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Isotropic Immersions with Low
Codimension of Complex Space Forms
into Real Space Forms

Nobutaka Boumuki

Abstract. The main purpose of this paper is to determine isotropic immersions of complex space forms

into real space forms with low codimension. This is an improvement of a result of S. Maeda.

1 Introduction.

We recall the notion of isotropic immersions introduced by O’Neill[6]: Let σ be the

second fundamental form of a Riemannian submanifold M in a Riemannian mani-

fold M̃. Then the immersion is said to be isotropic at x ∈ M if ‖σ(X, X)‖/‖X‖2 is

constant for any tangent vectors X(6= 0) ∈ TxM. If the immersion is isotropic at

every point, then there exists a function λ on M defined by x 7→ ‖σ(X, X)‖/‖X‖2

and the immersion is said to be λ-isotropic or, simply, isotropic. If the function λ is

constant on M, we call M a constant isotropic submanifold. Note that a totally umbilic

immersion is isotropic, but not vice versa. There are many examples of isotropic sub-

manifolds which are not totally umbilic in standard spheres. It is known that there

are many isotropic immersions of rank one symmetric spaces into real space forms

[10]. In particular, we pay attention to isotropic immersions of complex space forms

into real space forms with low codimension.

An n-dimensional real space form Mn(c; R) is a Riemannian manifold of constant

sectional curvature c, which is locally congruent to either a standard sphere Sn(c),

a Euclidean space Rn or a real hyperbolic space Hn(c), according as c is positive,

zero or negative. A complex n-dimensional complex space form Mn(c; C) is a Kähler

manifold of constant holomorphic sectional curvature c, which is locally congruent

to either a complex projective space CPn(c), a complex Euclidean space Cn(= R2n)

or a complex hyperbolic space CHn(c), according as c is positive, zero or negative.

A quaternionic n-dimensional quaternionic space form Mn(c; Q) is a quaternionic

Kähler manifold of constant quaternionic sectional curvature c, which is locally con-

gruent to either a quaternionic projective space QPn(c), a quaternionic Euclidean

space Qn(= R4n) or a quaternionic hyperbolic space QHn(c), according as c is posi-

tive, zero or negative.

The main purpose of this paper is to prove the following:
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Theorem 1 Let f be a λ-isotropic immersion of a complex space form Mn(4c; C)

(n ≥ 2) of constant holomorphic sectional curvature 4c into a real space form

M̃2n+p(c̃; R) of constant sectional curvature c̃.

If p ≤ n2 + n − 2, then f is a parallel embedding and locally equivalent to one of the

following:

(i) f is a totally geodesic embedding of a complex Euclidean space Cn(= R2n) into a

Euclidean space R2n+p, where p ≤ n2 + n − 2.

(ii) f is a totally umbilic embedding of Cn(= R2n) into a real hyperbolic space

H2n+p(c̃), where p ≤ n2 + n − 2.

(iii) f is the first standard minimal embedding of a complex projective space CPn(4c)

into a standard sphere S2n+p(c̃), where p = n2 − 1 and c̃ = 2(n + 1)c/n.

(iv) f is a parallel embedding defined by

f = f2 ◦ f1 : CPn(4c)
f1

→ Sn2+2n−1(2(n + 1)c/n))
f2

→ M̃2n+p(c̃; R),

where f1 is the first standard minimal embedding, f2 is a totally umbilic embed-

ding, n2 ≤ p ≤ n2 + n − 2 and 2(n + 1)c/n ≥ c̃.

