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ABSTRACT

We study the continuous-time portfolio optimization problem of an insurer.
The wealth of the insurer is given by a classical risk process plus gains from
trading in a risky asset, modelled by a geometric Brownian motion. The insurer
is not only interested in maximizing the expected utility of wealth but is also
concerned about the ruin probability. We thus investigate the problem of opti-
mizing the expected utility for a bounded ruin probability. The corresponding
optimal strategy in various special classes of possible investment strategies will
be calculated. For means of comparison we also calculate the related mean-
variance optimal strategies.
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1. INTRODUCTION

We consider the combined risk and investment process of an insurance com-
pany on a finite time horizon T < 3. The insurance risk is described by a clas-
sical risk process. The discounted risk process R is thus given by the following
model:

s d ,R x c s Dt

t
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i
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0 1
i

t

= + -
=

X# ! (1)

where x is the initial reserve of the company, cs is the discounted premium rate
at time s per time unit, and ( t

i 1= i
N X! DTi

)t! [0,T ] denotes the discounted claims
process. Here (Nt)t! [0,T ] is a counting process, and (Xi)i!� is a sequence of i.i.d.
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random variables. The variable Xi represents the size of the i-th claim. The
discount factor to time Ti of the i-th claim is denoted by DTi

, which is assumed
to be strictly positive. See Ng et al. (2004) for a similar model.

Part of the initial reserve is used for investment in a stock index. By dis-
counting we can and will assume that the price of the riskless asset is constant
and equal to one. The discounted stock index is modelled by a geometric Wiener
process

t
t

t ,S
dS

bdt dWs= + (2)

where b ! � and s > 0 are constants. Correlation between stock market and
bond market is modelled by assuming that the Wiener process W driving the
stock market is of the form

W = rW 1 + rW 2

for a constant r ! (–1, +1), where r = r1 2
- and where (W 1,W 2) is a stan-

dard two-dimensional Wiener process, and W2 is independent of the risk process
R and of D. We do no specify the model of the interest rate process other
than through the correlation with the stock market; interest rates are generated
by W 1 and possibly other random sources that are independent of W 2.

The insurer uses part of the initial reserve, say z0, for investment in a stock
index. If the insurer follows the investment strategy P in the risky asset, the
capital gains from this investment are given by

Zt = z0 + Pu

t

0
# dSu = z0 + Pu

t

0
# {bSu du + sSu dWu}. (3)

The total wealth of the insurer at time t ! [0,T ] discounted to time 0 is then
given by

Y (P, t) = Rt – z0 + Zt
(4)

= x – z0 + s

t

0
c# ds + Zt – i

i

N

1

t

=

X! DTi
.

We assume that the insurer has the utility function U. The insurer wants to
maximize the expected utility of wealth at the end of the time horizon, for
instance at the end of the financial year. During this time period, the insurer
can borrow unlimited funds at the risk-free rate to pay the claims. However, at
the end of the time period, the insurer will have to publish the company report
and is also concerned with the ruin probability.

To take into account the ruin probability, we will study the following opti-
mization problem:
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for a given confidence level a,

max
P Q!

E[U{Y (P,T )}] ,
(5)

subject to P{Y (P,T ) # 0} # a.

Note that due to the fact the discount factors are strictly positive, the constraint
in (5) is unaffected by discounting.

Optimization problems with constraints for investments in a setting without
claims are considered for instance by Basak & Shapiro (2001), Emmer et al.
(2001), and Gandy (2005) in the case when the risky asset is driven by a geo-
metric Wiener process, and for exponential Lévy processes by Emmer & Klüp-
pelberg (2004) using a Gaussian approximation.

The situation is different when a claims process in which trading is not pos-
sible is introduced. The question to find the optimal investment that minimizes
the ruin probability or that maximizes expected utility in different settings
has been studied among others by Browne (1995), Hipp & Plum (2000, 2003),
and Gaier et al. (2003). Estimates for the ruin probability in different settings
are derived in Paulsen (2002), Schmidli (2005), and for a diffusion approxima-
tion in Browne (1995). See also Paulsen (1998) and Yuen et al. (2004) for ruin
probabilities in models with stochastic investment return.

