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BERGMAN SPACES ON DISCONNECTED DOMAINS 

ALEXANDRU ALEMAN, STEFAN RICHTER AND WILLIAM T. ROSS 

ABSTRACT. For a bounded region G C C and a compact set K C G, with 
area measure zero, we will characterize the invariant subspaces M (under/ —• zf) 
of the Bergman space LP(G \ K), 1 < p < oo, which contain LP(G) and with 
dim(fA//(z - X)M) = 1 for all A G G \ K. When G \ K is connected, we will see 
that di\m(jM/{z — A)fAf) = 1 for all A G G \ A" and thus in this case we will have a 
complete description of the invariant subspaces lying between LP(G) and LP(G \ K). 
When/? = oo, we will remark on the structure of the weak-star closed z-invariant sub-
spaces between H°°(G) and H°°(G \ K). When G \ K is not connected, we will show 
that in general the invariant subspaces between LP(G) and LP(G \ K) are fantastically 
complicated. As an application of these results, we will remark on the complexity of 
the invariant subspaces (under/ —> Cf) of certain Besov spaces on K. In particular, we 
shall see that in the harmonic Dirichlet space /^(T), there are invariant subspaces J 
such that the dimension of <̂ F in J is infinite. 

1. Introduction. For a bounded open set U C C and 1 < p < oo, define the 
Bergman space L%(U) to be the space of functions/ G LP(U, dA) which are analytic on 
U. (Here dA is Lebesgue measure on C.) It is well known that LPJJJ) is a closed subspace 
of If(U) = If(U,dA) and that S on Ifa(U) defined by (Sf)(z) = zf(z) is a continuous 
linear operator. A difficult and open problem in operator theory is to completely describe 
the subspaces (M of LPJJJ) for which Sftf C 9vt. We will call such subspaces invariant 
subspaces. In this paper we wish to continue an investigation begun in [19] and [21] of 
the invariant subspaces 96 with 

LP(G)CMCLP(G\K), 

where G is a bounded region in C and K is a compact subset of G with area measure zero. 
In particular, we focus our attention on the subspaces with the codimension 1 property. 
For an invariant subspace M, the operator (S— A)|^ is semi-Fredholm for all A E G \ K 
and 

- index((S - A)|^) = dim(fW/(z - A)fW) 

is constant on the components of G \ K [16], Lemma 2.1. This constant is called the 
codimension of M on the component of G \ K. In this paper, we will characterize the 
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invariant subspaces M with 

(1.1) Va{G)cM<Zlfa{G\K) 

(1.2) dim(fW/(z- \)M) = 1 V\eG\K. 

It will turn out, Proposition 4.1, that for an invariant subspace %t of the form (1.1), the 
condition (1.2) is equivalent to 

(1.3) LXM = M V\€G\K, Lxf = f~f{\\ 
z — X 

The operator L\ is a continuous operator on Lp
a(G \ K) and is a left inverse for S — A. 

NOTATION. Throughout this paper G will be a bounded region in C, K will be a 
compact subset of G with area measure zero, and 96 will denote a closed invariant 
subspace of LPa(G \ K) containing LPa{G). 

For 1 < p < 2 we can describe our invariant subspaces 9/i in terms of analytic 
continuation across parts of AT. 

THEOREM 1.1. For 1 < p < 2, the following are equivalent: 
1. d i m ( ^ / ( z - X)M) = \V\eG\K. 
2. LXM = MV\£G\K. 
3. fW = Ifa(G \ E)for some closed set EcK. 

For p > 2, not every fW will be of the form M = Lp
a{G \ E), Section 6, but we still 

can describe $/[ in terms of the ^-capacity Cq (q is the conjugate index to p) associated 
with the Sobolev spaces W\ (see below). We say a set E C C is quasi-closed if given 
any e > 0 there is an open set O with Cq(0) < e and E\0 closed. Our main theorem 
for/? > 2 is as follows: 

THEOREM 1.2. Forp > 2, the following are equivalent: 
1. dim(fW/(z - A)fW) = 1 VA <E G \ K. 
2. LXM = M V\eG\K. 
3. There is a quasi-closed set E C K anda sequence ofclosed sets F\ CF2 C • • • CE 

with Cq(Fn) —• Cq(E) and 

M=M{E) = {JIfa{G\Fnf. 
n 

Moreover 9/t(E) is independent of the choice of{Fn } and ifE\, E2 C K are quasi-closed, 
then M(EX) = M(E2) if and only ifCq(Ei&E2) = 0. 

We remark that Theorem 1.2 actually includes all the 1 < p < 00 since if 1 < p < 2, 
then the conjugate index q > 2 and every non-empty set has positive Cq capacity [7], 
p. 157. Thus for q > 2, quasi-closed just means closed and hence M(E) = Ifa{G \ E). 
It will turn out that if G \ K is connected, then the condition (1.2) is automatic and we 
have the following: 
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COROLLARY 1.3. IfG \ K is connected, then 

J- M 1 < p < 2, M = U>a{G \ E)for some closed E C K. 
2- forp > 2, 94 = 94(E) for some quasi-closed E C K. 

When G \ K is not connected, the condition (1.2) is not a vacuous one. Consider the 
following example: 

EXAMPLE. Suppose G \ K is not connected and let U be one of the bounded compo­
nents of C \ K. Consider the invariant subspace 

(1.4) M = xuLp
a(U)+L?(G). 

