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1. Introduction. In 1927 Schreier [8] proved the Nielsen-Schreier Theorem that a sub-
group H of a free group F is a free group by selecting a left transversal for HinF possessing a
certain cancellation property. Hall and Rado [5] call a subset T of a free group F a Schreier
system in F if it possesses this cancellation property, and consider the existence of a subgroup
H of F such that a given Schreier system T is a left transversal for H in F.

Now if G =n*-^7 0 6 ^ ) *s t n e free product of groups 4̂̂ , the Kurosh Subgroup Theorem
enables one to determine the structure of a subgroup H of G. This theorem of Kurosh can be
proved (see for example Maclane [7], Kuhn [6], Weir [9]) by selecting for each jeJ a left
transversal Sj for H in G, such that S — U Sj possesses a certain generalized cancellation

property. We call such a subset S a uniform Schreier system in G and study questions analogous
to those of Hall and Rado. The questions are made explicit in § 2 and answered in §§ 3, 4, 5.
Necessary and sufficient conditions for the existence of a subgroup H of G associated with an
arbitrary uniform Schreier system S are given by Theorems 3.11 and 4.7.

In § 6 the structure of a subgroup H of G is discussed in the light of the methods evolved
here and a formula (6.11) for the number of subgroups of finite index in G is derived. This is a
generalization of that of Hall [3] for free groups. In § 7 the methods are used to give an alter-
native proof that the free product of two residually finite groups is residually finite (Gruenberg
[2])-

The contents of this paper formed part of a Ph.D. thesis and I would like to record my
thanks to my supervisors Dr Hanna Neumann and Dr J. Wiegold for their help and encourage-
ment during this period of study.

2. Uniform Schreier systems and admissible functions. Let G =Y[*^j 0 e / ) be the free
product of groups At for all j e J, some well-ordered index set. The elements of G can be
uniquely represented as reduced words g eG, g = ava2 ... at, in the syllables at e Aai (at e / ,
i = 1,2,..., t), where a,¥=«i+i- The length of g, X(g), is to be the number of syllables occurring
in this reduced expression for g. Let /be some other well-ordered index set, and let S = {stj,
for all i e /, j e / } be a subset of G; then we make the following definition.

(2.1) DEFINITION. The set S = {fy} is a uniform Schreier system in G if the following con-
ditions are satisfied:

(i) Sxj = 1, the identity of G, for alljeJ.

(ii) Ifs^ = axa2 ... a, ̂  1, i # l , and a, =j, then there exists apel,pi^i, such that

(iii) Ifstj = ata2 ... a,? 1 and <x,^j, then su - sht.

(iv)Ifsu = spq, theni=p.
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62 I. M. S. DEY

It is convenient to consider a uniform Schreier system 5 as a matrix, where stJ is the
element in the (i,j)th place. We can then speak of the rows and columns of S. We denote
the jth column of S by Sj, so that S = U Sj. We shall also require the following sets Sj and

j eJ

S*, where Sj = SUSJAJ and S*is the subset of those elements of Sj whose last syllable does
not lie in AJt together with s^.

(2.2) We note the following easy consequence of the definition:

If su e S, where S is a uniform Schreier system, and if si} = axa2 ... at, then

axa1_ ... areSXrnSar+1

for r= 1,2, ...,t-l.

The following lemma ensures the existence of uniform Schreier systems.

(2.3) LEMMA (Maclane). Let G = Y\¥AJ (jeJ) be the free product of arbitrary groups Aj,
and let H be any subgroup of G. Then, for each j e / , we can find a left transversal Sj for H in
G, such that S = U Sj is a uniform Schreier system in G.

The proof can be found in Maclane [7]. This lemma not only shows generally that
uniform Schreier systems exist but also shows that with each subgroup H of G one can associate
at least one uniform Schreier system S. It is this association that is studied here.

Again, let H be a subgroup of G, the free product of groups Aj (j e J); then, if gu g2 e G
lie in the same left coset of G modulo H, we shall write g1~g2 and ~ is then an equivalence
relation on G. Now, from (2.3), if g e G, there is a uniform Schreier system S for Hin G such
that g~stje S, for all jeJ and some ie I depending on g. This permits us to define coset
functions \pj (e.g. Kuhn [6], Weir [9]) with arguments in G and values in Sj.

(2.4) DEFINITION. If H is a subgroup of G and S is a uniform Schreier system for H in G,
then the coset functions ipjfor each jeJare defined as follows: ifg e G,g~Sjj e Sj (ie IJeJ),
then \l/j(g) = s^.

It follows from the proof of Lemma (2.3) that the coset functions defined on G with values
in S as chosen there satisfy the condition

(2.5) \l/j(ga) e ^j(g)Aj, for all a e A}, j e / .
We therefore make the definition:

(2.6) DEFINITION. If His a subgroup ofG and S is a uniform Schreier system for H in G,
then H and S will be said to be associated if the corresponding coset functions defined by (2.4)
satisfy (2.5).

Lemma (2.3) states that each subgroup HofG can be associated with at least one uniform
Schreier system S in G and it is natural to consider the converse question, namely, if S is a
uniform Schreier system in G, is there any subgroup H of G with which S can be associated ?
To answer this question we examine the coset functions and introduce the concept of a set of
admissible functions for a uniform Schreier system S (cf. Hall and Rado [5]).

