
The Predictive Power of Computational Astrophysics as a Discovery Tool
Proceedings IAU Symposium No. 362, 2023
D. Bisikalo, D. Wiebe & C. Boily, eds.
doi:10.1017/S1743921322001429

A radiation hydrodynamics scheme on
adaptive meshes using the Variable
Eddington Tensor (VET) closure

Shyam H. Menon1 , Christoph Federrath1,2 , Mark R. Krumholz1,2,
Rolf Kuiper3, Benjamin D. Wibking1,2 and Manuel Jung4

1Research School of Astronomy and Astrophysics, Australian National University, Canberra,
ACT 2611, Australia

2ARC Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Canberra,
ACT 2611, Australia

3Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik,
Albert-Ueberle-Straße 2, 69120 Heidelberg, Germany

4Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
email: shyam.menon@anu.edu.au

Abstract. We present a new algorithm to solve the equations of radiation hydrodynamics (RHD)
in a frequency-integrated, two-moment formulation. Novel features of the algorithm include i) the
adoption of a non-local Variable Eddington Tensor (VET) closure for the radiation moment equa-
tions, computed with a ray-tracing method, ii) support for adaptive mesh refinement (AMR),
iii) use of a time-implicit Godunov method for the hyperbolic transport of radiation, and iv) a
fixed-point Picard iteration scheme to accurately handle the stiff nonlinear gas-radiation energy
exchange. Tests demonstrate that our scheme works correctly, yields accurate rates of energy
and momentum transfer between gas and radiation, and obtains the correct radiation field distri-
bution even in situations where more commonly used – but less accurate – closure relations like
the Flux-limited Diffusion and Moment-1 approximations fail. Our scheme presents an impor-
tant step towards performing RHD simulations with increasing spatial and directional accuracy,
effectively improving their predictive capabilities.
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1. Introduction

Radiation hydrodynamics (RHD) plays a crucial role in the evolution of various
astrophysical systems from stellar atmospheres (e.g., Mihalas 1978) to cosmological reion-
ization (Gnedin and Ostriker 1997). There has been significant progress in recent years
to develop the numerical algorithms that are required to solve the stiff, coupled equa-
tions that govern these systems (see Dale 2015; Teyssier and Commerçon 2019 for recent
reviews). There are well-known fundamental difficulties associated with numerically solv-
ing the RHD equations, one of which is the multidimensional nature of the radiation
intensity – a function of space, time, frequency, and angular direction – that is governed
by the radiative transfer equation. A common approach to circumvent this difficulty is
to integrate the RT equation over all frequencies and angles to obtain the gray radiation
moment equations, reducing the dimensionality of the RHD system (Mihalas and Klein
1982; Castor 2004). However, this introduces the need for an extra closure equation
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to estimate the moments of the radiation intensity, whose evolution is not explicitly
computed.
One commonly-used approximate closure is the flux-limited diffusion (FLD) method,

which closes the equations at the first moment (the radiation flux), and uses the
Eddington approximation, i.e., the assumption that the Eddington tensor is locally
isotropic (Levermore and Pomraning 1981). However, this method often suffers from
inaccuracies in the optically thin regime, or when a mixture of low- and high-opacity gas
is present. A more accurate closure scheme that has recently been adopted widely is the
M1 closure (e.g., Skinner and Ostriker 2013; Wibking and Krumholz 2021), which adopts
a local closure relation for the radiation pressure tensor, or equivalently the Eddington
tensor, in terms of the local radiation energy density and flux (Levermore 1984). While
the M1 closure can handle transitions in optical depths for a single beam of radiation, it
fails for other non-trivial geometrical distributions of radiation sources.
In the algorithm described in this paper, we use the so-called Variable Eddington

Tensor (VET) scheme (e.g., Stone et al. 1992; Jiang et al. 2012), a non-local scheme
that does not adopt a closure relation or model a priori, but rather computes the
Eddington tensor self-consistently through a formal solution of the time-independent
RT equation along discrete rays using a ray-tracing approach (e.g., Davis et al. 2012).
The self-consistently computed closure is combined with the radiation moment equations
to solve for the radiation quantities. While more computationally expensive due to the
required non-local ray-trace solution and its associated communication overheads, the
VET approach does not face the shortcomings of the more approximate closure mod-
els discussed above (Jiang et al. 2012). Below, we describe the equations solved by our
scheme, which we couple to the FLASH (magneto-)hydrodynamics code, outline the brief
features of our algorithm, and conclude by demonstrating the novel advantages offered
by our scheme.