2 Preliminaries.

Let f : M → M̃ be an isometric immersion of a Riemannian manifold M into a

Riemannian manifold M̃. We denote by ∇ (resp. ∇̃) the covariant differentiation of

M (resp. M̃). Then the second fundamental form σ of f is defined by σ(X,Y ) =

∇̃XY − ∇XY , where X and Y are vector fields tangent to M. For a vector field ξ

normal to M, we write ∇̃Xξ = −AξX + DXξ, where X is a vector field tangent to

M and −AξX (resp. DXξ) denotes the tangential (resp. the normal) component of

∇̃Xξ. We define the covariant differentiation ∇ ′ of the second fundamental form σ
with respect to the connection in (tangent bundle) ⊕ (normal bundle) as follows:

(∇ ′

Xσ)(Y, Z) = DX

(
σ(Y, Z)

)
− σ(∇XY, Z) − σ(Y,∇XZ), where X,Y and Z are

vector fields tangent to M. The second fundamental form σ is said to be parallel if

∇ ′σ = 0.

We write here the definitions of planar geodesic immersions and circles for read-

ers. An isometric immersion f of M into M̃ is called a planar geodesic immersion if

every geodesic in M is mapped locally into a 2-dimensional totally geodesic submani-

fold of the ambient space M̃ through f . A smooth curve γ = γ(s) in M parametrized

by its arclength s is called a circle if it satisfies the condition that there exists a non-

negative constant κ and a field of unit vectors Y = Y (s) along this curve which satisfy

the following differential equations: ∇γ̇ γ̇ = κY and ∇γ̇Y = −κγ̇. We call the con-

stant κ the curvature of γ. As we see κ = ‖∇γ̇ γ̇‖, we treat geodesic as circles of null

curvature.

Now, we prepare the following lemmas in order to prove our results.

Lemma 1 ([7]). Let f be an isometric immersion of an n-dimensional Riemannian

manifold Mn into a real space form Mm(c̃; R) of constant sectional curvature c̃. Then

the following four conditions (a)–(d) are mutually equivalent:
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(a) f is a planar geodesic immersion.

(b) f maps every geodesic in Mn to a circle in M̃m(c̃; R).

(c) f is an isotropic immersion with parallel second fundamental form.

(d) f is locally equivalent to one of the following:

(d1) f is a totally umbilic embedding of Mn(c; R) into M̃m(c̃; R), where c ≥ c̃.

(d2) f is an embedding defined by

f = f2 ◦ f1 : RPn
( nc

2(n + 1)

)
f1

→ Sn(n+3)/2−1(c)
f2

→ M̃m(c̃; R),

where f1 is the first standard minimal embedding, f2 is a totally umbilic em-

bedding and c ≥ c̃.

(d3) f is an embedding defined by

f = f2 ◦ f1 : CPn
( 2nc

(n + 1)

)
f1

→ Sn2+2n−1(c)
f2

→ M̃m(c̃; R),

where f1 is the first standard minimal embedding, f2 is a totally umbilic em-

bedding and c ≥ c̃.

(d4) f is an embedding defined by

f = f2 ◦ f1 : QPn
( 2nc

(n + 1)

)
f1

→ S2n2+3n−1(c)
f2

→ M̃m(c̃; R),

where f1 is the first standard minimal embedding, f2 is a totally umbilic em-

bedding and c ≥ c̃.

(d5) f is an embedding defined by

f = f2 ◦ f1 : CayP2(4c/3)
f1

→ S25(c)
f2

→ M̃m(c̃; R),

where CayP2(c) represents Cayley projective plane of maximal sectional cur-

vature c, f1 is the first standard minimal embedding, f2 is a totally umbilic

embedding and c ≥ c̃.

Remark 1 Note that these immersions (of (d1)–(d5)) are minimal in the case of c =

c̃. Here the first standard minimal embedding is a minimal embedding of a compact

rank one symmetric space Mn into a sphere by using eigenfunctions corresponding

to the first eigenvalue of the Laplacian on Mn [8].

The following lemma shows a necessary and sufficient condition that the second

fundamental form is parallel.

Lemma 2 ([1, 2, 9]) Let M be a complex n-dimensional connected Kähler mani-

fold with complex structure J which is isometrically immersed into a real space form

M̃2n+p(c̃; R). Then the following two conditions are equivalent:
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(i) The second fundamental form σ of M in M̃2n+p(c̃; R) is parallel.