Let S be a uniform Schreier system associated with a subgroup H of G and let #,- be the
restriction of tj/j to the set Sj = SvSjAy, then we have
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(2.7) LEMMA. Let g eG, g = a^a2 ... a,(qte Aat, a( e J) and put

Then h, = ^ (g ) .
The proof follows from the properties of the equivalence relation ~ and the definition of

+''
Hence to calculate 4/j(g) we only require the values of #y defined on Sj.

(2.8) LEMMA. The functions <j>j defined on Sj with values in Sj satisfy the following conditions.

(i) (f>j(.Sjja) = spy for some pel, and all a e Ay

(ii) 4>j(sM) = spJ for all spq e S.

(iii) (f>j{sijd) e s^Aj for all a e Aj.

(iv) QjWjfajcQa') = <t>j(s,jaa') for all a, a' e Aj.

(f)4>j(<l>j(s,ja)a~1) = slj.
Proof, (i), (ii) follow from the definition of ij/j, (iii) from the association of H and S.

(iv) follows from the fact that, if <j>j(stJa) = spj> then siia~spi and stjaa'~spja'. So

4>j(sifla') = <t>j(spJa') = 4>j(.<t>j(.Stja)a').

(v) follows from (ii) and (iv) with a' = a~l.

Suppose that S is a uniform Schreier system in G and that for each jeJ there is some
function <j>j defined on Sj with values in Sj. Put 3> = {(j>j\jeJ}\ then we have

(2.9) DEFINITION. O is a set of admissible functions for S if the functions $} satisfy the
conditions o/(2.8).

Thus we have that, if H is a subgroup of G and S an associated uniform Schreier system
for H, we can construct a set of admissible functions 0 for S.

S and <l> can now be used to describe the structure of H (cf. Maclane [7]).

(2.10) THEOREM (Kurosh). Let H be a subgroup of the free product G, S an associated
uniform Schreier system for H. If<& is the set of admissible functions constructed for S, then

j e J

where S* is the set of those elements ofSj whose last syllable does not lie in Sj together with the
unit element. Further

(2.11) F is a free group freely generated by the subset of Q = {sjjSl~q
l,for all i e land all j ,

qeJ} obtained by deleting unit elements and possible repetitions from Q, and

(2.12) SijAjS^nH is generated by the set of elements Q,ij = {sija4>j(sija)~x, for all
aeAj}.
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If a subgroup H of G is described in this way by some associated uniform Schreier system
S and a set of admissible functions ®, we shall write H = <S, <I>> and call this a representa-
tion of H. We can now state a series of problems which will be discussed in the following
sections. Let H be a subgroup of G, S a uniform Schreier system in G and O a set of admissible
functions for S.

(2.13) Given S, determine all the possible H associated with S, if any.

(2.14) Given S, determine all the possible <&for S, if any.

(2.15) Given S and <1>, determine all those H such that H = <5, O>, if any.

(2.16) Given H, determine all the representations H = <S, O>.

We have seen that, if S and # are associated, we can construct a suitable O; so the solution
to problem (2.13) will follow from those to problems (2.14) and (2.15).

3. Problem (2.15). In this section we solve problem (2.15), that is, we assume that 5 is a
uniform Schreier system and that O is a set of admissible functions for S and we determine
all the subgroups H with the representation H = (S, O>.

We start by considering a particular 4>} e O, and use its properties (2.8) to define a function
iftj from G to Sj.

(3.1) DEFINITION. Ifg e G, define \j/j(g) as follows:

®Ifg = \,*i(g) = sli=\.

(ii) Ifg±\,g = a^a2 ...at, where at e Aai, at e J, we put h0 = su, and

then ipj(g) is to be \//j(g) = ht.
This ij/j is clearly a well-defined mapping, since each g e G has a unique representation as

a reduced word. We also see that, if gt = axa2... au then the nature of the constructive process
implies that ipj(gt) = ht.

We now prove several lemmas describing the properties of this function ij/j.

(3.2) LEMMA. Let g eG, g = axa2 ... a, (a, e Aai, i =1 ,2 , . . . , t) and let ae Aa for some
a. el. Then tpj(g) is the same word as that obtained by applying the construction process of (3.1)
to

g' = ala2...aiaa~1ai+l ...a,.

Proof. Assume that in calculating \li}(g) we obtain the sequence of terms h0, hu ..., ht,
and that in applying the process to g' we obtain the sequence h'o, h'u ..., h't+2- Then, from a
remark above, ht = ipjia^ •••«() = h\. Consider

and h'l+2 =
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Now it is a simple consequence of (2.8(ii)) that, if s e S, (j>j(s) = faifais)); so, putting

* . ( 0 « ( W = « e Sa,

we have h'i+2 = <£;(&,(&.(<£;(s))a~1))

But, by (2.8(v)), this implies that

We see, therefore, that on completing the construction process, h, = h',+2, proving the lemma.
This lemma implies that, if g, g' e G, then in calculating i/j(gg') we do not have to consider

any possible cancellations between g and g'.

(3.3) LEMMA. The restriction ofij/j to Sj is <t>j.

Proof. 1. We first show that, if s e S, then \j/j(s) ~ <f>j(s) = s.

(i) If s e S and s = 1, then, from (3.1), \ltj(s) = 1 = <t>j(s).

(ii) Suppose now that s e S, J # 1, and that s = ata2 ... a,(a,e Aai). We put ho = I = s1Jt

and calculate ht.