2. Equations

We solve the equations of non-relativistic gray (frequency-integrated) RHD in con-
servative form, written in the mixed-frame formulation, i.e., where the moments of the
radiation intensity are written in the lab frame, and the opacities are written in the
comoving frame (e.g., Mihalas and Klein 1982). We neglect scattering for simplicity, and
assume the matter is always in local thermodynamic equilibrium (LTE), and treat the
material property coefficients as isotropic in the comoving frame. The equations solved
in our scheme are the equations of (magneto-)hydrodynamics along with the radiation
moment equations, given by

∂Er

∂t
+∇ ·Fr =−cG0 (2.1)

∂Fr

∂t
+∇ · (c2ErT) =−c2G, (2.2)

and

G0 =ρκEEr − ρκParT
4 + ρ (κF − 2κE)

v ·Fr

c2

+ ρ (κE − κF )

[
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c2
Er +

vv

c2
: Pr

]
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and

G= ρκR
Fr

c
− ρκREr

v

c
· (I+T), (2.4)
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are the time-like and space-like parts of the specific radiation four-force density for a
direction-independent flux spectrum to leading order in all regimes. Source terms of
magnitude cG0 and G are added to the gas energy and energy momentum equations,
respectively, to ensure the conservation of total (radiation + gas) energy and momentum.
In the above equations ρ is the mass density, v the gas velocity, T the gas temperature,

I the identity matrix, c the speed of light in vacuum, and ar the radiation constant. Er

is the lab-frame radiation energy density, Fr the lab-frame radiation momentum density,
and Pr is the lab-frame radiation pressure tensor. These represent the zeroth, first and
second (gray) angular moments of the radiation intensity, respectively. The material
opacities κE and κF are the gray energy- and flux-mean opacities in the comoving frame,
which we set equal to κP , the Planck mean opacity, and κR, the Rosseland mean opacity,
respectively. The radiation closure relation is used to close the above system of equations,
and is of the form

Pr =TEr, (2.5)

where T is the Eddington Tensor, given by the relation between the second and zeroth
moments of the gray radiation intensity Ir(n̂k) travelling in direction n̂k. Ir is computed
independently from a formal solution of the time-independent radiative transfer equation

∂Ir
∂s

= κP (S − Ir), (2.6)

where S is the source function, which, for the purposes of modelling the emission from
dust grains, we set equal to the frequency-integrated Planck functionB(T ) = caRT

4/(4π).
This independent solution is used to compute the angular moments Pr and Er, to obtain
the corresponding T, which is then used in the radiation moment equations.