(ii) σ( JX, JY ) = σ(X,Y ) for all X,Y ∈ TM.

Here, we investigate the second fundamental form at one point.

Using O’Neill’s method in [6], we also abstract the second fundamental form at

one point to a symmetric bilinear form (u, v) 7→ σ(u, v) on Rn to Rp. He defined

discriminant △ of σ, which is a real-valued function on planes Π (through origin) in

Rn such that if u and v span Π, then

△uv = △(Π) =
〈σ(u, u), σ(v, v)〉 − ‖σ(u, v)‖2

‖u‖2‖v‖2 − 〈u, v〉2
.

For an isometric immersion f : M → M̃, the Gauss equation asserts that △(Π) =

K(Π) − K̃(d f (Π)), where K and K̃ are the sectional curvatures of M and M̃, respec-

tively, and Π is any plane tangent to M.

Lemma 3 ([6]) Let σ be a λ-isotropic bilinear form on Rn into Rp (n ≥ 2). If λ > 0

and the discriminant △ is constant, then −{(n + 2)/2(n − 1)}λ2 ≤ △ ≤ λ2. Further-

more, we have

(1) △ = λ2 ⇐⇒ σ is umbilic ⇐⇒ dim Span
R
{σ(u, v) : u, v ∈ Rn} = 1,

(2) △ = −{(n + 2)/2(n− 1)}λ2 ⇐⇒ σ is minimal ⇐⇒ dim Span
R
{σ(u, v) : u, v ∈

Rn} = n(n + 1)/2 − 1,

(3) −{(n + 2)/2(n − 1)}λ2 < △ < λ2 ⇐⇒ dim Span
R
{σ(u, v) : u, v ∈ Rn} =

n(n + 1)/2.

Next, we shall prove the following lemma.

Lemma 4 The value of λ in our Theorem 1 is the following:

(i) λ = 0; (ii) λ2
= −c̃; (iii), (iv) λ2

= 4c − c̃.

Proof (i) and (ii) are clear from Lemma 3. We shall consider the cases (iii) and (iv).

Let ι be a totally real, totally geodesic embedding of a real projective space RPn(c)

into a complex projective space CPn(4c). We denote by f a λ-isotropic minimal

embedding of CPn(4c) into a standard sphere Sn2+2n−1(2(n + 1)c/n) (with paral-

lel second fundamental form σ) and by J the complex structure on CPn(4c). We

choose a local field of orthonormal frames {e1, . . . , en} on RPn(c). Then {e1, . . . , en,
Je1, . . . , Jen} is a local field of orthonormal frames on CPn(4c). Since RPn(c) is to-

tally geodesic in CPn(4c), we can denote by the same letter σ the second fundamental

form of RPn(c) in the ambient space Sn2+2n−1(2(n + 1)c/n) through f ◦ ι.
We here remark that σ(ei, ei) = σ( Jei, Jei) for 1 ≤ i ≤ n (see Lemma 2). This,

together with the fact that CPn(4c) is minimal in Sn2+2n−1(2(n + 1)c/n), implies that

our manifold RPn(c) is minimal in Sn2+2n−1(2(n + 1)c/n). Therefore, by virtue of our

discussion, we know that f ◦ ι is a λ-isotropic minimal embedding of RPn(c) into

Sn2+2n−1(2(n + 1)c/n).
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Using (2) in Lemma 3, we can see that

λ2
= −

2(n − 1)

n + 2

(
c −

2(n + 1)c

n

)

= 4c −
2(n + 1)c

n
= 4c − c̃.

Thus, we can check the case (iii). Let g be a totally umbilic embedding of

Sn2+2n−1(2(n+1)c/n) into M̃2n+p(c̃; R). Then g is
√

2(n + 1)c/n − c̃-isotropic. Hence

the above computation yields that

λ2
=

(
4c −

2(n + 1)c

n

)
+

( 2(n + 1)c

n
− c̃

)

= 4c − c̃.

So we can check the case (iv).