As the task of maximizing over all possible investment strategies (i.e. square-
integrable, predictable processes) is a very complicated task in the presence
of the constraint on the ruin probability, we will in the following consider var-
ious specialized subclasses of investment strategies. Therefore, Q denotes a
suitable such class of investment strategies.

In this paper, we will restrict Q to the following three classes which are
popular in practical applications:

• The class Qp of investment strategies, where a constant proportion of capital
gains is continuously invested in the risky asset. Here, the term proportion
corresponds solely to the wealth process Z that starts with an initial wealth
of z0 # x and then is a consequence of the investment activities, formerly sep-
arated from the insurance cash flows.

• The class Qb of buy-and-hold strategies, where the initial number of shares
of the risky asset bought is kept constant until the time horizon.

• The class Qa of investment strategies, where for all times t ! [0,T ] the invest-
ment in the risky asset is kept to a constant amount.

These classes of investment strategies are shown to be optimal for different
investment problems. Constant proportion strategies are ubiquitous in portfolio
optimization, see Merton (1971) and numerous variations of the Merton problem.
Constant amount strategies in particular for investment problems with constraints
are shown to be optimal in different settings and under different optimality cri-
teria by Gaier et al. (2003) or Browne (1995, 1997). Buy-and-hold strategies are
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commonly employed in the context of portfolio performance evaluation where
they are compared with other investment strategies, see Perold & Sharpe (1988),
Ferson & Schadt (1996) or Loviscek & Jordan (2000). See also Hipp & Plum
(2003) or Browne (1995, 1997) for related problems for which the optimal strat-
egy is not constant.

As the total wealth is assumed to be collected only at T the end of the invest-
ment/business period, it seems reasonable to separate the initial wealth at time
t = 0 into a part z0 usable for investment and the remaining part x – z0 $ 0
that can (or has to) be used as a safety cushion for the insurance claims. This
separation is assumed to be given and can indeed have legal motivation such
as the rules of Solvency II.

We will see that in all situations that are of practical interest, the solution
to the constrained optimization problem (5) for either class Q of strategies
considered above exists and that it is finite. For many interesting utility func-
tions, the solution is given by the largest value for which the constraint is
fulfilled. This is due to the fact that for these classes of investment strategies
the ruin probability of the combined investment-ruin process is continuous as
a function of investment, while at the same time its asymptotic behaviour is
known. Ruin constraints a can thus be chosen suitably so that optimization is
performed over a compact and non-empty set. Note in particular that these
arguments do not rely on the assumption that the insurance risk is described
by a classical ruin process.

In a section containing numerical examples, we investigate some of the
explicit solutions of the optimal portfolio problems in the different classes of
investment strategies. We compare the case when there are many small claims
with the case of few large claims. We also compare the characteristic behav-
iour of the solution to our optimization problems with that of corresponding
mean-variance problems. We will see that in the situation of rare large claims
the potential of the risky investment to generate a lot of capital gains before
the first big claim occurs is used to satisfy the ruin probability constraint, and
consequently the optimal investment in the stock market is considerably larger
compared to the one in the situation of frequent small claims.

We will also investigate the related problem, when the ruin probability is
monitored continuously in the following sense:

for a given confidence level a,

max
P Q!

E[U{Y (P,T )}] ,
(6)

subject to sup
,t T0! 5 ? P{Y (P, t) # 0} # a.

This problem can be treated by extending the arguments for the optimization
problem (5), and we will see that similar results hold. Since

sup
,t T0! 5 ?P{Y (P, t) # 0} # P{ inf

,t T0! 5 ?Y (P, t) # 0}, (7)
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a solution to (6) does not necessarily guarantee that the probability of ruin
before T,

P{ inf
,t T0! 5 ?Y (P, t) # 0} # a, (8)

is also bounded by a. However, the condition in (6) guarantees that the prob-
ability of ruin is controlled pointwise in t over the entire time period [0,T ].
Dealing with the condition (8) in the presence of a non-diffusion risk process
seems in general to be impossible.