3. Numerical Scheme

In our scheme, we operator-split the hyperbolic hydrodynamic subsystem of equa-
tions from the radiation moment equations and treat the two separately. To evolve the
hyperbolic transport for the gas quantities, we use the existing hydrodynamic solver
capabilities in the FLASH code. The hyperbolic transport of Er and Fr is done using a
piecewise constant (first-order) finite-volume Godunov method using a Harten-Lax-van
Leer (HLL)-type Riemann solver, similar to the scheme described in Jiang et al. (2012).
The hyperbolic fluxes and source terms are discretised in an implicit backward-Euler
fashion, to permit the radiation quantities, which are governed by the light-crossing sig-
nal speed, to be evolved at the significantly larger hydrodynamic timescale. We also
introduce a new, modified characteristic wavespeed criterion for the Riemann solver on
AMR grids. Our criterion extends the condition described in Jiang et al. (2013), which
performs an optical depth-dependent correction to obtain accurate solutions in the opti-
cally thick regime, to AMR grids. The Eddington tensor T, required to solve the radiation
moment equations, is pre-computed at the start of the radiation step using a solution
of Equation 2.6, which we obtain using the hybrid characteristics ray-tracer described
in Buntemeyer et al. (2016). In addition, our scheme adopts a fixed-point Picard itera-
tion method to couple the stiff radiation-gas nonlinear term. This is achieved by using
an estimate for the gas temperature (T∗) in the radiation moment equations, based on
the corresponding solution of Er and Fr to obtain an updated value of T∗ from the gas
internal energy equation, and iterating the two stages to convergence. The converged
values of Er and Fr are used to apply the radiation source terms to the gas energy and
momentum densities, respectively. This series of steps summarizes the working of the
algorithm in each simulation timestep.
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4. Tests

We verified that our scheme works correctly by performing a suite of numerical tests
that have analytical/semi-analytical relations to compare with. Due to limited space,
we only reproduce two tests here, which demonstrate the novel advantages offered by
our scheme - i.e., i) the spatial accuracy – with reduced computational costs – offered
by the support for AMR grids, and ii) the accuracy in the radiation field distribution
for general problems, offered by the VET closure. All other tests, including those that
specifically test the hyperbolic transport in different optical depth regimes, radiation-gas
energy exchange, and other standard tests, are outlined in Menon et al. (2022).

4.1. Radiation Pressure Driven Shell Expansion

This test simulates the radiation pressure-driven expansion of a thin, dusty, spheri-
cal shell as given in Skinner and Ostriker (2013). At t= 0, a radial (r) density profile,
representing a thin dusty shell of gas, is initialized as

ρsh(r) =
Msh

4πr2
√

2πR2
sh

exp

(
− r2

2R2
sh

)
, (4.1)

where Msh is the gas mass in the thin shell, and Rsh ≡H/(2
√
2 ln 2) is the half-width of

the shell, where we adopt H = 1.5 pc. A central radiating source is introduced, given by

j∗(r) =
L∗

(2πR2∗)
3/2

exp

(
− r2

2R2∗

)
, (4.2)

where L∗ is the luminosity of the source and R∗ the size of the source. We set a value of
L∗ = 1.989× 1042 erg s−1, R∗ = 0.625 pc, and a constant dust opacity of κ0 = 20 cm2 g−1.
We use an isothermal equation of state for the thermal pressure, with the sound speed
set to a0 = 2 km s−1, which corresponds to a gas temperature T ∼ 481 K, assuming a
mean particle mass μ=mH. The simulation is performed on a cubic domain with x=
y= z = [−10, 10] pc, with the source at x= 0, with outflow boundary conditions on the
gas and radiation. We use AMR for this test, with a base resolution of 323 grid cells,
and allow up to four levels of refinement, corresponding to an effective resolution of 2563

grid cells. We also perform simulations on uniform grids of resolution 643, 1283, and
2563 grid cells, to study the dependence of shell evolution on resolution. We compare
the obtained numerical results at these resolutions in Figure 1 with the semi-analytical
ODE solution given in Skinner and Ostriker (2013). We see that the numerical solution
agrees with the ODE solution quite well, and increasingly so at higher resolutions. We
find similar accuracy in the 2563 effective resolution AMR version and the 2563 uniform
run, however, the AMR run uses about 30% less CPU time than the uniform-grid run.