3 Proof of Theorem 1.

In this section, we shall prove Theorem 1.

Let J be the complex structure on Mn(4c; C). Then the curvature tensor R of

Mn(4c; C) is given by

(3.1) R(X,Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈 JY, Z〉 JX − 〈 JX, Z〉 JY + 2〈X, JY 〉 JZ}

for all vector fields X,Y and Z tangent to Mn(4c; C).

By hypothesis, for all vector fields X on Mn(4c; C), we have 〈σ(X, X), σ(X, X)〉 =

λ2〈X, X〉〈X, X〉, which is equivalent to

(3.2) 〈σ(X,Y ), σ(Z,W )〉 + 〈σ(X, Z), σ(W,Y )〉 + 〈σ(X,W ), σ(Y, Z)〉

= λ2{〈X,Y 〉〈Z,W 〉 + 〈X, Z〉〈W,Y 〉 + 〈X,W 〉〈Y, Z〉}

for all vector fields X,Y, Z and W tangent to Mn(4c; C), where 〈 , 〉 denotes the Rie-

mannian metric on Mn(4c; C).

The Gauss equation is written as follows:

(3.3) 〈σ(X,Y ), σ(Z,W )〉 − 〈σ(Z,Y ), σ(X,W )〉

= 〈R(Z, X)Y,W 〉 − c̃{〈X,Y 〉〈Z,W 〉 − 〈Z,Y 〉〈X,W 〉}

for all vector fields X,Y, Z and W tangent to Mn(4c; C). It follows from (3.1), (3.2)

and (3.3) that

(3.4) 〈σ(X,Y ), σ(Z,W )〉 =
λ2 + 2(c − c̃)

3
〈X,Y 〉〈Z,W 〉

+
λ2 − (c − c̃)

3
{〈X,W 〉〈Y, Z〉 + 〈X, Z〉〈Y,W 〉}

+ c{〈 JX,W 〉〈 JY, Z〉 + 〈 JX, Z〉〈 JY,W 〉}
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for all vector fields X,Y, Z and W tangent to Mn(4c; C).

First we consider the case that Mn(4c; C) is a totally geodesic submanifold in

M̃2n+p(c̃; R). Then there occurs only the case (i).

Next we consider the case that Mn(4c; C) is not totally geodesic in M̃2n+p(c̃; R).

Then there exists some point x0 ∈ Mn(4c; C) such that λ(x0) 6= 0. Since λ is a

continuous function on Mn(4c; C), there exists a neighborhood U of x0 such that

λ > 0 on U . We shall study on the open subset U from now on. Our discussion is

divided into the two cases: (i) λ2(x0) 6= c − c̃ and (ii) λ2(x0) = c − c̃.

(i) In the following, we study at an arbitrary fixed point x of U . Note that λ2(x) 6=
c−c̃. Now we investigate the first normal space Span

R
{σ(X,Y ) : X,Y ∈ TxMn(4c; C)}

by using (3.4). We choose an orthonormal basis {e1, . . . , en, en+1 = Je1, . . . , e2n =

Jen} for TxMn(4c; C). Equation (3.1) shows that 〈R(ei, e j)e j , ei〉 = c for 1 ≤ i 6=
j ≤ n. So, we may apply Lemma 3 to the linear subspace of TxMn(4c; C), which is

generated by {e1, . . . , en}. Thus either the case (2) or the case (3) of Lemma 3 must

hold at x.

Straightforward computation, by virtue of (3.4), yields the orthogonal relations:

〈σ(ei, Je j), σ(ek, Jel)〉 =
λ2 − (c − c̃)

3
· δikδ jl for 1 ≤ i < j ≤ n

and 1 ≤ k < l ≤ n.
(3.5)

〈σ(ei, e j), σ(ek, Jel)〉 = 0 for 1 ≤ i ≤ j ≤ n and 1 ≤ k < l ≤ n.(3.6)

Then, in consideration of Lemma 3, (3.5) and (3.6), the codimension p satisfies

p ≥ n(n + 1)/2 − 1 + n(n − 1)/2 = n2 − 1

at a fixed point x. We note that x is not an umbilic point, since σ(ei, Je j) 6= 0 for

1 ≤ i < j ≤ n. Here we take n vectors σ(ei , Jei) (i = 1, . . . , n).

