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UNIFORM AND TANGENTIAL APPROXIMATIONS
BY MEROMORPHIC FUNCTIONS ON CLOSED SETS

ALICE ROTH

1. Let G be an (open) domain in the finite complex plane and F a relatively
closed proper subset of G. We denote by M(G) the set of functions mero-
morphic on G and as usual by R(K) (for a compact set K) the set of uniform
limits of rational functions without poles on K.

The problem of approximating uniformly a complex valued function on F
by functions in M (G) is reduced by the following Theorem I to the problem
of uniform approximation by rational functions on a compact set.

TrEOREM 1. 4 function f can be approximated uniformly on F by functions
in M(G) without poles on F if and only if

*)  fix € R(K)
for every compact subset K of F.

The necessity of condition (*) is obvious: if m is a meromorphic function
which approximates f on F, the restriction m x can be approximated uniformly
on K by rational functions (using Runge's Theorem).

To prove that the condition (*) is sufficient we shall use the following
Lemma 1.

LeEmmA 1. (Fusion of rational functions). Let K, K., and K be compact
subsets of the extended plane with K, and K, disjoint. If v and r. are any two
rational functions satisfying, for some ¢ > 0,

1)  |r(z) — r2(3)| < ¢ for z € K,

then there is a positive number a, depending only on K, and K, and a rational
function r such that for j = 1, 2,

2) |r(z) —ri(3)] < ae, forze K;\UK.
We remark that in Lemma 1, 7; and 7, are allowed to have poles on the sets

in question.

Proof. We may assume K,\K # @ and © € K,. Thus, we can construct
open neighbourhoods U, and U, of K; and K, respectively such that U; N
Uy, = @ and o0 € U, Moreover, we may assume that the boundaries of U,
and U, consist of finitely many disjoint smooth Jordan curves. Let £ be the
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complement of U;\U U, in the extended plane. Then E is compact in C,
and thus

(3) I(z)—ffldgd ,where { = £ + 1 9,

is uniformly bounded for z in the extended plane. Indeed, for z, # oo, set

§ — 29 = pe'.

I(z0) = fE fdpdw,

and so I(z) is bounded, for instance, by 2rd, where d is the diameter of E.
For 29 = o, I(z)) = 0.

We introduce now an auxiliary function ® € C'(R?) with values in [0, 1]
such that ®is 1 on U; and ® is 0 on U,. Then

_62_1(29“_@?)
9z 2\ ox dy

is uniformly bounded. Hence since (3) is also uniformly bounded, there is a
constant ¢ > 2 such that

fﬂ‘“’@)lf dedy < a — 2,

forz € C.
We return now to our rational functions 7; and 7, and we put

Then

qg=r — 7.
By (1) we can find a neighbourhood U of K such that
lgz)| < ¢ 2 € U.
We replace ¢ by a function ¢, constructed as follows. First set
bB) g=qon U \JU\JU.
Now extend ¢; to E so as to satisfy: ¢; is continuous on E and
6) lg(e) <e z€E
Set

M gl) == ff%f)zaa?dgd.

From (4) and (6) we have
@) gl < (@ —2)a—2¢ z€C
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Since g is a Cauchy integral, g is holomorphic outside of E. Consequently
9) (@) = 2(=)q:(2) + g(2), z € C,
is holomorphic in U, (for ¢:(z) = ©, set ®(z)q:(z) = 0). For z € U;,
f@) = q1(2) + ¢(2)

is meromorphic and has the same poles as ¢;. To see that f is also holomorphic
on U, we invoke the Pompeiu formula

_ 1 ad(f) 1
®(z) = wafag - ———dtdn 2 €C.

Hence,

f(z) — f fa(b(g‘) gl(f) qu(Z) dE dny 2z € C’ 91(2) #£ 0.

Forz € U, g1 = g and

71(§) — q1(2)
—2
is holomorphic. Thus f is holomorphic in U, and hence f is meromorphic on
U, U U, U U with the same poles as ¢. By Runge’s theorem there is a ra-
tional function 73 for which

lrs(z) — f(z)] < ¢ 2z€ Ki\UK,UK.

Finally we put » = r, + 73, and we have the following estimates: on K; \U K

[r —ri| S [f— (1 —r2)| + |rs — f]
<|®—1flgl + lgl + |rs = £
<e+ (@a—2)e+ e = ae

OI’IKQUK

lr —rol S [fl+1rs = f| =@ gl + lg| + |rs — f]
<e+ (@ —2)e+ e = ae

This completes the proof of Lemma 1.