The paper is outlined as follows. In Section 2, we present the solution
to optimization problem (5). For comparison, we study the corresponding
mean-variance problems in Section 3. The optimization problem (6) is solved
in Section 4 for all classes of investment strategies Qp, Qb, and Qa. Lastly,
Section 5 contains our numerical examples.

2. OPTIMAL CONSTANT PORTFOLIOS

Every investment strategy P in the class Qp is given by

PtSt = pZt (9)

for a constant p ! � where Z is the wealth process of our investment capital.
The process Z = Zp for such an investment is thus given by

t

u

u
ut

.exp

Z z Z S
dS

z b t

p

p p s ps2
1

tp p
0

0

0
2 2

= +

= - + W

#

c m< F
(10)

In the class Qb of buy-and-hold strategies, the wealth Zt = Zt
z at time t corre-

sponding to a buy-and-hold strategy with initial investment of z units of money
in the risky asset is given by

t .Z zez b t Ws s t2
1 2

=
- +^ h (11)

After the choice of z we are thus again in the setting of the class Qp, as the
evolution of the wealth process is the same as one with a special constant port-
folio process, namely

p = 1.

In the class Qa, every investment strategy P is of the form

Pt =
t
,S

p (12)
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where p is a constant. Consequently, the capital gains process from this invest-
ment Z = Zp is given at time t by

t
u

ut

, .

Z z S dS z bt W

N z bt t

p
p ps

p p s

tp
0

0
0

0
2 2+

= + = + +

+

#

` j (13)

For notational convenience, we will identify an investment strategy P with its
corresponding fraction or its corresponding amount, p, respectively, and for a
buy-and-hold strategy with its initial capital z. We will write Y(p, t) = Y(P, t)
and Y(z, t), respectively, for short.

It will further prove to be useful to introduce the following notation:

a0(d ) := P{RT # d}, ap(d ) := P{Y(P,T ) # d} (14)

for all d ! � and a fixed value of z0.

Lemma 2.1. The ruin probability is continuous as a function of the investment
strategy and has the following asymptotic behaviour for all d ! � :
a) In the class Qp of constant proportion strategies and for a given initial capi-

tal z0 ! [0, x], it is

lim
p " !3

ap(d ) = a0(d + z0). (15)

b) In the class Qb of buy-and-hold strategies, it is

, .lim P Y z T d
b

Ts
s

F
z

2
1 2

"# =
-

" !3

J

L

K
K] N

P

O
Og" , (16)

c) In the class Qa of constant amount strategies, and for a given initial capital
z0 ! [0, x], we have

, .lim P Y T d b Tp sF
p

"# =
" !3

] cg m" , (17)

Here F denotes the distribution function of the standard Normal distribution.

Proof: a) Note that Y(p,T) given (RT,WT
1) has a lognormal distribution on the

set {RT # d + z0}, and thus

T

T

Ts d ,

ln

r

r

P x z c s Z D d R W

T

b T W

p s

p p s prs
F

i T T
i

kT

z
d z R
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0

1

10

2
1 2 2 2 1

i
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#- + + -
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- - -
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J

L

K
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a ` N

P

O
OO

j
k j

) 3
(18)
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on {RT # d + z0} and it is zero otherwise. Continuity in p is thus immediate.
Since

T

T

ln

r

r

r
r

T

b T W

T

b T Wconst sign

p s

p p s prs

p p
s

ps rs

z
d z R

2
1 2 2 2 1

2
1 2 2 1

T
0

0

" 3

- - -

= -
- +

+ -a `

] `
k j

g j

for p " ±3, it follows that

lim
p " !3

P{Y(p,T ) # d} = P{RT # d + z0} = a0(d + z0).

b) Equation (18) with p = 1 and the corresponding equation for negative z0

implies that for any d ! � the map

z 7 P{RT – z + Zz
T # d}

is continuous with

T
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by Lemma IV.2 in Korn & Korn (1999).

c) The total wealth of the insurer given (RT,WT
1) at time T has a normal dis-

tribution:

T
T

T , .
r

P R z Z d R W
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d R bT W

s p

p sr
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#- + =
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j j% /

Consequently, the distribution function of the total wealth as a function in p
has the following asymptotic behaviour

Tlim
r

P R z Z d E
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by Lemma IV.2 in Korn & Korn (1999), and

lim
p 0"

P{RT – z0 + Zp # d} = P{RT # d}.