Similar computation shows the following orthogonal relations:

〈σ(ei , Jei), σ(e j , Je j)〉 =
λ2 − (4c − c̃)

3
· δi j for i, j = 1, . . . , n.(3.7)

〈σ(ei, e j), σ(ek, Jek)〉 = 0 for 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ n.(3.8)

〈σ(ei , Je j), σ(ek, Jek)〉 = 0 for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n.(3.9)

Now suppose that λ2 6= 4c − c̃. Then, in view of (3.7),(3.8) and (3.9), we find that

p ≥ (n2 − 1) + n, which contradicts our assumption p ≤ n2 + n − 2. And hence we

have

(3.10) λ2
= 4c − c̃.

Substituting (3.10) into the right-hand side of (3.4), we obtain

(3.11) 〈σ(X,Y ), σ(Z,W )〉 = (2c − c̃)〈X,Y 〉〈Z,W 〉 + c{〈X,W 〉〈Y, Z〉

+ 〈X, Z〉〈Y,W 〉 + 〈 JX,W 〉〈 JY, Z〉 + 〈 JX, Z〉〈 JY,W 〉}
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for all vector fields X,Y, Z and W tangent to Mn(4c; C).

Equation (3.11) implies the following:

〈σ(X,Y ), σ(X,Y )〉 = 〈σ( JX, JY ), σ( JX, JY )〉

= (3c − c̃)〈X,Y 〉
2

+ c{‖X‖2‖Y‖2 − 〈 JX,Y 〉
2
}

(3.12)

〈σ(X,Y ), σ( JX, JY )〉 = (3c − c̃)〈X,Y 〉
2

+ c{‖X‖2‖Y‖2 − 〈 JX,Y 〉
2
}.(3.13)

Thus, in view of (3.12) and (3.13), we can get σ(X,Y ) = σ( JX, JY ) for all X,Y .

And hence, from Lemma 2, we find that the second fundamental form of our im-

mersion is parallel on U . Therefore, due to Lemma 1, there occurs the case (iii) and

(iv).

(ii) Lastly, we consider the case of λ2(x0) = c − c̃. The above discussion asserts

that the continuous function λ on U is λ2
= 4c− c̃ or λ2

= c− c̃. And hence, we have

only to consider the case that λ2
= c − c̃ on U . Let ι be a totally real totally geodesic

embedding of a real space form Mn(c; R) into Mn(4c; C). It follows (1) of Lemma 3

that our manifold (Mn(c; R), f ◦ ι) is totally umbilic in M̃2n+p(c̃; R).

Here, we take an arbitrary geodesic γ in Mn(4c; C). Since Mn(4c; C) is a Euclidean

space or a Riemannian symmetric space of rank one, we may think that γ is a geodesic

in Mn(c; R). From (b) and (d1) in Lemma 1, the curve ( f ◦ ι) ◦ γ is a circle in

M̃2n+p(c̃; R), so that the curve f ◦γ is a circle in the ambient space M̃2n+p(c̃; R). Hence,

from the same Lemma, our immersion f is one of (ii), (iii) and (iv) in Theorem 1.

However there occurs only the case (ii). In fact, in either the case (iii) or (iv), we

know that λ2
= 4c − c̃ (see Lemma 4). On the other hand, in our case, λ2

= c − c̃.

This is a contradiction, because c > 0. Therefore, we can get the conclusion.

4 Quaternionic Version of Theorem 1

In this section, we investigate isotropic immersions of quaternionic space forms into

real space forms with low codimension. Our aim here is to prove the following theo-

rem, which is an improvement of the result in [4].

