the residue of L(s, πBC × π̃BC) at s = 1, which is posi-
tive, equals Lχ(1)Ress=1L1(s). Since Ress=1L1(s) > 0, it follows that Lχ(1) > 0. The Dirichlet
coefficients of L1(s)Lχ(s) are non-negative per case 3 in the proof of Lemma 8.5. �

Let 0 < ε < 1, and let β ∈ (1 − ε, 1). By (3.13) and the above discussion, we have

L(1/2 + it,Π�) �π,ε (q′q)n
2/2+ε(3 + |t|)n2+ε,

Res
s=1−β

L(s+ β,Π�)xsΓ(s) �π,ε Lχ(1)(q′q)ε(1 − β)−1x1−β .
(8.16)

If x ≥ 3, then since λΠ�(1) = 1, we use (8.16) to deduce that

1
e
≤

∞∑
m=1

λΠ�(m)
mβ

e−m/x

=
1

2πi

∫ 3+i∞

3−i∞
L(s+ β,Π�)xsΓ(s) ds

= Res
s=1−β

L(s+ β,Π�)xsΓ(s) + L(β,Π�) +
1

2πi

∫ 1/2−β+i∞

1/2−β−i∞
L(s+ β,Π�)xsΓ(s) ds

�π,ε Lχ(1)(q′q)ε(1 − β)−1x1−β + L(β,Π�) + (q′q)n
2/2+εx1/2−β . (8.17)

Proposition 8.7. Recall the notation and hypotheses of Lemma 8.5. If β1 exists for a primitive
character χ (mod q) such that gcd(q, qπ) = 1, then for all ε > 0, there exists an (ineffective)
constant c′π(ε) > 0 such that Lχ(1) ≥ c′π(ε)q−ε.

Proof. It suffices to take 0 < ε < 1. Let χ (mod q) and χ′ (mod q′) be primitive quadratic
Dirichlet characters with, let ψ be the primitive character that induces χ′χ, and recall the
definition of L(s,Π�) from (8.15). Our proof consists of two cases.

First, suppose that there exists no primitive quadratic Dirichlet character ω such that Lω(s)
does not vanish for s ∈ (1 − ε/2, 1). It then follows that there exists a constant c19 = c19(π) > 0
such that L1(s)Lχ(s) �= 0 in the interval s ∈ (1 − c19/log q, 1). Since the Dirichlet coefficients
of L1(s)Lχ(s) are non-negative (using Lemma 8.6) and the residue of L1(s)Lχ(s) at s = 1 is
Lχ(1)Ress=1L1(s), it follows from [HL94, Proposition 1.1] and (3.13) that Lχ(1)Ress=1L1(s) 
π

(log q)−1. Since each term on the left-hand side is positive (using Lemma 8.6), the desired result
follows.

Second, suppose that there exists χ′ (mod q′) and β ∈ (1 − ε/2, 1) such that Lχ′(β) = 0. We
may assume that q′ is minimal, subject to this condition. Now, let χ be arbitrary. If q < q′,
then the minimality of q′ ensures that Lχ(s) �= 0 for s ∈ (1 − ε/2, 1), and the preceding case
implies the desired result. Suppose now that q ≥ q′. If Lχ(s) has no real zero within a distance
of c17/log(3q′qC(π)) of s = 1, then since q ≥ q′, Lχ(s) has no real zero within a distance of
1
2c17/log(3qC(π)) of s = 1. Again, the desired result follows by the preceding case. Finally, sup-
pose that Lχ(s) has a real zero within a distance of c17/log(3q′qC(π)) of s = 1. At this stage, we
assume that χ �= χ′.
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It follows from analysis nearly identical to the second case in Lemma 8.5 (with L(s,Π�)
replacing D(s)) that L(s,Π�) has at most one real zero within distance c17/log(3q′qC(π)) from
1. Since we have supposed that Lχ(s) has a real zero within distance c17/log(3q′qC(π)) of s = 1,
the above discussion indicates that this is the sole real zero for L(s,Π�) within a distance of
c17/log(3q′qC(π)) of s = 1. It follows that the zero β of Lχ′(s) must satisfy

β ≤ 1 − c17
log(3q′qC(π))

, β ∈
(

1 − ε

2
, 1

)
.

Since Lχ′(β) = 0, it follows that L(β,Π�) = 0. Using (8.17), the above bounds on β, and the fact
that q ≥ q′, we find that

1 �π,ε Lχ(1)q2εx1−β + qn
2+2εx1/2−β �π,χ′,ε Lχ(1)q2εxε/2 + qn

2+2εxε/2−1/2.