Continuity is now immediate. ¡

We define the following upper bounds for the ruin probability a for each class
of admissible strategies:

p : .B P R zT 0#= " , (19)

b : ,minB
b

T
b

Ts
s

s
s

F F2
1 2

2
1 2

= -
- -

J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O* 4 (20)

a : , .minB b T b Ts sF F= -c cm m( 2 (21)

Theorem 2.2. Let i !{p, b, a}. Assume that for a given confidence level

a < Bi , (22)

there exists a strategy p ! Qi such that

P{Y (p,T ) # 0} # a. (23)

Let U denote the utility function of the insurer. If the expected utility of terminal
wealth E [U{Y(p,T )}] is continuous in p ! � or if E [U{Y(p,T )}] is monotone
increasing in p, then there exists a finite solution p* of optimization problem (6)
in the class of investment strategies Qi. In the latter case, p* is given by the largest
value for which the constraint is fulfilled.

Proof: By Lemma 2.1, the ruin probability

P{Y (p,T ) # 0} (24)

is continuous in p ! �, and for a < Bi, i ! {p,b,a}, the set

{p ! � : P{Y (p,T ) # 0} # a}

is a compact subset of �, which is non-empty by assumption. Thus, if E [U{Y(p,T)}]
is continuous or if E [U{Y(p,T)}] is monotone increasing in p, then an optimal
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solution p* to optimization problem (5) exists and is finite. If E [U{Y(p,T )}]
is monotone increasing, then p* is given by

p* = sup{p ! Q : P{Y(p,T ) # 0} # a}.
¡

Corollary 2.3. Assume that the utility function U is such that E [U{Y(p,T )}] is
continuous in p ! � or that E [U{Y(p,T )}] is monotone increasing in p.

a) For ruin probabilities

a ! [P{RT # 0}, P{RT # z0}) (25)

there exists a finite solution p* ! Qp of optimization problem (5).

b) If P{RT # 0} < Bb, then for 

a ! [P{RT # 0}, Bb) (26)

there exists a finite solution p* ! Qb of optimization problem (5).

c) If P{RT # 0} < Ba, then for

a ! [P{RT # 0}, Ba) (27)

there exists a finite solution p* ! Qa of optimization problem (5).

Proof: Lemma 2.1 implies that for each of these choices of a, there exists an
admissible finite strategy p ! � such that

P{Y(p,T ) # 0} # a.

Existence of an optimal strategy now follows from Theorem 2.2. ¡

Note that in the situation of Corollary 2.3, if for i ! {p,b,a} the ruin proba-
bility a is chosen to be larger than Bi and if E [U{Y(p,T)}] is monotone increas-
ing, then due to Lemma 2.1 p* = 3 is optimal.

Remark 2.4. a) Consider in particular the risk-neutral utility function

U(x) = x.

Then the expected utility, E [U{Y(p,T )}], is monotone increasing and contin-
uous in p for each class Qp, Qb, and Qa. Thus, to solve the corresponding
portfolio problem of maximizing the expected final wealth while keeping the
ruin probability below a given constant a we only have to look for the biggest
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portfolio process p with a ruin probability not exceeding it. This, however, can
be a demanding task depending on the distribution of the total insurance claims.
We therefore refer to our numerical examples in the last section of the paper.

b) Note that for short time horizons T and for realistic values of b and s,
the inequalities a < Ba and a < Bb are always fulfilled for ruin probabilities a
that are of practical interest. On the other hand we note that the right-hand
sides of inequalities (26) and (27) are decreasing in T. In particular, if we con-
sider the utility function U(x) = x, then for any given ruin probability a, and
a sufficiently long time horizon T, in the class Qa the optimal investment is given
by p* = 3 if the stock price drift b > 0, and by p* = –3 if b < 0, and in the class
Qb the optimal investment is given by z* = 3 if b – 2

1 s2 > 0, and by z* = – 3 if
b – 2

1 s2 < 0.
c) Assume r = 0. A further suitable choice for utility functions for the class

of constant amount investment strategies Qa, other than the risk-neutral utility
function discussed in a) above, is the exponential utility function

U(x) = 1 – exp(–gx) for some g > 0

as we then have:

E(1 – exp(– gY(P,t))) (28)
= 1 – exp(– gpbt – 2

1 g2p2s2t) E (exp(–gRt)).