Theorem 2 Let f be a λ-isotropic immersion of a quaternionic space form Mn(4c; Q)

(n ≥ 2) of constant quaternionic sectional curvature 4c into a real space form

M̃4n+p(c̃; R) of constant sectional curvature c̃. If p ≤ 2n2 + 2n − 2, then f is a parallel

embedding and locally equivalent to one of the following:

(i) f is a totally geodesic embedding of a quaternionic Euclidean space Qn(= R4n)

into a Euclidean space R4n+p, where p ≤ 2n2 + 2n − 2.

(ii) f is a totally umbilic embedding of Qn(= R4n) into a real hyperbolic space

H4n+p(c̃), where p ≤ 2n2 + 2n − 2.

(iii) f is the first standard minimal embedding of a quaternionic projective space

QPn(4c) into a standard sphere S4n+p(c̃), where p = 2n2 − n − 1 and c̃ =

2(n + 1)c/n.

(iv) f is a parallel embedding defined by

f = f2 ◦ f1 : QPn(4c)
f1

→ S2n2+3n−1(2(n + 1)c/n)
f2

→ M̃4n+p(c̃; R),
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where f1 is the first standard minimal embedding, f2 is a totally umbilic embed-

ding, 2n2 − n ≤ p ≤ 2n2 + 2n − 2 and 2(n + 1)c/n ≥ c̃.

Here, we prepare the following similar lemmas in order to prove Theorem 2.

Lemma 5 ([1, 5, 9]) Let M be a quaternionic n-dimensional connected quaternionic

Kähler manifold with canonical local basis {I, J, K} which is isometrically immersed

into a real space form M̃4n+p(c̃; R). Then the following two conditions are equivalent.

(i) The second fundamental form σ of M in M̃4n+p(c̃; R) is parallel.

(ii) σ(IX, IY ) = σ( JX, JY ) = σ(KX, KY ) = σ(X,Y ) for all X,Y ∈ TM.

Lemma 6 The value of λ in our Theorem 2 is the following:

(i) λ = 0; (ii) λ2
= −c̃; (iii), (iv) λ2

= 4c − c̃.

Proof Let ι be a totally real totally geodesic embedding of a real projective space

RPn(c) into a quaternionic projective space QPn(4c). The rest of the proof is similar

to that of Lemma 4.

Now, we shall prove Theorem 2.

Let {I, J, K} be the canonical local basis on Mn(4c; Q). Then the curvature tensor

R of Mn(4c; Q) is given by

(4.1) R(X,Y )Z =c
{
〈Y, Z〉X − 〈X, Z〉Y + 〈IY, Z〉IX − 〈IX, Z〉IY

+ 〈 JY, Z〉 JX − 〈 JX, Z〉 JY + 〈KY, Z〉KX − 〈KX, Z〉KY

+ 2〈X, IY 〉IZ + 2〈X, JY 〉 JZ + 2〈X, KY 〉KZ
}

for all vector fields X,Y and Z tangent to Mn(4c; Q).

It follows from (3.2), (3.3) and (4.1) that

(4.2) 〈σ(X,Y ), σ(Z,W )〉 =
λ2 + 2(c − c̃)

3
〈X,Y 〉〈Z,W 〉

+
λ2 − (c − c̃)

3
{〈X,W 〉〈Y, Z〉 + 〈X, Z〉〈Y,W 〉}

+ c
{
〈IX,W 〉〈IY, Z〉 + 〈IX, Z〉〈IY,W 〉

+ 〈 JX,W 〉〈 JY, Z〉 + 〈 JX, Z〉〈 JY,W 〉

+ 〈KX,W 〉〈KY, Z〉 + 〈KX, Z〉〈KY,W 〉
}

for all vector fields X,Y, Z and W tangent to Mn(4c; Q), where 〈 , 〉 denotes the Rie-

mannian metric on Mn(4c; Q).