One shows that 94 is closed in Ifa(G \ K) and that for A G U 

XuLp
a(U)^LP(G) = (z-X)xuLp

a(U)^(z-X)LP(G) + CXu^C. 

Thus dim(fW/(z - A)fW) = 2. 
In fact, relaxing (1.2) can produce even more pathological examples: 

EXAMPLE. For/? = 2 let G be a region which contains the closure of the unit disk ID 
and consider the disconnected set G \ T, where T is the unit circle. By [5], Corollary 6.9 
and Proposition 5.4, given any « G N U {OO} there is an invariant subspace fA£ of Ẑ (D>) 
with dim(fA£/zfA£) = n.Jn fact, specific examples of this can be found in [10]. Consider 
the invariant subspace 

W> = X»*(B+L2
a(G). 

One shows that 9^ is closed in L2
a{G \ T) and that 

dim(f^ /ztK) = dim(fA£/zfA£) + dim(L2
a(G)/zL2

a(GJ) = n + 1, 

making f̂ 4 difficult to understand. By imposing the condition (1.2), we avoid such 
pathologies as 94*. In fact, this subspace 9h will be used to construct an invariant 
subspace jF^ (under multiplication by 0 of the harmonic Dirichlet space ^^(T) with 
d i m ( j r ^ / ( ^ ) = n, see Section 8. 

The main tool used here will be to convert our Bergman space problem, via annihilators 
and the Cauchy transform, to an invariant subspace problem for the Sobolev space 
^ , 0 (G) . Such invariant subspaces will be characterized in terms of their zero sets on K 
and for this we will use the fine properties of Sobolev functions and capacity. 

Finally, we mention that as an application of these results, we will obtain information 
about polynomial and rational approximation, and characterize the Rat(£)-invariant 
subspaces of certain Besov classes of functions on K. This generalizes work of [17] for 
the harmonic Dirichlet space. 

The third author wishes to thank Prof. Archil Gulisashvili for helpful conversations 
about Besov spaces. 
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2. Preliminaries. 

2.1. Sobolev spaces. For 1 < p < oo we identify the dual ofIf(U) = LP(U, dA) with 
Lq(U) (q is the conjugate index top) by the bi-linear pairing 

(2.1) (f,g) = jfgdA feV{U),g£L"{U). 

For a s e t ^ C LP{U) we let 

X± = {g£L«(U)--{f,g) = OVf€X} 

denote the annihilator of Xand note that by the Hahn-Banach theorem (X1)1 is the closed 
linear span of X in LP(U). We let df = \(dj + id/) and C^(U) denote the infinitely 
differentiable functions with compact support in U. 

For 1 < q < oo, define the Sobolev space 

W\ = ^(C) = {feLq:Vf<ELq} 

\\u\\q=(J(\u\2^\vu\y/2dA)l/q 

and note that W\ is a separable, reflexive Banach space [1], Theorem 3.2 and Theorem 3.5. 
For a bounded domain [ /CC, define ^ , 0 (£ / ) to be the closure of C^(U) in the W\ norm 
and note, by the Poincare inequality [7], p. 154, we can equivalently norm Wf(U) by 

ll«ll̂  = (/l,iv«|'^)1/'. 

If q > 2, the Sobolev imbedding theorem yields W^^iJJ) is a Banach algebra of contin­
uous functions [1], p. 115. 

We now introduce the following Sobolev space which will be the key to much of our 
later approximations. We refer the reader to [21] for further discussion and proofs of the 
basic facts. Let 

W=W(C) = {feL00:df£L00} 

rii^=nioo+p/iioo. 
REMARK. We pause here for a moment to mention that W contains, but is not equal 

to F0'°°(C) = {feL°°:dxf,d/e L°°}. In fact, if/ <E W, then d / a n d d/belong to 
BMO but are not always bounded [11]. 

One proves [21] that the functions in *W have continuous representatives and thus for 
a bounded open set U we can define the (closed) subspace 

mu) = {fecrt:f\CXU = o}. 

One can show that the norm ||d/1|oo is an equivalent norm on Wo(U) and that Wo(U) is 
a Banach algebra. 
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REMARK. WO(U) is not the same as the closure of (^(U) in the W norm. 

2.2. Capacity. Following [3] or [7], we let 1 < q < oo and define the q-capacity Cq of 
a compact set F by 

Cq(F) = mf\\u\\q, 

where the infimum is taken over all real-valued functions u G CQ° with u = 1 on F. We 
extend this definition to arbitrary sets E by 

Cq(E) = sup{Cq(F): F C E,F compact} 

and define the exterior capacity C*q(E) of an arbitrary set E by 

Cq(E) = mf{Cq{G) :GDE,Gopen}. 

REMARK. C^ is equivalent to the ^-Bessel capacity [9]. 

AsetE is saidtobe capacitable if Cq(E) = Cq{E). One notes [3] that C* is a monotone, 
subadditive set function and that the Borel sets are capacitable. Recalling the definition 
of quasi-closed, one argues (using the fact that Borel sets are capacitable) that a quasi-
closed set is capacitable, as is the difference of any two quasi-closed sets. We also say 
a property holds quasi-everywhere (abbreviation q.e.) if the set for which it fails has 
exterior capacity zero. For q > 2 every non-empty set has positive capacity [7], p. 151, 
hence quasi-closed and quasi-everywhere become closed and everywhere respectively. 