In this case, similar to the linear utility function considered above, we have explicit
functional dependence of p and only the non-specified expectations of the risk
process are unknown. Note that while for the choice of the linear utility func-
tion, the expected utility is strictly increasing in p given a positive drift rate of
the stock price, for the choice of the exponential utility this is only ensured for

, b
p

gs23! -f H

while on the remaining part of the real line it strictly decreases as a function of p.

3. MEAN-VARIANCE ANALYSIS

Related problems that can be solved explicitly are the mean-variance optimiza-
tion problems with regard to the classes of investment strategies we considered
in the preceding sections. Note therefore that we have

T

,

, ,

Y T R z e e

z e R e

Var Var

Cov

p 1

2

T
b T T

bT T
T

W

p s

p p s psr

0
2 2

0

2 2

2
1 2 2 1

= + -

+
-

p]^ ^ b
c

gh h l
m (29)
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for p ! Qp. In particular, for p = 1, we obtain the variance for a buy and hold
strategy characterized by the initial amount of z0 invested in the risky asset.
As for P ! Qa, we also have

Var(Y(p,T )) = Var(RT) + p2s2T + 2psrCov(RT,W 1
T ), (30)

we have explicit solutions for all mean-variance problems of the form

max
P Q!

E[Y(p,T )]
(31)

subject to Var(Y(p,T )) # b.

Theorem 3.1. Assume that we have b, r > 0 and

b $ Var (RT).

Then the solution of the above mean-variance problem is given by

a) the largest solution p* of

T,

R z e e

z e R e

Var

Cov

b 1

2

T
b T T

b T
T

W

p s

p p s r psr

0
2 2

0

2 2

2
1 2 2 2 1

- = -

+
-

p^ b
^ c

h l
h m (32)

in the case of constant proportion portfolio strategies.

b) the initial amount of

,

,

T

T

z
e e

R
e

e e R

e e

e e R

Var Cov

Cov

b
1

1

1

1

bT T
T T

T
W

T

bT T

T
W

T

s s

s r
sr

s

s r
sr

2

2 2

2 2
1

2

2
1 2 2

1

= +
-

- +
-

-
-

-

-

^ c

c

h m

m
(33)

in the case of buy and hold strategies.

c) the constant amount

T T, ,
T

R T R W
T

R WVar Cov Covp
s

b
r r1

T T T

2
1 2 1

= + - + -^ ` `h j j (34)

Proof: The proof of the theorem follows directly from the explicit form of the
variance given above and the fact that the expectation is increasing in P for
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positive stock price drift b. Note that the right-hand side in (32) is continuous
in p, equals zero for p = 0, and tends to infinity for p " 3. ¡

Note in particular that for a given value of b, the solution to the optimization
problem is for all three classes of investment strategies independent of the ini-
tial wealth x. Of course, as a consequence of this it can also be possible that
the optimal stock position has to be partly financed by a credit. This could be
avoided by additionally requiring a suitable bound for the stock investment.
The obvious consequence of such an additional constraint is that then the
optimal investment in the stock is given by the minimum of this bound and
the solution in Theorem 3.1.

4. OPTIMAL INVESTMENT UNDER CONSTRAINTS FOR CONTINUOUSLY

MONITORED RUIN PROBABILITIES

If instead of only guaranteeing a ruin probability constraint at the time hori-
zon T we are obliged to guarantee this constraint on the whole interval [0,T ]
then the appropriate constraint to look at is

P{ inf
,t T0! 5 ?Y (P, t) # 0} # a. (35)

Of course, for a general trading strategy this probability is hard to compute
although one might use our computations of the previous sections as a lower
bound for the ruin probability as we have

sup
,t T0! 5 ?P{Y (P, t) # 0} # P{ inf

,t T0! 5 ?Y (P, t) # 0} # a. (36)

The optimization problem (6), that is when ruin is monitored continuously,
can be treated in a similar way to our preceding analysis.