Construction of the approximating function in Theorem I: Let {G,} be
an exhaustion of G by domains with

G, C Gypr and UG, = G.

Foreachn = 1,2, 3, ... we choose a positive number a, associated with G,
and (C\U o0 )\G,;1 in Lemma 1 (these sets replacing K; and K,), so that

1< a, < Apy1.
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If € is a given positive number we select the positive numbers ¢, €2, €3.. . . s0 that

£
5"

If condition (*) is fulfilled, there exist rational functions {g,} thus

(10) €41 < € and Z €& <
n=1

(1) an(z)—f(Z)|<2 , 2€ F,=FNGu1 n=123,...

€n
an
and therefore

(12) |gunie) = @) <>, 2 €Fy n=1,23,...

The functions ¢i, ¢s, ¢, . . . converge to f on every F,, but generally they don’t
converge on the domains G,; we need a second sequence {r,} of rational func-
tions. We use Lemma 1, applying it to the functions ¢,, ¢,+1 and to the sets
Gpy, (CU 0 )\Gpy1and F,. Forn =1, 2, 3, . .. there exists a rational function
7, such that

(13) |7’n(Z) - gn(z)l < €, 3E€ Gn U Fny
(14) Irn(z) - Qn+1(z)[ < €, 2 E (C U oo)\Gn-H-
The inequalities (13) yield

2 @) — @) < Z:, €2 € G

n

As n— o, Y26 —0; thus > (r,(z) — ¢,(2)) converges uniformly to a
holomorphic function on G,. Therefore

me) = ) + 3 (026 — 0.6))

is holomorphic on G, with the possible exception of a finite number of poles.
Hence m (z) is meromorphic on G = U G,.
From (11), (13) and (10) follows for z € F;

©

mE) — 6] £ @)~ O] + 3 16 - 6] <32+ @<
From (11), (13), (14) and (10) and because
F\Fos C (CUONGL E=1,2,...n

we have

n—1

@ O S T 16 - 6@l + =11+ 2 1h6) - 0.6

n—1 o
<3 e,+22’ + > e <e forz € F\Fos,n=2,3,...
1 n n
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Thus |m(z) — f(z)| < e for z € F;i.e. f can be approximated uniformly on F
by meromorphic functions.

Remark. Condition (*) in Theorem I can be replaced by a simpler condition,
namely that for each z € F there exists a closed disc D, with center z such that

f|FnDz E R(Fm Dz).

This is an immediate consequence of the Localization Theorem of Bishop
[7, p. 97], which can be proved by applying Lemma 1.

2. We denote by A(F) the set of continuous functions from F to C whose
restrictions to the interior F° are holomorphic. We seek to characterize those
sets F having the property that every function f, f € A (F), can be uniformly
approximated by functions in M (G).

THEOREM I1. 4 necessary and sufficient condition in order that every function
m A(F) can be approximated uniformly on F by functions in M(G) s that

**) R(FNG) = AFNG)
for every domain G, G: C G.

By the Localization-Theorem of Bishop we may replace the closed domains
G by closed discs.

Theorem II was stated by Nersesian [4] and proved for the special case
G = C.

The sufficiency of condition (**) follows immediately from the proof of
Theorem I. The construction we employed (and which we found before learn-
ing of [4]) to prove Theorem I is different from Nersesian’s method. Perhaps
his method (especially with the modifications necessary for applying it to
general domains) is more complicated than our method. This may serve as a
small justification for publishing the present work.

The proof that condition (**) is necessary is very simple in case F is nowhere
dense (F° = @) and hence A(F) = C(F): indeed any continuous function
on F M G; may be extended to a continuous function on all of F.

It seems that at the current state of the subject, the necessity of (**) in
the case F° # @ can only be shown using the results of Vitushkin on continuous
analytic capacity [7, p. 104].

3. The problem of characterizing a set F having the property, that every
function in A (F) can be uniformly approximated by functions holomorphic
on G was treated in a special case by [3] and [5] and solved completely by
Arakeljan [1]: a necessary and sufficient condition on F is that G*\ F is con-
nected and locally connected (G* is the one-point compactification of G).
In [6] we pointed out that Arakeljan’s Theorem can be proved using Theorem
IT (at that time only a conjecture).
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4. In order to treat tangential approximations the following lemma is useful.
LEMMA 2. If condition (**) s satisfied and f, h € A(F), with
0<|k(z)] <1,z € F,
then there is an m € M(G), for which
Im(z) — f(2)| < |h(2)], z¢€ F.
Proof. Since 2k~ € A (F), there is by Theorem II a function m,, m; € M(G):

2
!ml(z) ——%’ <1, gz €F.
Thus

|mi(z)| > z € F.