First we consider the case that Mn(4c; Q) is a totally geodesic submanifold in

M̃4n+p(c̃; R). Then there occurs only the case (i). Next we consider the case that

Mn(4c; Q) is not totally geodesic in M̃4n+p(c̃; R). Then there exists some point x0 ∈
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Mn(4c; Q) such that λ(x0) 6= 0. Since λ is a continuous function on Mn(4c; Q), there

exists a neighborhood U of x0 such that λ > 0 on U . We shall study on the open sub-

set U from now on. Our discussion is divided into the two cases: (i) λ2(x0) 6= c − c̃

and (ii) λ2(x0) = c − c̃.

(i) In the following, we study at an arbitrary fixed point x of U . Note that λ2(x) 6=
c − c̃. Now we investigate the first normal space

Span
R
{σ(X,Y ) : X,Y ∈ TxMn(4c; Q)}

by using (4.2). We choose an orthonormal basis {e1, . . . , en, en+1 = Ie1, . . . , e2n =

Ien, e2n+1 = Je1, . . . , e3n = Jen, e3n+1 = Ke1, . . . , e4n = Ken} for TxMn(4c; Q). Equa-

tion (4.1) shows that 〈R(ei, e j)e j , ei〉 = c for 1 ≤ i 6= j ≤ n. So, we may apply

Lemma 3 to the linear subspace of TxMn(4c; Q), which is generated by {e1, . . . , en}.

Thus either the case (2) or the case (3) of Lemma 3 must hold at x.

Straightforward computation, by virtue of (4.2), yields the orthogonal relations:

〈σ(ei, e j), σ(ek, Iel)〉 = 〈σ(ei , e j), σ(ek, Jel)〉

= 〈σ(ei , e j), σ(ek, Kel)〉 = 0

(4.3)

for 1 ≤ i ≤ j ≤ n and 1 ≤ k < l ≤ n.

〈σ(ei, Ie j), σ(ek, Jel)〉 = 〈σ(ei, Je j), σ(ek, Kel)〉

= 〈σ(ei, Ke j), σ(ek, Iel)〉 = 0

(4.4)

for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n.

〈σ(ei , Ie j), σ(ek, Iel)〉 = 〈σ(ei , Je j), σ(ek, Jel)〉

= 〈σ(ei , Ke j), σ(ek, Kel)〉 =
λ2 − (c − c̃)

3
· δikδ jl

(4.5)

for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n.

Then, in consideration of Lemma 3, (4.3),(4.4) and (4.5), the codimension p sat-

isfies

p ≥ n(n + 1)/2 − 1 + 3n(n − 1)/2 = 2n2 − n − 1.

at a fixed point x. We note that x is not an umbilic point, since σ(ei , Je j) 6= 0 for 1 ≤
i < j ≤ n. Here we take 3n vectors σ(ei , Iei), σ(ei , Jei) and σ(ei , Kei) (i = 1, . . . , n).

Similar computation shows the following orthogonal relations:

〈σ(ei, e j), σ(ek, Iek)〉 = 〈σ(ei , e j), σ(ek, Jek)〉

= 〈σ(ei , e j), σ(ek, Kek)〉 = 0

(4.6)

for 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ n.

〈σ(ei, Ie j), σ(ek, Iek)〉 = 〈σ(ei , Je j), σ(ek, Jek)〉

= 〈σ(ei , Ke j), σ(ek, Kek)〉 = 0

(4.7)
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for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n.

〈σ(ei, Iei), σ(e j , Je j)〉 = 〈σ(ei, Jei), σ(e j , Ke j)〉

= 〈σ(ei, Kei), σ(e j , Ie j)〉 = 0

(4.8)

for i, j = 1, . . . , n.

〈σ(ei , Iei), σ(e j , Jek)〉 = 〈σ(ei , Iei), σ(e j , Kek)〉 = 〈σ(ei , Jei), σ(e j , Iek)〉

= 〈σ(ei , Jei), σ(e j , Kek)〉 = 〈σ(ei, Kei), σ(e j , Iek)〉

= 〈σ(ei , Kei), σ(e j , Jek)〉 = 0

(4.9)

for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n.