Choosing x = q2n
2
/Lχ(1)2 (which is at least 3 by (3.10) and (3.13)) and solving for Lχ(1), we

find that for all χ �= χ′ and all 0 < ε < 1, there exists a constant dπ(ε) > 0 such that Lχ(1) ≥
dπ(ε)q−ε(n

2+2)/(1−ε). Upon rescaling ε to ε/(n2 + 2 + ε), we have Lχ(1) ≥ dπ(ε/(n2 + 2 + ε))q−ε.
As long as χ �= χ′, the constant dπ(ε/(n2 + 2 + ε)) is effective. Once we decrease dπ(ε/(n2 + 2 +
ε)) suitably to account for the case where χ = χ′, the claimed result holds for arbitrary χ. �

Corollary 8.8. Recall the notation and hypotheses of Lemma 8.5. If β1 exists, then for all
ε > 0, there exists an (ineffective) constant cπ(ε) > 0 such that β1 ≤ 1 − cπ(ε)q−ε.

Proof. If β1 exists, then there exists σ ∈ [β1, 1] such that L′
χ(σ)(1 − β1) = Lχ(1) ≥ c′π(ε/2)q−ε/2

by Proposition 8.7 and the mean value theorem. The result follows once we establish the bound
L′
χ(σ) �π,ε q

ε
2 for σ ∈ [1 − bn/log(3qC(π)), 1], where bn > 0 is a suitable constant depending at

most on n. To prove this, we observe via Cauchy’s integral formula that

L′
χ(1) =

1
2πi

∫
|z−1|=1/log q

Lχ(z)
(z − 1)2

dz � (log q) max
|ξ−1|≤1/log q

|Lχ(ξ)|,

in which case the desired bound follows from (3.13). �

We show that among the primitive characters χ (mod q) with q ≤ Q, we encounter very few
with the property that Lχ(s) has an exceptional zero.

Lemma 8.9. Let Q ≥ 3. There exists an effectively computable constant c20 = c20(n) > 0 such
that there is at most one real non-trivial primitive Dirichlet character χ1 (mod q1) with q1 ≤ Q
such that Lχ1(s) has a real zero β1 satisfying β1 > 1 − c20/log(C(π)Q).

Proof. Suppose to the contrary that χ (mod q) and χ′ (mod q′) are two distinct such characters
with q, q′ ≤ Q. Let Π = π � π ⊗ χ� π ⊗ χ′, let ψ be the primitive character that induces χ′χ,
and let

F (s) = L(s,Π × Π̃) = L1(s)3Lχ(s)2Lχ′(s)2Lψ(s)2.

By [HR95, Lemma a], the Dirichlet coefficients of −(F ′/F )(s) are non-negative. By Lemma 3.2,
there exists a constant c21 = c21(n) ≥ 1 such that if ω runs through the nontrivial zeros of F (s)
and 1 < σ < 2, then ∑

ω

Re
(

1
σ − ω

)
<

3
σ − 1

+ c21 log(C(π)Q). (8.18)
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If σ = 1 + 1/2c21 log(C(π)Q) andM is the number (necessarily an integer) of real zeros (counting
multiplicity) of F (s) that are at least 1 − 1/14c21 log(C(π)Q), then it follows from (8.18) that

M

1 + 1/2c21 log(C(π)Q) − (1 − 1/14c21 log(C(π)Q))
<

3
(1 + 1/2c21 log(C(π)Q)) − 1

+ c21 log(C(π)Q).

This implies that M ≤ 3. However, if Lχ(s) and Lχ′(s) both have real zeros that are larger
than 1 − 1/14c21 log(C(π)Q), then F (s) has four such zeros, a contradiction. The lemma now
follows. �

Proof of Theorem 8.2. This follows from Corollary 8.8 and Lemmas 8.4, 8.5, and 8.9. �
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Supér. (4), to appear. Preprint (2018), arXiv:1805.00633.
BTZ22 F. Brumley, J. Thorner and A. Zaman, Zeros of Rankin–Selberg L-functions at the edge of the

critical strip, J. Eur. Math. Soc. (JEMS) 24 (2022), 1471–1541. With an appendix by Colin
J. Bushnell and Guy Henniart.

Bum13 D. Bump, Lie groups, Graduate Texts in Mathematics, vol. 225, second edition (Springer,
New York, 2013).

BH97 C. J. Bushnell and G. Henniart, An upper bound on conductors for pairs, J. Number Theory
65 (1997), 183–196.

DI82 J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms,
Invent. Math. 70 (1982/83), 219–288.

1070

https://doi.org/10.1112/S0010437X24007085 Published online by Cambridge University Press

https://arxiv.org/abs/1805.00633
https://doi.org/10.1112/S0010437X24007085


Zeros of Rankin–Selberg L-functions in families

DK00 W. Duke and E. Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for
automorphic representations, Invent. Math. 139 (2000), 1–39. With an appendix by Dinakar
Ramakrishnan.

Gal68 P. X. Gallagher, Bombieri’s mean value theorem, Mathematika 15 (1968), 1–6.
Gal70 P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329–339.
GJ78 S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and
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