Since functions in W\, for q < 2, are not always continuous (or even bounded), we 
shall need the following definition: A complex-valued function/ is quasi-continuous if 
for every e > 0 there is an open set O with Cq(0) < e and f\c \ O is continuous. One can 
show [3], Lemma 1, Theorem 2, that every/ £ W\ has a quasi-continuous representative 
and that any two quasi-continuous functions which agree a.e. dA must agree quasi-
everywhere. In fact, one can find a formula for the quasi-continuous representative of a 
Sobolev function. For/ G W\ we define 

(2.2) f(w) = lim-^[ .f(z)dA(z) 
r—•() 7ITZ J\z-w\<r 

whenever this limit exists and notice by the Lebesgue differentiation theorem,/ =f* a.e. 
By [7], p. 160,/^(>v) is defined quasi-everywhere and moreover/* is quasi-continuous. 
This next useful result of Bagby [3], Theorem 4, describes W\®(U) in terms of zero sets. 

PROPOSITION 2.1. A function/ e W\ belongs to W\Q(U) if and only iff* = 0 q.e. off 
U. 

We again remark that for q > 2 and/ G W\, the function/* is defined everywhere 
and is continuous. Moreover/ G W\ belongs to W^fJJ) if and only iff" = 0 on C \ U. 
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3. Correspondence. We now relate our Bergman space problem to a certain Sobolev 
space problem via a technique of Havin [8]. We refer the reader to [8] and [19] for the 
details of this section and for farther references. We begin with Havin's lemma. 

LEMMA 3.1 (HAVIN). Let Ubea bounded open set and \<p<oo. Thenf e Lq(U) 

satisfies 

J ufdA = 0 Vw G Lp
a(U) 

if and only if there is anFe W\Q{U) with dF =f 

By the Calderon-Zygmund theory, 

(3.1) | |5*| |L f ~ IIV^IIi, V0 G Wf{U) 

and thus by Havin's lemma d: W^,0(U) —> LPa(U)L is a continuous invertible operator 
with inverse given by the Cauchy transform 

(3.2) (5"'gXw) = (CgXw) = - - f -&- dA(z). 
7T JU Z — W 

lfRz is multiplication by z on LPa(U)L (well defined and continuous by the bilinear pairing 
(2.1) and Mz is multiplication by z on W\°{U) (also well defined and continuous) then, 
noticing that d(zf) = zdf for a l l / e W\\U), we have 

(3.3) Rzd = SMZ. 

So if Ifa(G) C M C LPa(G \K)is invariant, then 

LP(G\K)±CfMLCLp
a(G)L 

is also z-invariant (by (2.1)) and applying the Cauchy transform C and (3.3) we obtain 

(3.4) wf(G\K)C CML C Wf(G) 

and CML is z-invariant. 
If p = 1, one can use Weyl's lemma to prove Ll

a(U)± is the weak-star closure of 
5CQ°(L0, the transformation d: W^U) —> Ll

a{U)L is invertible with inverse given by 
the Cauchy transform C, and Rzd = dMz [21]. (Note here that Wo(G) is endowed with 
the weak-star topology with the pairing Jf5gdA,f G Ll, g G *J4A Thus whenever 
we mention closure and density, we will be referring to the weak-star closure and 
weak-star density.) Thus, as before if L\{G) C M C Ll

a(G \ K) is invariant, then 
1M)(G\K) C CML C WbiG) is z-invariant. 

Thus for all 1 < p < oo, our invariant subspaces fAf are in one-to-one correspondence 
with the z-invariant subspaces that lie between the Sobolev spaces W\°(G \ K) and 
Wf{G) (resp. <Wo(G \ K) and WoiG)). 
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4. Codimension. For A e G \ K we define Lx: LPa{G \ K) ->U>a{G \ K) by 

One easily checks that Z,A is a continuous linear operator on Z^(G \K) with LX(S—X)=I 
and Z / A ^ is closed and invariant. 

PROPOSITION4.1. ForX G G\K,LxM=Mifandonlyiftim(MI{z-\)M) = 1. 

PROOF. We first notice that since Lx is a left inverse for Sz-X, then ^ C LXM. 
Suppose that LXM=M. Iff G fW, then (z - A)!; / = / - / ( A ) G fW (since 1 G fW). 
So 5tf = (z - \)LX M + C = (z- \)M + C and hence dim(M/(z - X)M) = 1. 

If dim(f^f/(z — A)f^) = 1, then since 1 G M, every/ G fŴ  can be written as 
/ = (z — A)g +/(A) for some g G fW\ Hence g = Z,;/ G M. • 

THEOREM 4.2. The following are equivalent: 
1. LxM = Mforall\tG\K 
2. i)(CML) C CM^forallij) G ^ . 

PROOF. We first notice that if g G CML C 0 f 0(G) (^o(G) respectively) then, by 
(3.1) ,feG 0 f °(G) (resp. ^o(G)) for all V G ff. Also notice that if ^ 0 G W with 
-00 = V> o n ^» ^en i/>og — V>g = 0 q.e. on AT and hence, by Proposition 2.1 and (3.4), 
V>og - V>g G FPf °(G \K)C C!ML. Hence for/ G M 

JfH*kg)dA = Jf5mdA 

and so we can assume that t/> has compact support in the plane. 
\fLxM = fW for all A G G\K, thenfor/G fTtfandg G CfM"x 

[f(z)~{(X)dg(z)dA(z) = 0 V\eG\K. 
J z — X 

Thus 
/ « £ > ^(z) =/(A) / ^M dA{z) a.e. on G. 
./ z — A J z— A 

Integrating both sides of this equation against drf G L°° (which is possible since both 
sides belong to L^) and using Fubini's theorem, one obtains 

Jf(z)dg(z)f ^ dA(\)dA(z) = JfQtfWXtf^l dA(z)dA(\). 