4.2. Comparison of closure schemes: Advantage of VET

Here we compare our new VET approach with the more commonly adopted local
closures, Eddington (used by the FLD method) and M1. We set up a test where we
introduce two point-like sources of radiation, modeled with the Gaussian source function
j∗(r) given in Equation 4.2, where we use L∗ = 10L� and R∗ = 54AU for both the
sources. We place these sources at 90deg with respect to each other, at (635, 0, 0) AU
and (0, 635, 0) AU respectively in a (2000 AU)3 computational domain. We place a dense
clump of material at the center of the domain, with radius 267 AU and density ρc =
3.89× 10−17 g cm−3, and an optically thin ambient medium with density ρa = 3.89×
10−20 g cm−3 elsewhere. The gas temperature is spatially uniform with a value of 20 K,
and the opacity for the radiation field is set to κP = κR = 100 cm2 g−1. We perform three

https://doi.org/10.1017/S1743921322001429 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921322001429


362 S. H. Menon et al.

Figure 1. Numerical solution (left) for the radiation-driven thin spherical shell expansion
test obtained on uniform grids (UG) with resolutions of 643, 1283, and 2563 cells, and on an
AMR grid with effective resolution of 2563 cells. Dashed lines indicate the semi-analytical ODE
solution for the problem given in Skinner and Ostriker (2013), and the right panel shows the
relative errors for the numerical runs. The simulations are converging with increasing resolution.
All errors are < 3% for all relevant times, and the AMR solution is comparable to the 2563 UG
solution, but required 30% less computational time.

Figure 2. Comparison of the gas temperature fields obtained in the shadow test (Section 4.2)
with Eddington (FLD), M1 and VET closures. The simpler closure schemes produce unphysi-
cal solutions for this problem, whereas the VET reproduces the qualitatively correct solution,
demonstrating the advantage of VET over other closures in semi-transparent RHD problems.

versions of this test, with only a difference of the adopted closure relation between the
versions; corresponding to the Eddington (FLD) closure, the M1 closure, and the VET
closure, respectively. In Figure 2, we see that the Eddington and M1 closures do not cast
qualitatively correct shadows, whereas the VET does. This demonstrates that the VET
ensures the consistent propagation of radiation in non-trivial geometrical distributions
of diffuse radiation sources.

5. Summary

We have described an algorithm for solving the radiation hydrodynamics (RHD) equa-
tions, closed with a non-local Variable Eddington Tensor (VET), and coupled to the
FLASH AMR (magneto-)hydrodynamics code (Menon et al. 2022). Using numerical tests,
we show that our scheme works in concert with AMR, allowing for very high resolu-
tion applications, with adequate accuracy of the radiation field. Unlike the FLD and M1

closures, our VET method casts shadows as expected for complex geometrical configu-
rations of the gas and radiation field. To our knowledge, our method is the first VET
closure-based RHD method with AMR support in the literature, and thus represents a
step toward, improving the predictive capabilities of numerical RHD simulations.
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Discussion

Chia-Yu Hu: The VET is expected to be more computationally expensive than the
FLD and M1 methods, and hence it is possible to probe higher resolution simulations
with the latter class of methods. Did that play a role in why earlier methods choose these
approaches?

Shyam: Yes, completely agree; the VET, although more accurate, is certainly more
computationally expensive than the other methods, and hence it is crucial to apply it
on problems where the added accuracy could possibly matter. These represent alter-
nate approaches to simulations – a less accurate method, cheaper method that allows
for higher resolution and further parameter space exploration vs a method with higher
accuracy, that can only be used in a smaller parameter range and resolution due to its
computational costs.

Miikka Väisälä: I was wondering whether you could comment on the computational
performance of your scheme, and the number of angular rays required for reasonable
results?
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Shyam: Thank you for the very good question! Although the VET method is known to
be computationally expensive, its not straightforward to provide general performance
statistics, since the performance is very much problem-dependent due to the use of
implicit matrix inversion algorithms, whose rate convergence depends on the stiffness
of the matrix. That being said, the ray-tracer is typically the bottleneck in terms of
performance in our scheme, with higher angular ray resolution aggravating the perfor-
mance. We find in our shadow test, however, that an angular resolution of 48 rays (using
HEALPix sampling) is a reasonably good balance between performance and accuracy,
and is the fiducial value we use in our scheme.
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