1
—1>—,
\h( 2)| | (z)|
A further application of Theorem II yields the existence of a second function
uzs E M(G).

|my(z) — mi(2)f(2)] <1, z€ F.
Set
m = ma/my;

then m € M(G) and

lm(z) — ()| < =7 i (), < |k@)|, =z € F.

The following Theorems III, IV and V are consequences of Theorem II and
Lemma 2.

TaeOREM II1. If F is a proper closed subset of G satisfying condition (**) for
every disc and f € A(F), then for every ¢ > 0, there exists a function m mero-
morphic on G for which

|m(z) — f(z)| < ¢ 3 € F,
and moreover
lim (m(z) — f(z)) = 0
uniformly as z — o0 on F.
Proof. Choose zi, 21 € C\F, n € N and then 7 so that
0<n<|zg—z" forz € F.
In Lemma 2 set

h(z) = en(z — z1)™
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The approximation of Theorem III is ‘‘best-possible’” in some sense, [6, p.
164].

If F* =@, then A(F) = C(F) and so from Theorem II and Lemma 2
follows

THEOREM IV. Let N be a relatively closed nowhere dense subset of the domain G.
Then the condition that

R(Nl) = C(Nl)

for every compact subset Ny of N 1is necessary and sufficient in order that for every
f € C(N), and for every e(z) € C(N), e(z) > 0, there is a function m mero-
morphic on G for which

m(z) — f(@)] < e(@), z¢€ N.

Since the function e(z) can tend arbitrarily fast to 0 as z approaches the
boundary of G, we have a so called ‘‘Carleman-approximation’’. Theorem IV
was proved in [6] by a different method.

A particularly useful auxiliary function 2 was introduced by Brown and
Gauthier [2] for approximations by holomorphic functions. Namely % is a
continuous function on F which is constant on every component of F° (and
hence 2 € A(F)). Such a function % allows the possibility of simultaneous
uniform approximation on all of F and a Carleman-approximation on a certain

subset of F. The following Theorem V contains both Theorem II as well as
Theorem IV.

THEOREM V. Let F be a closed subset of the domain G and N a closed subset of
the nowhere dense set N = F\F° (where ‘‘closed” means closed in G). Then
condition (**) is mecessary and sufficient in order that for every f € A(F), for
every n > 0 and for every e(z) € C(N), e(z) > 0, there is a function m € M(G),
for which

lm(z) — f(2)] <n, z€F,
Im(z) — f(z)| < e(z), z€ N.

The necessity of condition (**) follows from Theorem II. The proof that
(**) is sufficient follows from Theorem II and Lemma 2. We can suppose
n < 1 and e(z) < n. Then we choose the auxiliary function % by setting
hwo = n, iz = €(z) and extend this function (by Tietze's theorem) to a func-
tion % continuous and positive on F and for which #(z) < 5 forz € F.

5. The function f of Theorems -V is in A(F). Instead of 4 (F) we may con-
sider a larger set of functions if we admit as approximating functions all
functions in M (G) with or without poles on F. Then a necessary condition for
f is that for every compact subset K of F the restriction fx is the sum of a
function in 4 (K) and a rational function. Let us denote by M (F) (generalizing
the notation M (G)) a function with that property.
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Theorem I is valid if we admit all functions of M(G) as approximating
functions and replace the condition (*) by the condition that for every compact
subset K of F the restriction fix can be approximated uniformly by rational
functions (with or without poles on K). The proof needs no modifications.

An immediate consequence is that in Theorems II-V we can suppose
fe M(F).

Remark. The theorem of Mittag-Leffler (concerning the existence of a
meromorphic function with given principal parts) follows easily from the
modified Theorem II. Vice-versa: to see that in Theorems II-V we may
suppose f € M(F), we can prove with Mittag-Leffler's theorem that such
a function f is the sum of a function in 4 (F) and a function in M (G).

I am most grateful to Professor P. M. Gauthier for drawing my attention
to Nersesian's paper [4] and for his very kind help with the English version of

my paper.
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