One rewrites the above (using the fact that -0 and g have compact support so C(d VO = V* 
and C(dg) = g) as 

Jfd(^g)dA = 0 VdgeM1. 

This implies -0g G CfW1. 
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Conversely, suppose that ^(Cfftf1) C CML for all I/J E CW. Then reverse the above 
argument to get that for a l l / E M and g E CML 

/ ( / z-X 

This will imply [1], p. 95, 

r / W - / ( A ) , 

f(z) f^dgtf dA(^ 15 ̂ \) dA(\) = 0 Vt/> € 'W. 

fJ^LJl2sg(z)(iA(z) = 0 a.e.onG 
•/ z — A 

and hence, by the Hahn-Banach theorem and the fact that M C L\fW, we have LX^M = 
f^forallA eG\K. m 

Let Rat(AT) be the set of rational functions with poles off AT and define the manifold 

? = {gecH(G):g\KeRat(K)}. 

COROLLARY 4.3. IffiCM1-) c CfM*1, then ^ (CfW 1 ) c C<ML. 

PROOF. We will show that LXM c M and apply Theorem 4.2. For A E G \ K, 
let </> E ^ ( G ) that is identically 1 near K and zero in a neighborhood of A. For all 
f £ M and V> £ Cfftf-1 we have (since V(l — <t>) = 0 on AT and hence belongs to 
0*'°(G \ £ ) C CiW-1, respectively W0(G \K)C CML) 

jf-^HdA = jfzm5M>)dA = f(f-f(X))3 ( ^ L ) <M = 0 

because </></>(* - A)"1 E ?(CML) (note that 1 E fW). • 

PROPOSITION 4.4. 77ze manifold f' = {gG ^ ( G ) : g|jc E Rat(j£)} w dewse wi Zwf/z 
^o(G) a/irf Wf(G). 

PROOF. Let J denote the closure of 7 in 0 f °(G). Then trivially 

0?°(G \£) c f c k tff °(G). 

Since F̂ is z-invariant, it follows from Corollary 4.3 that l/V^r C ^ . Now let </> E Co°(G) 
and identically 1 on K. Then <j> E ^ ° ( G ) and in fact <f> E J . Finally, if ^ € 0 f °(G), 
then 0^ E 7 and (1 - (/>>/> E FFf °(G \ K) C 7, so ip = cj)^ ^ (^ - ^X/J) e 7. This 
shows that F̂ contains 0 f °(G), which concludes the proof. A similar proof shows that 
f is weak-star dense in ^ ( G ) . • 

Let <P be the set of analytic polynomials and define the manifold 

fi = {gemG):g\Ke¥}. 

COROLLARY 4.5. IfG \ K is connected, then the manifold $\ is dense in both ^ ( G ) 
and Wf(G). 
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PROOF. By Proposition 4.4, it suffices to show that fa\ contains fa. Indeed, if g E fa 
with g\x = r E Rat(AT) then there exists a simply connected region Q which does not 
contain the poles of r and K C Q C G. By Runge's theorem, r can be uniformly 
approximated by a sequence of polynomials {pn} in Q. If </> G CQ°(G) vanishes off Q 
and is identically 1 near K, then d(pn(t>) = pnd(f) converges uniformly to rd</> = d(<£r), 
that is r<j> E fa\. Thus g = n/> + (g — r<j>) E fa\. • 

COROLLARY 4.6. IfG\Kis connected, then %j){CML) C CML for allijj EW and 

hence LXM = fM>r alI\eG\K. 

PROOF. Let g G CfW1 and V G 'W. If V>o € ^ ( G ) with Vo = V> on AT, then 
ifrog —^g = 0 q.e. on AT and so by Proposition 2.1 Vog — 4>g € lM)(G \ K) C Cfftf1. 
Thus 

dist(V>g, CfAf1) = dist(i/>og, CfW"1). 

By Corollary 4.5, given any e > 0 there is a ^ e € ^ ( G ) with ^S\K - p E T and 
ll^e — V'oll'H/ < £. Notice that /?g G Cfftfx and pg — i^£g = 0 q.e. on K and so by 
Proposition 2.1 pg - ip£g E 0 f °(G \ K) C CWLL. From this we obtain x/j£g E C9tiL 

and so 

dist^og, CM1) < ||Vog - Vrfll, < Cefe||,. 

Thus V>og and hence i/>g belongs to CfM1. A similar proof works for p = 1. • 

5. Invariant subspaces: 1 < p < 2. We now can prove our main theorem for 
1 <P<2. 

THEOREM 5.1. For 1 <p < 2, the following are equivalent: 

1. dim(fW/(z - \)M) = \V\EG\K. 
2. LXM = MV\EG\K. 
3. M = Ua(G \ E)for some closed set EcK. 