Now, from (2.2), at e SxlnSX2; so $ai(
ai) = ax = <£a2(ai), and hy = ^-(oi). Again, from the

construction,

But, from a remark in the proof of (3.2) and from (2.2),

so A2 = 0;(0a2(aia2))- But. again from (2.2), a ^ e ^ ^ n ^ ; so
and A2 = <t>j(oio2)- We repeat this argument to show that

••• at) = \l/j(s).

2. Finally, we have to show that, if sa e SjAjs then \\ij(sa) = 4>j{sa).

(i) Again, if sa = 1, i/^(ra) = (t>j(sa).

(ii) Now, if sa^= 1, from (3.2), we do not have to consider any cancellations which might
occur; so assume that, in calculating ^ij{sa), we obtain a sequence of terms ho,hu ... ht, where
/;,_! = iij(s) = <t>j(s), from the first part. Now consider h,. We have h, = <j>j((f)j((j)j(s)a)),
where (j>j(s) = s, since 5 e Sy. So ht = (j>j(<l)j(sa)) = <j)j(sa). That is, ^(.ya) = 0;(.sa).

We have used in these proofs a simple consequence of (2.8(ii)), namely that, if s e S, then
^y(i) = 0;($fc(s)), and from the previous lemma we immediately have \j/j(s) = ^ ( ^ t ( j ) ) . We
extend this property to the whole of G.

https://doi.org/10.1017/S204061850003522X Published online by Cambridge University Press

https://doi.org/10.1017/S204061850003522X


66 I. M. S. DEY

(3.4) LEMMA. Ifg e G, then ij/jig) = i^#*(gf)).

Proof. We assume that, in calculating 1/^(3), $k{g), we obtain the sequences h0, hu ..., h,
and h'o, h'u ..., h't, respectively. Then, clearly, since h0 =siJ = 1, and h'o =sik = 1, <pj(h'o)
= h0. We make the inductive hypothesis that ^ (AJ . j ) = /*;_ x; then

Now, since <j>ai<t>j = (/>ai on 5,

Because 0ai(^(/j,'-i)af) e S,

Putting i = <, we have ^ ( 3 ) = <£,-(1/̂ (0)), and, from (3.3),

We can now prove a most important lemma.

(3.5) LEMMA. Ifg, g' e G, then il/j(gg') = \j/^j(g)g').

Proof. We prove this lemma in three stages.

(3.6) Ifsiq e Sq, and a e Ap then il/j(siqa) = ^j(sua).

Proof of (3.6). Suppose that in calculating ^j{si(la) we obtain a sequence of terms
ho,hu ...,ht; then

K-i = ^j(siq) = ^j(siq) = stJ .

We calculate ht.
h, = <l>j((t>j((t>j(Sij)ay) = (frjiSija).

That is, from (3.3), il/j(siqa) = ht = i^fo/*).

(3.7) Ifg e G and a e Axfor some cceJ, then

Proof of (3.7). Again we suppose that in calculating ^fjigd) we obtain a sequence
h0, hit ..., ht, where ht-i = ij/jig). We calculate ht.

Suppose that /i,_i = Syj then, from (2.8(ii)) and (3.3),

h, = ^(^.(StaO)),

and, from (3.6), this is A, = ^j(^x(Sija)). That is, from (3.4),

\l/j(ga) = iAj(soa) = iA/(/i,-ia) = ^j(

We now return to the proof of (3.5).
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Proof of (3.5). We use an induction argument over the length of g'.

(i) If A(g') =0, theng' = 1 and tj{gg') = ty,#j(g)g').

(ii) If A(g') = 1, theng' e 7̂- for some j eJ, and this case is covered by (3.7).

(iii) Now let A(g')>l, and write g' =g"a, where aeAa for some <xe/. Then, by the
inductive hypothesis,

*j<09") = 4>MJ(9)9").
Hence

= tjWjWW, from (3.7),

a), by hypothesis,

from (3.7),

This completes the proof of the lemma.
We now have the properties of ifrj required to solve problem (2.15). We start by defining

an equivalence relation on G.

(3.8) DEFINITION. Ifg, g' e G, we say thatg andg' are equivalent if there is aj eJsuch that

This is clearly an equivalence relation, and it is independent ofy, because if keJ,
from (3.4),

Also, from the definition of the \j/j, each g e G is equivalent to some Sy e Sj and, since no two
elements of Sj are equal, we can take the elements of Sj as representatives of the equivalence
classes. That is, G is partitioned into disjoint subsets indexed by the elements of /. We can
now prove the following lemma.

(3.9) LEMMA. The equivalence class containing 1 e G, is a subgroup H ofG.

Proof, (i) From the definition of H, 1 e H.

(ii) Let g, g' e H; then ^}{g) = ipjig') = 1. But, from (3.5),

so gg' e H.

(iii) Let g e H; then 4>j(9) = 1- Again from (3.5),

But gg"1 = 1 eH; so ^fog"1) = 1 = ^(g" 1 ) , and j - ' e f f .

This subgroup is to be the one with the representation H = (S, O>. We first prove

(3.10) LEMMA. SJ is a left transversal for H in G.
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Proof. We denote the equivalence class containing sl7 e Sj by Hu so that H= Hi; then
we show that Hsti = Ht.

1. Let g e G, and consider the left coset Hg. A typical element is hg e Hg, and we cal-
culate ^-(/ig). From (3.5),

= $j(g), since heH,
= Sij, say.