Note that the set of investment strategies that satisfy the constraint in (6),

{P ! Q : P{Y (P, t) # 0} # a for all t # T},

can be expressed equivalently as

t T#

( {P ! Q : P{Y (P, t) # 0} # a}. (37)

We define the following upper bounds for the ruin probability a for each class
of admissible strategies:

: inf P R z
,

p
t T

t
0

0#=
!

B 5 ? " , (38)
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: ,inf min
b

t
b

ts
s

s
s

F F
,

b
t T0

2
1 2

2
1 2

= -
- -

!
B

J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O5 ? * 4 (39)

: , .inf min b t b ts sF F
,

a
t T0

= -
!

B c cm m5 ? ( 2 (40)

Recall that we identify an admissible investment strategy P ! Q with its asso-
ciated fraction, initial capital or amount p ! � and write Y (p, t ) = Y (P, t ).

Theorem 4.1. Let i ! {p,b,a}. Assume that for a given confidence level

a < Bi ,

there exists a strategy p ! Qi such that

P{Y (p, t) # 0} # a for all t # T. (41)

Let U denote the utility function of the insurer. If the expected utility of terminal
wealth E [U{Y(p,T )}] is continuous in p ! � or if E [U{Y(p,T )}] is monotone
increasing in p, then there exists a finite solution p* of optimization problem (6)
in the class of investment strategies Qi . In the latter case, p* is given by the
largest value for which the constraint is fulfilled.

Proof: Let i ! {p, b, a}. Lemma 2.1 implies that for t $ 0 and for a < Bi the
set

{p ! � : P{Y (p, t ) # 0} # a}

is compact. Thus, the intersection

t T#

( {p ! � : P{Y (p, t) # 0} # a}

is a compact set, which is non-empty by assumption. Therefore, if E[U{Y(p,T)}]
is continuous or if E[U{Y(p,T)}] is monotone increasing in p, then an optimal
solution p*! Qi to optimization problem (6) exists and is finite. If E[U{Y(p,T)}]
is monotone increasing, then p* is given by

p* = sup{p ! Q : sup
t T#

{P [Y (p, t) # 0] # a}}.

This proves the theorem.
¡
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5. NUMERICAL EXAMPLES AND CONCLUSION

Although the optimal strategies computed so far are mainly determined as the
biggest value such that the ruin constraint is still satisfied, their explicit form
in practical situations can be totally different. Even more, these forms call for
a careful inspection of the reasons for their appearance. To highlight these
aspects, we will consider two cases with nearly identical starting conditions,
but with totally different risk profiles: In one example the risk process is dom-
inated by the appearance of many small claims (exponentially distributed case)
while in the other it is determined by only a few large claims (Pareto case).
For simplicity we assume the interest rate to be zero.

The parameters for the geometric Wiener process are b = 0.05 and s = 0.2.
The time horizon T is normalized to T = 1. In the absence of a risk process
this would lead to an optimal constant portfolio of p = 1.25 for the choice of
the log-utility function. It is therefore interesting to see how the optimal strategy
will change in the presence of a risk process and a ruin probability constraint.

The exponential distribution for the claim sizes has parameter n = 2.2585.
Claims arrive according to a homogeneous Poisson process with parameter
l = 50.

The Pareto distribution for the claim sizes has parameter k = 2. This choice
implies that claim sizes have infinite second moment reflecting its purpose as
a large claims distribution. Claims arrive according to a homogeneous Poisson
process with parameter l = 1.

The premium rate c is chosen as c = E[ i 1= i
1N X! ]. The initial capital x0 is

chosen so that the given ruin probability a is met when no capital is invested
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TABLE 1

OPTIMAL PROPORTION OF WEALTH INVESTED IN RISKY ASSET.