PROOF. Notice that by our earlier work, we just need to prove (1) implies (3). By 
Theorem 4.2, ^(CfM1) C CML for all i/> G ^o(G), hence CML is an ideal of the 
Banach algebra Wf°(G) (respectively ^o(G)). Let 

E= {z E K : g(z) = 0 Vg G CML} 

and proceed as in [19] [21] to show that OML = W\*(G \ E) (respectively W0(G \ E)) 
and thus M = Ifa{G\E). m 

When G \ K is connected we can apply the above along with Corollary 4.6 to get: 

COROLLARY 5.2. If\ <p<2 and G\Kis connected, then M = LPa(G \ E)for some 
closed E CK. 
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6. Invariant subspaces:/? > 2. If E C K is closed then LPa(G \ E) is an invariant 
subspace containing LPa{G) and is L\-invariant for all A G G \ K. For 1 < p < 2 these 
are the only ones with this property, but for/? > 2, there are others. For this reason we 
proceed with the following construction: For/? > 2 (and hence q < 2) and a quasi-
closed set E C K, we can find a sequence of closed sets F\ C F2 C -• C E with 
Cq(F„) —> Q(£). SinceLPa(G\Fn) increases with «, we can define the invariant subspace 

(6.1) M{E) = \jLp
a(G\Fnf. 

n 

Notice that M(E) contains Ifa(G) and is LA-invariant for all A G G \ K and that [19], 
Proposition 4.2: 

PROPOSITION 6.1. Forp > 2, and quasi-closed sets E,F C K 
1. M(E) is independent of the choice of{Fn}. 
2. M{E) C M(F) <* Cq(E\F) = 0. 
3. M(E) = M(F) 4* Cq(EAF) = 0. 

Furthermore for/? > 2 (q < 2) there are quasi-closed sets E C K for which ?M{E) 
cannot be written as LPa(G \ F) for any closed F C K [19], Proposition 4.3. We record 
this example here for completeness and for further reference. 

EXAMPLE. Fix 1 < q < 2 and let G be a disk of radius 2 centered about the origin 
and K = [0,1]. Let B C [0,1] be constructed in the same manner as the Cantor set 
except that the intervals removed (an, b„) are such that £«>i Cq{an, bn) < Q[0,1]. (This 
is justified since Cq{a,bf ^ (b - a)2'* if q < 2 and C2(a,bf ~ (log(2/(6 - a))~X 

[25], and [13], p. 115, Proposition 6.) Set E = [0,1] \ B = \Jn>x(an, bn) and notice that 
E is open and dense in [0,1] with Cq(E) < Q[0,1]. A straightforward argument shows 
that E is quasi-closed and Cq(EAF) > 0 for any closed set F. Setting M = M(E) and 
using Proposition 6.1, we are done. 

One also notes that 

(6.2) Wq(E) = Ci^OE)1-) = f| *f{G \ Fn) 
n 

and by Proposition 2 . 1 , / G 0 f °(G) belongs to Wq(E) if and only iff = 0 quasi-
everywhere on E. 

lfLxM=M for all A G G \ K9 we can apply Theorem 4.2 to get I/JCM1 C CML 

for every ip G CW. Using [19], one can show CML = Wq(E) and hence ^/i = M(E) for 
some quasi-closed E C K. For completeness, we outline the proof and refer the reader 
to [19] for the technical details. Let / G JFf °(G) (assumed to be quasi-continuous), and 
define 

[/] = span{<pf: <p G <W}. 

If we define Zf = / _ 1 (0) , we see (using the fact thaty^!(F) is quasi-closed for closed 
F and quasi-continuous/) that Zf is quasi-closed and, by [3], Lemma 1, [/] C Wq(Zf). 
These next two technical lemmas can be found in [19]. 
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LEMMA 6.2. Ifg, h G wf(G) with \g{z)\ < \h(z)\ a.e., thenge [h\ 

LEMMA 6.3. Iff G 0 f °(G) is quasi-continuous, then [f] = Wq{Zf). 

Assuming these two facts, one can now show that CfWx = Wq{E), for some quasi-
closed EcK. 

COROLLARY 6.4. There exists a quasi-continuous f G W\Q(G) with 

CM1 = [f} = Wq{Zf). 

PROOF. Since CML is separable, there is a sequence of non-zero quasi-continuous 
functions {fn:n> 1} in Wf°(G) with 

OM± = span{[fn]:n>l}. 

By [7], p. 130, \fn\ G 0 f °(G), and by Lemma 6.2, []fn\] = \fn]. Thus we may assume 
/„ > 0. For each n > 1, let en = \\fn\\~l2~n and define/ = £„ e,fn G Wf(G). Assuming 
/ is quasi-continuous, we see that Zf = Zazfn quasi-everywhere. (This will follow from 
the fact that if pn is the w-th partial sum, then Cq(f — p„ > e) < e~q\\f — pn\\q [3], 
Theorem 2(i) and hence a subsequence of pn will converge t o / quasi-everywhere.) Thus 

/ G span{[/;] : n > 1} = CML C Wq{Zf\ 

and hence, by Lemma 6.3, [/] = C9tfL = ^(Z/). • 

REMARK. We remark that there is a general result of Netrusov [14] which identifies 
the subspaces X of a Triebel-Lizorkin space FZ,^ or a Besov space 5Z/ e in IR" with 
</>JT C X for all smooth functions </>. 

Before we prove our main theorem for/? > 2, remark that since 

W\\G\K) C CM1 = Wq{Zf), 

then, by (6.2) and Proposition 6.1, Zf C K q.e. 