That is, Hg e Hh and so each equivalence class contains at least one left coset,

2. Now let Hg, Hg' lie in Ht; then g, g' e H{, and ^j(g) = ^j(g')- Now calculate
tjig'g'1) using (3.5).

That is, g'g * e H, and so Hg = Hg'. This completes the proof of the lemma.
We have now shown that the left cosets of H in G are indexed by /, and that each Sj is a

left transversal for H in G. Clearly the coset functions (2.4), which can now be defined, are, in
fact, the ij/j-, so H and S are associated, and $ is a set of admissible functions for S. That is,
H has the representation H = <5, <£>.

Now clearly, if H' = <5, <!>> is another subgroup with the same representation as H,
then, from (2.10), both have precisely the same free decomposition, so that H = H'.

We can summarize this section in a theorem which states the solution to problem (2.15).

(3.11) THEOREM. If, in a free product G, we are given a uniform Schreier system S and a
set $ of admissible functions for S, then there is precisely one subgroup H of G such that H has
the representation

4. Problem (2.14). In this section we solve problem (2.14), namely, given a uniform
Schreier system S, determine all the sets of admissible functions O, if any, defined on S. This
requires that, for each jeJ, we have to define a function (j>j from Sj to Sj satisfying the con-
ditions of (2.8). The conditions (2.8(ii)) determine precisely the values of the 4>j at elements of
S. The only possibility of any choice is in defining the $ ; on SJAJ to satisfy (2.8(iii), (iv)). We
consider the possible choices by looking at the effect of a (j>j e 0 , a given set of admissible
functions for S. This function <j)j can be considered as a matrix:

(4.1) 4>j
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where the rows are indexed by the elements of Sj, and the columns by the elements a e Aj.
The element in the row £,,• and the column a, is to be <t>j(stJa). We prove the following lemma.

(4.2) LEMMA. Each column of the matrix (4.1) is a permutation of Sj.

Proof. We consider the column indexed by a e Aj.

(i) Since <t>j(stja) e Sj, each element in the column is in Sj.

(ii) If s^e Sj, then <j>j(sija~1) = skJ occurs in the column headed by a"1; so, in the
column headed by a,

$j(skja) = (pjWjiSija-^a) = siJt

since 4>j satisfies (2.8(iv)). That is, each sti e S} occurs in each column,

(iii) Suppose that ^jfo/z) = <t>j(skja); then

<f>j (</>; (stJa)a ~l) = <j>j (</>,• (skja)a " * ) ,

and Sjj = skj. But, from (l.l(iv)), this implies that / = k; so each s^ occurs only once in the
column. This completes the proof.

We use this lemma to define a mapping of Aj into the set of permutations of the index set /.

(4.3) DEFINITION. Let a e Aj, i e / ; then nj(a) is to be the permutation corresponding to a,
such that inj(a) = p if and only if ^jis^a) = spJ.

We form the set II(Aj) = {n}(a), for all a e Aj}.

(4.4) LEMMA. n(Aj) is a permutation representation ofAj on the set I.

Proof. We only have to show that, if a, a' e Aj, then itj(aa') = nj(a)nj(a'). Now if / e /,
consider s^; then, from (2.8(iv)),

<l>j(.<t>j(.sua)a') = (frjisijaa'),
that is,

iuj{aa') = i(nj(a)itj(a')),

for all i 6 /, so that nj(aa') = n}{a)nj{a').
Much of the remaining work in this and the following sections is a study of these permu-

tation representations n(Aj). We start by determining the transitivity classes of n(Aj), and
for this we introduce some more terminology.

The elements of S* form a subset of Sj, which will be denoted by 5* = {slrj}, so that, if
stj 6 5;, then, from (1.1 (ii)), s,j = sirja, for some r, and for some a e Aj. We use this fact to
split Sj into non-empty disjoint subsets Sirj, one to each sirJ e Sj, where J0- e Sirj if there is an
ae Aj such that stj = sirJa.

Clearly, each Sirj contains precisely one of the sirj. We can now describe a similar de-
composition of / into non-empty disjoint subsets Irj.

(4.5) DEFINITION. IrJ is to be the subset of I such that i e IrJ if and only if j , v e SirJ. We
shall call the Irj the blocks of I.

We can immediately prove
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(4.6) LEMMA. The blocks IrJ of I are the transitivity classes of Il{Aj).

Proof. Let i e I be one of the indices such that j y = sirJ e S*, and let p be some other
index in the block containing /; then there exists an a e Aj such that spj = stJa. But, from
(2.8(ii)), spJ = <t>j(spj) = (f>j(Sjja), that is, Uj(a) takes / into p. Hence each block is contained in
some transitivity class. Now let/7 be some other index in the transitivity class containing /;
then there exists an a e Aj such that inj(a) = p, that is, spj = Qfoifl). But, from (2.8(iii)),
4>j(sija) = sija' f ° r some a' e Aj, and so p lies in the same block as i.

We now come to the main theorem in this section.

(4.7) THEOREM. Let S be a uniform Schreier system in G. Then there is a set Q> of admissible
functions for S if and only if to each j e J, and to each block Irj of I, there is a permutation
representation I7r(Aj) of Aj satisfying the following conditions.

(4.8) nr(Aj) is transitive on Irj.

(4.9) IfSjj = spJafor some a e Aj and for some i, p e IrJ, then pnrj(a) = i, where

nrj(a)enr(Aj).