Pareto Exp

z0 = x0 z0 = 0.1x0 z0 = x0 z0 = 0.1x0

a = 0.05 1.45 9 0.9 6
a = 0.01 1.15 8.25 0.5 3.75

TABLE 2

OPTIMAL AMOUNT INVESTED IN RISKY ASSET AS PROPORTION OF INITIAL CAPITAL x0.
THE RUIN PROBABILITY IS INDEPENDENT OF z0.

Pareto Exp

a = 0.05 1.2 1
a = 0.01 1.04 0.55
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FIGURE 1. Optimal buy-and-hold strategy relative to initial capital for claim sizes with exponential
distribution and with Pareto distribution.

FIGURE 2. Optimal proportion of wealth invested in risky asset under mean-variance criterion for
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in the risky asset. The parameter n of the exponential claims distribution was
chosen above so that for a = 0.01 the initial capital and thus the expected
wealth without investment in the risky asset for exponentially distributed claims
and for Pareto distributed claims are similar in size, x0 = 10.4550 and x0 =
10.4204, respectively. More importantly, to make our results for both distrib-
utions comparable, all strategies considered are given in relative terms either
as a proportion of wealth or as a proportion of the initial capital.

We consider an investor who wants to maximize the expected total wealth
by investing in the risky asset. The optimal strategy is then given as the largest
value for which the ruin constraint is fulfilled.

In Table 1 the optimal investment strategies are displayed when a constant
proportion of wealth is invested. We see that the optimal proportion is con-
siderably larger for Pareto distributed claim sizes. For this claim size distribution,
the risk associated with rare large claims dominates the effect from trading in
the risky asset which means that from the ruin point of view a large investment
in the profitable asset can be made. Even more, the potential of the risky invest-
ment to generate a lot of capital gains before the first big Pareto claim is used
to satisfy the ruin probability constraint. This behaviour is corroborated for the
constant amount strategies and the buy-and-hold strategies, see Figure 1 for
ruin probabilities when using buy-and-hold strategies. We also see in Table 1
and in Table 2 how the size of the optimal strategies decreases as the given ruin
probability a decreases. It should be noted that this behaviour occurs even though
the initial capital x0 is chosen in dependence of a, it is decreasing in a.

For exponentially distributed claim sizes and when a = 1%, the optimal
proportion p* . 40-50%, the optimal amount lies between 50% and 60% of the
initial capital, while for Pareto distributed claim sizes p* . 100%.

It is not surprising that in all cases considered it is optimal to invest a posi-
tive amount in the risky asset. This is due to the diversifying impact of the
investment in an asset that is independent of the claims process.

The situation is completely different for the mean-variance optimal strate-
gies derived in Section 3. Equation (30) implies that the variance of the total
wealth of the insurer is increasing in p2. A non-zero solution in either class of
investment strategies considered only exists, if the constraint b is larger than
the variance of the ruin process. In Figure 2 we show the mean-variance opti-
mal proportion of wealth invested in the risky asset for different amounts of
initial capital and a range of variance constraints. From equation (32), we see
that the optimal proportion p* . ( ( ))ln RVarb 1- , a behaviour that can also
be observed in Figure 2. In Table 3, we show the optimal amount to be invested
in the risky asset and the optimal buy-and-hold strategy under the mean-vari-
ance criterion. Both strategies behave like ( ( )RVarb 1- , see equations (34)
and (33).

This different behaviour of the optimal strategies in the mean-variance
optimal framework and in the ruin probability framework is totally in line
with the results of Emmer et al. (2001). This is in particular clear when one
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realizes that the constraint on the ruin probability in our model is equivalent
to their constraint on the value at risk (or capital at risk).

In total, by restricting to various special (but practically relevant) classes
of investment strategies, we have been able to solve the optimal investment
problem for an insurer who is also subject to a constraint on the ruin proba-
bility. We have considered the case when ruin is only monitored at maturity
as well as a permanent ruin probability constraint, which is important under
liquidity aspects. An interesting aspect of future research would be the explicit
consideration of a bond market, in particular under the assumption that the
different factors, bond market, stock market and insurance claims, are correlated.
However, as in this paper, computing the ruin probabilities could only be done
numerically.
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