THEOREM 6.5. Ifp > 2, fAe/i the following are equivalent: 
1. dim(i»f/(z - A)fW) = 1 VA G G \ K. 
2. LXM = MM\<EG\K. 
3. M = M{E)for some quasi-closed set E CK. 

PROOF. By Corollary 6.4 and the above remark, there is quasi-closed set E C K with 
CML = Wq(E) and hence M = fM(E). m 

When G \ K is connected, we can apply Corollary 4.6 to obtain: 

COROLLARY6.6. Ifp > 2 and G\K is connected, then M = M{E) for some 
quasi-closed set E C K. 
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7. Besov spaces As an application of our results, we will characterize the Rat(AT) 
invariant subspaces of certain Besov spaces on K which are generalizations of the well 
known Besov spaces on the unit circle [15]. This will be accomplished by creating a one-
to-one correspondence with the invariant subspaces M of the Bergman space LPa(G \ K) 
satisfying (1.1) and (1.2). 

For 1 < q < oo and 2 — q < a <2WQ follow [12], Chapter 2, and say a compact set 
K is an a-set if 
(7.1) ^ ( 5 ( z , r ) n J ^ ) - r a , Vz€tf, V 0 < r < l . 

Here ^Cx denotes a-dimensional Hausdorff measure [7]. In fact one checks [12], p. 33 
that B(z, r) Pi K has Hausdorff dimension a for all z E K, 0 < r < 1. 

NOTATION. For the remainder of the paper, we fix 1 < q < oo and 2 — q < a < 2 
and assume that K is a compact a-set in G. 

Define the Besov space B^(K) as the space of functions/ € Lq(K, dtHa) with norm 

One can show [12], p. 213-214, that B^(K) is a Banach space, C°°|A: is dense in B%(K), 
and if q > 2 then B^(K) can be continuously embedded into Lip{_2/q(K). Recalling that 
RauX) is the set of rational functions with poles off K, we say a subspace f C B^(K) is 
Rat(K)-invariant ifrfcf for all r G J ; or equivalent^ (C - A)̂ T = ^ VA £ K. We 
will characterize the Rat(A~) invariant subspaces of B^(K) by relating these subspaces to 
certain Bergman spaces. 

If LPa(G) C fW C Ifa(G \K)is invariant, then 

^ ( G \ ^ ) 1 C ^ 1 C ^ ( G ) 1 

is also invariant. Thus the invariant subspaces M are in one-to-one correspondence with 
the ̂ -invariant subspaces of the quotient space LPa(G)L /L^(G \ K)L, where R is the coset 
multiplication operator R[g] = [zg]. We now show that R is similar to M^ (multiplication 
by 0 on B°q(K). 

THEOREM 7.1. The linear transformation 

defined by 

is a continuous invertible operator with JR = MQJ. Thus there is a one-to-one corre­
spondence between the invariant subspaces LPa(G) C ?M C LPa(G \ K) and the lattice of 
(.-invariant subspaces ofB^(K) 
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PROOF. Recall from Section 3 that C: LfiiU)1 —> JFf 0(£/) is continuous and invertible 
with CRZ - MZC. The operator C = d_1 will induce the continuous invertible operator 

C:Ifa{G)LIIfa(G\K)L - W\\G)/W\\G\K), C\g] = [Cg]. 

The operators Rz and Mz will induce the multiplication operators R and M on cosets of 
If^G)1 lVa(G \ K)1 and 0?°(G)/ 0?°(G \ K) respectively with 

CR=MC. 

By the trace theory in Sobolev spaces [12], p. 182, the operator 

r :^°(G)^^(/0 , Tf=f\K 

(recall the definition of/* (2.2)) is a continuous surjective linear operator with Vsx{T) = 
W\°(G \ K), by Proposition 2.1. Thus 

t: W\\G)I W\\G \ K) -»££(*) , 7TA] = h* \K 

is a continuous invertible operator. 
If we define 

J:LP(G)±/LP(G\K)±^B^(K) 

by J = 7 o C, we obtain 

(4g])(0 = - - / r
i ^ 7 ^ ( z ) 

(This is true since Cg is a quasi-continuous function [6], as is (Cg)*, and (Cg)* = Cg a.e. 
(dL4). We now apply [3], Theorem 2(iii) to get that (Cg)* - Cg quasi-everywhere.) It also 
follows that JR = MCJ. m 

NOTATION. Given an invariant subspace LPa(G) C M c LPa(G \ K), we let fa be the 
unique (-invariant subspace of B^(K) that corresponds to M via J. One checks that 

(7.2) ^ = r(CfWx). 

If 5 is a (-invariant subspace of B^(K), we let fWj be the unique invariant subspace of 
LPa(G \ K) containing LPa(G) which corresponds to J via J. One checks that 

(7.3) M<f = (5 tf e 0*'°(G) : 7 / G J } ) 1 . 

With this notation we notice that M^ = fM. 

PROPOSITION 7.2. If\eG\K andUa(G) C M C Ig(G \ iQ w invariant, then 
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PROOF. For any (-invariant J C B^{K) recall from (7.3) that 

M<F=(d{g£W*>0(G):Tg€?})±. 

Thus if/ G M and Tg G !fM, then 

JL>fd ((z - A)g) <M = f(z - \)L>fdgdA = J{f -f(X))8gdA 

which equals zero since 1 G M. Thus L\^M C ^-A)7"w-
If/ € !Wk-A)yv and Tg € J * , then 

0 = ffd ((z - A)g) <M = / ( z - X)fdgdA. 