Proof. 1. We have already seen (4.3, 4.5), that, if $ is a set of admissible functions for S,
then we can construct permutation representations nr(Aj) satisfying (4.8). (4.9) follows from
the fact that, if 5,v = spja, then </>j(s,;) = 4>j{spia).

2. We now assume that we are given a uniform Schreier system S and permutation repre-
sentations satisfying (4.8) and (4.9). We use these to define a set of admissible functions O for
S by constructing, for each j e J, a function <f>j satisfying (2.8). We do this as follows.

(4.10) Ifsik is in S but not in Sp we define 4>j(sik) = J;J-. Ifs,} s SJtfor each a e Aj, we define
<Pj(su

a) = Spj, where inrJ(a) = p.
We have to show that these functions (j)j satisfy (2.8).

(i) (j)j is defined on S,- = SvSjAp with its values in Sj, and is clearly well defined.

(ii) Let spq e S; then, if spq £ S}, (j)j(spq) = spj. On the other hand, if spq e Sj, 7tr/l) fixes
p, so that, from (4.10), 4>j(sm . 1) = spq. Hence, in either case, (pj(spq) = spJ.

(iii) Let s,j e Sj and ae Aj; then nrj(a) takes i into some index p in the same block as i.
That is, there exists an sirj e S* such that s^ = sirJa' and spJ = sirJa", where a', a" e Aj.
Thus, from (4.10), ij(sua) = spj = sirja" = sirJa'(afla" = 5y(a')~V'-

Hence fyjiSifi) e s^Aj.

(iv) Let Sij e Sj and a, a' e Ap and let <j>j(s,ja) = spj and <j>j(spja') = sqj. Then, from
(4.10), iTtrJ(a) = p and pnrj(a') = q. But IJr(Aj) is a permutation representation; so

nrj(a)n,j(a') = nrj{aa'\

that is, inrj(aa') = q, and so ^j{Sifla') = sqj. That is,
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Hence <j>j defined by (4.10) satisfies (2.8(i), (ii), (iii), (iv)), which implies that (2.8(v)) is also
satisfied. Now put <& = {(j)j, for ally eJ}; then, from (2.9), $ is a set of admissible functions
for S. This completes the proof.

We note that (4.8) is in fact implied by (4.9) and could therefore have been omitted.
This theorem solves problem (2.14) in that, to each of the possible sets of permutation

representations {n(Aj), j e / } satisfying (4.7), we obtain a set of admissible functions $ for S,
and every set of admissible functions for S gives rise to such a set of permutation representations

jeJ}, satisfying (4.7).

5. Problem (2.16). In this section, we consider problem (2.16), namely, given a subgroup
H of G, determine all its representations H = <5, <!>>. We prove the following theorem.

(5.1) THEOREM. Let G =\Y'Ai (jef), and let Hu H2 be subgroups of G such that
Hi = <S, <D> and H2 = <S', $'>. Then Hv = H2 if and only if there exist 1-1 mappings pij of
each Sj onto S'j QeJ), such that

(i) Sijfij = s\j,

(ii) 4>j(sija)fij = <j)j(stJHja) for all a e Ap

Proof. 1. We first assume that Ht = H2 and construct the mappings fij. As in § 2, let ~
be the coset equivalence, so that, if g, g' e G, then g~g' if and only if g and g' lie in the same
left coset of G modulo Ht. Clearly, to each su e Sj there corresponds a unique s'pJ e S'j such
that siJ~s'pJ. We use this to define Hj from Sj to S'j by the rule, sunj = s'pJ if and only if
Sij~s'pj. We have to show that the conditions (i), (ii), (iii) of the theorem are satisfied.

(i) Since su = 1 = s'ip s u ~ .s ' u , and so SU/J,. = s\j.

(ii) Let stj 6 S'j, and let a e Aj; then, from the definition, sii~siiny, so sIJa~siJnJa. But,
from the definition of ^ and $} (2.1, 2.5), 4>j{slfl)~sifi and 4>']{siJfi1a)~sljiifl. However ~ is
an equivalence relation; so <f>j(sijd)~ff>'j(stjtijd), and, from the definition of nJt this implies
that

(iii) Again, suppose that 5(J- e Sj] then sij~slj(ij. From the definition of (j)k and <j>'k,

and, from the definition of the fij, <f>k(stj)(ik = <^i(*!#/)•

2. We now assume that we are given the two subgroups

H^ = <5, <E>> and H2 = <S", $'>,

and the mappings fij for all j e J, satisfying the conditions (i), (ii), (iii), and we show that
Hi = H2. We do this by showing that the cosets HiS^ and H2SJJHJ are equal. We proceed by
induction on the length of the elements of G.
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(I) If the length of g, X(g) = 0, then g = 1 and

g e HiSijnHiS'ij.

But, from condition (i), s'u = s^ny, so g e H1sijr>H2s1jHj.

(II) Now let g be of length t and let # = g'at, where g' is of length t-1. Then, by hypo-
thesis, gf' e HiSijnHiSijfij for some J,V e S;. Now let ^-, i/'} be the extensions (3.1) of </>;, $)
to the whole of G; then ,yy = <A.,(0') and Sijfij = ^j(g')- Clearly g e Hl\liJ(g)nH1^i{g); so
we only have to show that ^j(g)nj = ^(gf)-

Suppose then that ate Ak; then, from (3.5),

from (3.1).