〈σ(ei, Iei), σ(e j , Ie j)〉 = 〈σ(ei, Jei), σ(e j , Je j)〉

= 〈σ(ei, Kei), σ(e j , Ke j)〉 =
λ2 − (4c − c̃)

3
· δi j

(4.10)

for i, j = 1, . . . , n.
Now suppose that λ2 6= 4c − c̃. Then, in view of (4.6),(4.7),(4.8),(4.9) and (4.10),

we find that p ≥ (2n2−n−1)+3n = 2n2 +2n−1, which contradicts our assumption

p ≤ 2n2 + 2n − 2. And hence we have

(4.11) λ2
= 4c − c̃.

Substituting (4.11) into the right-hand side of (4.2), we obtain

(4.12) 〈σ(X,Y ), σ(Z,W )〉 = (2c − c̃)〈X,Y 〉〈Z,W 〉

+ c
{
〈X,W 〉〈Y, Z〉 + 〈X, Z〉〈Y,W 〉

+ 〈IX,W 〉〈IY, Z〉 + 〈IX, Z〉〈IY,W 〉

+ 〈 JX,W 〉〈 JY, Z〉 + 〈 JX, Z〉〈 JY,W 〉

+ 〈KX,W 〉〈KY, Z〉 + 〈KX, Z〉〈KY,W 〉
}

for all vector fields X,Y, Z and W tangent to Mn(4c; Q).

Equation (4.12) implies the following:

(4.13) 〈σ(X,Y ), σ(X,Y )〉 = 〈σ(IX, IY ), σ(IX, IY )〉

= 〈σ( JX, JY ), σ( JX, JY )〉

= 〈σ(KX, KY ), σ(KX, KY )〉

= (3c − c̃)〈X,Y 〉
2

+ c{‖X‖2‖Y‖2 − 〈IX,Y 〉
2
− 〈 JX,Y 〉

2
− 〈KX,Y 〉

2
}.
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(4.14)
〈σ(X,Y ), σ(IX, IY )〉 = 〈σ(X,Y ), σ( JX, JY )〉

= 〈σ(X,Y ), σ(KX, KY )〉

= (3c − c̃)〈X,Y 〉2

+ c{‖X‖2‖Y‖2 − 〈IX,Y 〉2 − 〈 JX,Y 〉2 − 〈KX,Y 〉2}.

Thus, in consideration of (4.13) and (4.14), we can get σ(X,Y ) = σ(IX, IY ) =

σ( JX, JY ) = σ(KX, KY ) for all X,Y . And hence, from Lemma 5, we find that

the second fundamental form of our immersion is parallel on U . Therefore, due

to Lemma 1, there occurs the case (iii) and (iv).

(ii) Lastly, we consider the case of λ2(x0) = c − c̃. From Lemma 6 and the same

discussion as in Theorem 1, we can get the conclusion.

Remark 2 The following problem is still open.

Problem Let f be a λ-isotropic immersion of a real space form Mn(c; R) into a real

space form M̃n+p(c̃; R). If p ≤ n(n +1)/2, is f locally equivalent to one of the following?

(i) f is a totally umbilic embedding of Mn(c; R) into M̃n+p(c̃; R), where

p ≤ n(n + 1)/2.

(ii) f is the first standard minimal embedding of a real projective space RPn(c) into a

standard sphere Sn+p(c̃), where p = n(n + 1)/2 − 1 and c̃ = 2(n + 1)c/n.

(iii) f is a parallel embedding defined by

f = f2 ◦ f1 : RPn(c)
f1

→ Sn(n+3)/2−1
( 2(n + 1)c

n

)
f2

→ M̃n+p(c̃; R)

where f1 is the first standard minimal embedding, f2 is a totally umbilic embed-

ding, p = n(n + 1)/2 and 2(n + 1)c/n ≥ c̃.

S. Maeda [3] gave an affirmative partial answer to this problem.
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