Thus (z - A / G fW^ = M and hence IA(z - A / = / G I A ^ - • 

Thus if A G G \ K, then the following are equivalent 
1. dim(fM"/(z-A)fW) = l 
2. LXM = M 

3. fW = fW^ = 5 % A ) ^ 
4. (C-A)5 f l f = J f l f . 
We also mention that by the continuity of the surjective operator T along with Propo­

sition 4.4 and Corollary 4.5, one has the following results about rational and polynomial 
approximation in the Besov spaces: 

PROPOSITION 7.3. 1. Rat(K) is dense in B^(K). 
2. IfC \ K is connected, then (P is dense in B^(K). 

Before we state our main theorem, we want to comment on capacity for the Besov 
spaces Bq(K). One can define a capacity associated with the Besov spaces B^(K) as 
follows: For a compact set F C K, define the 2?a^-capacity of F by 

fla,9(F) = inf|[/1U?, 

where the infimum is taken over all real-valued C£ functions (on all of C) wi th/ > 1 
on F. Extend this definition to all sets E C K and define an associated outer capacity 
5* . As with the Cq capacity, one defines the notions of capacitable, quasi-everywhere, 
quasi-closed, and quasi-continuous for the Besov capacity Ba,q. Also notice that since the 
trace operator is continuous and surjective, then the capacities Cq andi?a^ are equivalent 
for sets E CK. 

By the equivalence of the capacities Cq and Ba,q for subsets of K and quasi-continuity 
off*,f G Wf°(G), along with the trace theorem, one has that every function in B^(K) 
has a quasi-continuous representative. Moreover, one can prove in a very similar fashion 
to [3], Theorem 2, that if two quasi-continuous functions in B^{K) agree 9^ a.e. then 
they agree quasi-everywhere. For/ E B^(K)9 we let / be any one of the quasi-continuous 
representatives of/ 

THEOREM 7.4. If J C Bq(K) is Rat(K)-invariant, then there is a quasi-closed set 
ECK with 

? = {feB«(K):f\E = 0 q.e.}. 
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PROOF. If 7 is Rat(X) invariant, then LXM<F = M? for all A G G \ K. Thus, by 
Theorem 1.2, Mj = M{E) for some quasi-closed E C K. But by (7.2) and (6.2), 

J = r ( c ( ^ ( ^ ) x ) ) = r ( ^ ( £ ) ) = V € *J(*) :f\E = 0 q.e.}. 

When C \ K is connected, then one can use the proof of Corollary 4.6 to show that if 
A £ Kandf G B^(K), then there is a sequence of polynomials {/?„} with/?,/ —> (z—A)-1/ 
in Bq(K). Thus when C \ K is connected, every ^-invariant subspace is Rat(A~)-invariant 
and we have the following: 

COROLLARY 7.5. IfC\Kis connected and J C B^(K) is ^-invariant, there is a 
quasi-closed setE C K with 

!F={feBa
q(K):f\E = Qq.e.}. 

REMARK. We remark here that one could have computed the C^-invariant subspaces 
7 of Ba

q{K), i.e. <j>? C 7 for all </> G C°° (here we mean C°° in a neighborhood of K), 
by using trace theory and the fact that the C°° -invariant subspaces of W\ are known by 
Corollary 6.4. When one just looks at the rationally invariant subspaces Bq(K), it is not 
clear on first examination that rationally invariant implies C°°-invariant. As it turns out 
though, it does. 

We mention that we can employ the density of Rat(AT) in B*(K) to compute the 
commutant of M^ on Bq(K) and thus generalize [20], Theorem 1.1. We say a function </> 
is a multiplier for B«(K) if <j>f G B«{K) for a l l / G B«(K). An application of the closed 
graph theorem shows that if <j> is a multiplier, then Afy (multiplication by (/>) defines 
a continuous operator on Bq(K). For more information on multipliers of Sobolev and 
Besov spaces, see [13]. 

PROPOSITION 7.6. Let B be an operator on B^(K) with BM^ = MCB. Then B = M^for 
some multiplier <j> ofBq(K). 

PROOF. Since B commutes with M^ then B commutes with Mr, where r G Rat(£). 
Let h = B{\) and note that B(r) = BMr\ = rh, for all r G Rat(iQ. Iff G B%(K), 
choose a sequence of {rn} C Rat(£) with rn —> f in Bq(K). We assume (by passing to 
a subsequence if necessary) that rn —>f ^4-a.e on K. Now Z?(r„) —• 2?(/) in ££(£) and 
B(rn) = /ir„ converges to hf ^4-a.e on £ , so B(f) = hf i?4-a.e, i.e. h is a multiplier on 
Ba

q(K). 

8. More on codimension. Recall that if 1 < p < oo, L£(G) C 1W C Z£(G \ K) (K 
an a-set) is invariant, and A G G \ K, then (S — A)|<^ is a semi-Fredholm operator and 

- index((S - A)|^) = dim(fW/(z - A)fW) 

is constant on the components of G \ K and is called the codimension of M on the 
component of G \ K. In this section, we will prove an interesting relationship between 
the codimension of Wl and the codimension of fw which will help us understand the 
complexity of the invariant subspaces of both the Bergman space and the Besov space. 
Our result is the following: 
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THEOREM 8.1. For \ < p < oo, \ € G\K, and an invariant subspace LPa(G) C 
McIfa(G\K), 

dim(fW/(z- \)M) = 1 + d i m ( ^ / ( z - A ) ^ ) . 