Using condition (iii), we have

which from condition (ii) implies that

Hence, from (2.8(ii)), it follows that

which, from condition (iii), is

But the right-hand side is now ^jiSijUja,), by (3.1); so

and so gf e Hlspjr\H2spiHj, for some spi- e

This shows that, for each s y e 5̂ -,

and in particular

#i

that is, Hi = / / 2 .

It is clear that any permutation of the rows of a uniform Schreier system leaving the first
row fixed induces mappings Hj satisfying the conditions of (5.1), so that it is natural to ask how
many 'different' uniform Schreier systems lead to representations of the same subgroup of G.
There is great variation in the possibilities, since if G = A*B, where A, B are cyclic of orders 2
and 3 respectively, then the normal closure of B in G has only one associated uniform Schreier
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system. However, if G is the free group of rank 2 generated by a and b, and H is the sub group
of index 2 in G freely generated by a2, b, aba'1, then, for each integer a,

is a uniform Schreier system for H in G.

6. Subgroup representations. We have seen that, if H is a subgroup of G, then there are a
uniform Schreier system S and a set of admissible functions <S> for 5 associated with H which
together determine the structure of H. We have also associated certain permutation repre-
sentations of the free factors At of G with S and 0 , and in this section we consider connections
between these representations and the free factors SijAjS^nH of H.

(6.1) THEOREM. Let s^ e S* and let i e IrJ, a block of I. Let nr(Aj) be the transitive per-
mutation representation ofAj induced on Irj by <l>j e <D, and let BrJ be the subgroup ofAj such that

Then IIr{Brj) is the stabilizer ofi in TI^Aj).

Proof. 1. Let x = ,s,Ja0J(.soa)~1 be a typical generator of SyB^Sy1; then, from (2.8(iii)),
4>}{siia) = sija> f ° r s o m e a' 6 Aj. Hence x = sija(a')~lsfJ

1 and a(a')~l is a generator of BrJ.
We calculate ^(j.-^Ca')"1), using (2.8(iv)).

So, in I7r(Aj), nri(a{a')~l) fixes i. Similar results hold for all the generators of BrJ, and hence
nr(BrJ) lies in the stabilizer of i.

2. Now let nrJ(a) fix i, for some ae Aj\ then <j>j(stJa) = stJ and so

Sija^jiSija)'1 = s(jas^J e si}Btis;}
1,

that is, a e 5ry.
We now consider further the role of these Bri, but first we introduce some more notation.

Let IrJ be a block of /and i e IrJ for some s^ e S*; then we denote by Arj the subset of Aj such
that a e Arj if and only if s^a e Sy. In particular 1 e /4rj-. Clearly nrj(a), for a e ArJa^l, does
not fix /, and, in fact, for each p e IrJ there is an a e Ar] such that rn^-fa) = p. We now recall
that, if M is any group and 77(M) a permutation representation of M which is transitive on a
set./?, then there is a subgroup N of M, fixing some symbol in R, such that 77(M) is the represen-
tation of M induced by the left cosets of N in M and such that the index of N in M is the
cardinal of the set R.

Applying this to our situation we see that, from (6.1), IIr(Aj) is the transitive permutation
representation of As induced by the left cosets of BrJ in A}, and that the index of Brj in A} is the
cardinal of the set /,_,. In fact, Ar] is a left transversal for Brj in Aj.

We can now distinguish between the different subgroups obtained from the various sets of
admissible functions defined on a given uniform Schreier system S.
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(6.2) THEOREM. Let <!>, <D' be two sets of admissible functions defined on a given uniform
Schreier system S, and let H, H' be the two subgroups, H = <S, $>, H' = (S, <t'>, with free
decompositions

Then

(6.3) F=F,

and

(6.4) there is a 1-1 correspondence between the BrJ and B't} such that, if BrJ and B'ti corre-
spond, then

(6.5) either BrJ = B't} or BrJ, B'tJ are two subgroups of the same index in Aj with the same
left transversal Arj in Aj.

Proof. From (2.11), the free factor of a subgroup associated with a uniform Schreier
system S is generated by the set Q = {stJs^q *, for all ie I and ally, q e / } , which depends only on
S and not on O or O'. Hence F, F' are generated by the same set Q and so F = F'.

Again, the number of BrJ depends only on the number of blocks TrJ or /, and not on fl> or
<D', and so the BrJ, B'tJ can be put into 1-1 correspondence by the rule that BrJ, B'rJ correspond
if they refer to the same block IrJ of /. That is, SyB^SyMs a factor of H and SyB^sj}1 is a
factor of H' for the same si} € S*. Now let nr(Aj) be the representation of As induced by
^ e $ o n Irj, and n'r(Aj) be the representation of Ai induced by fy e <D' also on IrJ; then we
have seen that IJr(Aj) is induced by the left cosets of Brj in Aj and n'r(Aj) is induced by the left
cosets of B'rj in Aj. So either Brj = B'rJ or Brj^B'rJ and both subgroups have the same index,
the cardinal of IrJ, and the same left transversal ArJ in Aj.

Again, let H be any subgroup of G and H = <S, $> and consider the permutation repre-
sentations of the free factors of G induced by S and $ . These representations induce a transitive
permutation representation of G which is essentially the representation of G induced by the left
cosets of H in G. Conversely, any transitive permutation representation of G is induced by the
left cosets of some subgroup H of G; however, we put this more precisely:

(6.6) THEOREM. Let TI{G) be a transitive permutation representation of G on a set
/ = { 1,...}. Then there is a uniform Schreier system S, and a set of admissible functions Q>for S,
such that the following conditions hold.

(6.7) The rows of S are indexed by I.

(6.8) LT{G) is the representation of G induced by the left cosets of the subgroup H = <S, O>
inG.

(6.9) Ifs,j, spj e Sj and a e Ajt then 4>j(.sija) = s
Pj if and only ifm(a) = p.
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Proof. Let n be the homomorphism of G onto TI(G), R be the stabilizer of 1 in IJ(G),
and H be the subgroup such that Hfi = R. Since H is a subgroup of the free product G, there
is a uniform Schreier system S and a set of admissible functions for S such that H = <S, <&>.
We have to show that the conditions (6.7), (6.8), (6.9) are satisfied.

First, consider the left coset Rn{g) of R in IJ(G). If n(g) $ R, there is some index i e /
such that ln(g) = i, and hence every element of Rn(g) takes 1 into i. Now, since n(G) is
transitive on the set /, to each j e / there corresponds a n(g) e FI{G) such that ln(g) = i, and
for this n(g) the coset Rn(g) takes 1 into i. That is, the left cosets of R in TI{G) can be indexed
by/.

Now let g e G; then, since ^ is a homomorphism, (//JSOJI = Hfig^i = /?g/i, and each left
coset of H in G is mapped onto some left coset of R in (/7G). Now ̂  is onto II{G) and so at
least one coset, Hg, of / / in G is mapped onto each coset Rn{g), of /? in /7(G). Suppose that
#0i> Hg2 are two left cosets of/fin G such that Rntyj) = Rn(g2). Then T I ^ ) and 7t(#2) both
take 1 into i, say, and so rcfaj1) takes i into 1. That is, ntgjnfa1) = nig^^1) fixes 1. But
from the definition of H, this implies that gtg J ' e //, and so Hgt = Hg2. Hence at most one
left coset of H in G is mapped onto each left coset of R in IJ(G). That is, there is a 1-1 cor-
respondence between the left cosets of H in G and the left cosets of R in IJ(G), which we have
seen can be indexed by /. Now the rows of S correspond to the left cosets of H in G and so can
also be indexed by /. In particular the first row of S is indexed by 1, since it corresponds to the
coset H. This proves (6.7).

Now let stj, spj e Sj-, then n(s,j) takes 1 into i, and n(spj) takes 1 into p. Suppose that
(j>j(sija) = spJ for some a e Ay, then this implies that Hsua = HspJ, and so (s{ja)n =spJ. That
is, n(Sjj)n(a) = n(spJ), and so in(a) = p. Now let aeAj be such that in(a)=p; then
n(sij)n(a) = n(spj), and so (j(ja)/< = spjix. This implies that Hsua = HspJ, and so, from the
definition of 4>j, <t>j(sift) = spJ, which proves (6.9). This also proves (6.8), since FI{G) is then
the permutation representation of G induced by the left cosets of H in G, which has the
given representation H = <5, <P>.

We now come to the theorem on subgroups of finite index in G.

(6.10) THEOREM. Let G =Yl*Aj (JeJ), where J is the finite set {1,2, ...,&}, and let
d] (n > 0) be the number of homomorphisms of Aj into the symmetric group on n symbols and
dj = 1. Let Nn be the number of subgroups of G of index n; then Nt = 1 and, ifn>\,

(6.11) JVn = {l/(i!-l)!} fl d" ~ " l {!/(»-01} fl d"~%-
j = l (=1 J = l

Proof, (i) Ni = I states that G is its own unique subgroup of index 1.
(ii) The integer d" is the number of permutation representations of Aj on n symbols. If,

for each j e J, we take a permutation representation n(Aj) of Aj and put

) : jeJ},

we obtain a permutation representation of G on n symbols. Therefore the total number of
k

permutation representations of G on n symbols is \\ d".
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Now let IJ(G) be a particular permutation representation of G on n symbols, let

{1, b2,b3, ...,bt}

be the transitivity class containing 1, and let 11'(G) be the transitive permutation representation
of G induced by /7(G) on these i symbols. Then, from (6.6), there is a unique subgroup H of
index i in G corresponding to nl(G). We now consider the total number of permutation
representations of G on n symbols which give rise to this subgroup H. Clearly, it does not
matter what permutation representation of G on the remaining n — i symbols is taken. Also,
since any permutation of the symbols b2, b3, ... b{ gives rise to the same subgroup H, with each
subgroup of index i in G we can associate

J = l

permutation representations of G on n symbols. Hence

n dj= i {(«-D!/(«-o!} n $-%,
and on rearranging we get

JVB={i/(«-i)!} n d) -"£ {i/(«-Q!} n dr%-

As an example, consider the case where each A} is an infinite cyclic group; then G is a free
group of finite rank k. Since the generator of A} can be mapped onto any element in the sym-
metric group on n symbols, d" = n! Hence

JVn = {l/(n-l)!}(B!)»- "f

1=1

which is the formula of Hall [3].
Let us now consider normal subgroups of G, and investigate their effect on uniform

Schreier systems and on the permutation representations i7(G).
We start by proving the following theorem.