PROOF. We leave it to the reader to verify that 

(8.1) (z - X)M C (z - X)LXM CMC LXM. 

Noticing that (z - \)LXM = {f G M : /(A) = 0}, we see that (since 1 G 5tf) 
M = (z - A)Z,Afftf + C, and hence 

(8.2) dim(fW/(z - \)LXM) = 1. 

From basic linear algebra and using (8.1) we have 

(8.3) dim(fW/(z-A)fW) = dim(fAf/(z-A)ZAfAf)+dim((z-A)LAf^f/(z-A)fM"), 

which by (8.2) becomes 

(8.4) dim(f^/(z - \)M) = 1 + dim((z - \)LxM/(z - X)M). 

We now use (8.1) again along with the fact that S — A is bounded below to get 

(8.5) &m(LxM/M) = dim((z - \)LXM/(z - X)M). 

Using (8.4) and (8.5) we have 

(8.6) dim(fW/(z - X)M) = 1 + dim(Lx!M / M). 

From basic linear algebra and the fact that the Cauchy transform C is invertible, we 
obtain 

dim(ZAfW/fW) = dim(^-L/(ZAfW)-L) = &m(CML / C(LXM)L) 

\C(LXM)^IW\\G\K)) 

Now use (7.2) and Proposition 7.2 to see the above is equal to 

d i m ( ^ / ( z - A ) ^ ) . 

Combine this with (8.6) and we are done. • 

REMARK. AS a consequence of this theorem, we can make the following interesting 
observation about the codimension in the classical harmonic Dirichlet space B\(J) (see 
[17] for further details). Recall from the introduction that given n G N U {oo}, the 
invariant subspace 

aft = XDJA£+/2(G) 
(fA£ is an invariant subspace of L̂ (ID) with codimension n, see [ 10] for a specific example) 
has 6xm{^Mn JzO\{fi) = n + 1. Thus by the above formula, the invariant subspace jF% C 
B\(J) has dim(^^/( . !F^) = n (see [22] for an explicit example) which is in stark 
contrast to the analytic Dirichlet space {f G B\(J) : f(n) = 0 V« < 0} where the 
codimension of a non-trivial invariant subspace is always one [18]. 
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9. Weak-star closed subspaces. When the index p = oo and G \ K is connected, 
one can ask about the weak-star closed invariant subspaces J? with 

(9.1) H°°(G) C A C H°°(G \ K). 

Here H°°(U) is the algebra of bounded analytic functions on a domain U. We refer the 
reader to [23] for a review of the basic facts about the weak-star topology on H°°(U). 
We do not know a complete characterization of these subspaces but we do want to make 
a few remarks concerning the complexity of this problem. 

If E is a closed subset of K, then J? = H°°(G \ E) certainly satisfies (9.1), but these 
are not all of them. Consider the following example: 

EXAMPLE. For/? = 2, let E c K = [0,1] be the dense quasi-closed set (as in the 
example following Proposition 6.1) for which 

(9.2) M(E) = \jLl(G\Fnf iL2
a(G\K). 

n 

We claim that 

A = UH°°(G\Fn)* ?H°°(G\K) 
n 

and since E is dense in K, then J? ^ H°°(G \ F) for any closed F CZ K. Here we let X* 
denote the weak-star closure of a set X C H°°(G \ K). 

Let 

n 

and notice that J?° C M(E). For each countable ordinal a define Aa to be the linear 
manifold of functions in H°°(G\K) which are weak-star limits of sequences of functions 
in 

(3«x 

By using the basic fact that a sequence of H°°(G \ K) functions {fn} converges t o / 
weak-star if and only if 

sup sup \f„(z)\ < oo 
" z£G\K 

and/, —+/pointwise, we see that J?a C M(E) for each countable ordinal a. It is a well 
known fact [4], p. 213, that there is a least countable ordinal a' such that Jia' = j ^ a + 1 

and moreover J?a' is the weak-star closure of J?°, that is 2La = A. Thus A C 9\/[(E). 
Suppose J? = H°°(G \ K), then since H°°(G \K)is dense in L2

a{G \ K) [2], Lemma 4, 
we have M(E) = L2

a(G \ K) which is a contradiction of (9.2). 
We finish with these open questions: 
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QUESTION 1. Are all the weak-star closed invariant subspaces J? of the form (9.1) of 
the form 

\jH*>(G\Fn)* 
n 

for some increasing sequence of closed sets {Fn}7 
This problem seems difficult since if one tries to put the problem in the context of some 

appropriate Sobolev space, the space will lie in Z,1. In the proof of the/? > 2 case one uses 
weak compactness in LP [19], a luxury not afforded us in Ll. Moreover, the appropriate 
capacity here seems to be the analytic capacity since H°°(G \ E) = H°°(G) if and only 
if E has analytic capacity zero. The capacities Cq used above are subadditive which 
allows us to define such concepts as quasi-closed and develop some useful properties 
of quasi-closed sets. It is an open question as to whether or not the analytic capacity is 
subadditive, making a useful notion of quasi-closed difficult to define. 

QUESTION 2. In (9.1), is there a difference between the weak-star closed invariant 
subspaces and the weak-star closed subalgebras? 
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