(6.12) THEOREM. Let G = Y[*^j (j £ J)> ond let H be a subgroup of G. Let S be a uniform
Schreier system and <D a set of admissible functions for S, such that H = (S, O>. Let i/̂  be the
extension of4>x in the sense o/(3.1) and let B = U Aj. Then His normal in G if and only if, for
allbeB, JeJ

(i) il/^bSija) = ^lib^jistja)), for all si}a e SJAJ andallje/,

(ii) ij/iibsij) = \l/i(bsiq), for allj, qeJ and all ie /.

Proof. 1. First, let H be normal in G; then, from (2.11) and (2.12), H is generated by
elements of the form s,-/^1 and jya^/sya)""1. Now let b e B; then, since H is normal in G,

Si" 1b~i eH and bs^faa)' 1b~1 eH.
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This implies that bstJ and bs,q lie in the same coset of H, and that bstJa and b(j>j(stja) also lie in
the same coset of H. Hence, from the properties of \j/u

ilti(bsu) = \l/i(bslq)
and

tl/dbstJa) = il/iibfaisua)).

2. Now let H be a subgroup of G and let H — <5, $>, where S, <& satisfy the statement
of the theorem. That is,

and

This implies that
bSijS^ 1b~1 eH and bs, }a <j>j (s^a)' 1b~1 eH.

Now SijaQj^SijO)'1 and stJs^1 run over all the generators of H, so that, by the obvious ex-
tension to H, bHb'1 = H, for all be B. Now B = U,^; , and so, again by extending to the
elements of G in an obvious way, g~1Hg = H, for all g e G. That is, His normal in G.

Again suppose that the H normal in G has the free decomposition

H=F*j£( n* vVyV^A

and, as in (6.1), put stJBrjStj* = si}AjSti
1 n # , where i e IrJ, a block of/; then it is easy to show

that BrJ = AjnHfor all r and that 5rj- is normal in A}. Applying this observation to the earlier
results in this section we find that the cardinal of each block IrJ is the same for all r, being the
index of AjnH in Aj, and that nr(Aj) is the same representation for each r, being that repre-
sentation of Aj induced by the cosets of AjC\H in Aj.

As a simple consequence of these facts, if we consider a group G = A*B, where A, B are
cyclic of prime order, then the only normal subgroups of G, apart from the normal closures of
A and B in G, are free subgroups, that is when IIr(A), nr(B) are regular representations of
A and B. In such a situation a formula analogous to (6.11) can be proved which counts the
number of free subgroups of finite index in G in terms of those permutation representations of
G which lead to free subgroups (Dey [1, p. 71]).

7. Residual finiteness. It is well known that the free product of two residually finite groups
is residually finite (Gruenberg [2]); however, to illustrate the methods evolved in this paper
we give a simple proof of this theorem.

(7.1) THEOREM. Let G = AV*A2 be the free product of two residually finite groups Alt A2;
then G is residually finite.

Proof. Let g e G, g ̂  1; then we have to find a normal subgroup N of finite index in G
such that g $ N. Since g eG,g has a unique representation as a reduced word in syllables from
A1 and A2,g = a^a2 ...a, such that no two adjacent syllables lie in the s a m e ^ (jeJ = {1,2}).
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P u t / = {1, 2, . . . , t, t+l} and construct the following subset 5" of G: S' = {j^: ielJeJ},
where, for a l l ^ e / ,

(i) s\j = 1,

Clearly S' is a uniform Schreier system in G such that each block Irj (4.5) contains either
one or two indices and there are only finitely many such blocks. Now, from (4.7), there is a
set of admissible functions O' for S' if for each block IrJ there is a transitive permutation repre-
sentation TIr(Aj) ofAj on IrJ. Consider any block IrJ; then either there is such a representation
or there is not and if not, then the block Ir] must contain two indices. Suppose that there is
no such representation on the block Irj = {h>h}'> then stlJ = s, stjJ = sa, where aeAj,
se S' and the last syllable of s does not lie in Aj. Since A} is residually finite, we can choose a
transversal 1, a, a', a", ...,aw for a normal subgroup of finite index in Aj which does not
contain the element a. Now, putting

we form the subset S" of G, S" = {s'/j: ie I,j e J} by taking

(i) s','j = s',j for ; e J, 1 ^ i£ t +1,

(ii) s'i'j = saV-'-1) for; e J, t + l<i^t + n + l.

That is, we have added further rows to 5 ' in such a way that S" is still a uniform Schreier
system and the number of blocks Irj is unaltered but there is now a transitive permutation
representation nr(Aj) of Aj on the block corresponding to the elements s, sa, sa',..., sa(n) in

•V
However, if we consider blocks of the form Irk, where k is the other index in / different

from j , then there are p more such blocks in S" than in S'. Now each of these additional
blocks contains precisely one index and so the number of blocks Irk which do not give rise to a
transitive permutation representation of Ak is still the same. However, the number of blocks
IrJ which do not give rise to a transitive permutation representation of Aj has been reduced by
one.

We can therefore repeat this process and, by adding finitely many rows to the uniform
Schreier system at each stage, we shall eventually obtain a uniform Schreier system S in G such
that g e S and there is a transitive permutation representation TIr{Aj) of A} on each of the
blocks Irj, for each j e / . Hence there is a set of admissible functions <D for S which, from
(3.11), implies the existence of a subgroup H of G such that each column of S is a left trans-
versal for H in G. That is, H is of finite index in G and g $ H. Now let N be the intersection
of all the conjugates of H in G (there are only finitely many such conjugates); then N is a
normal subgroup of finite index in G and g $ N. This completes the proof.
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