
2

Eulerian and Lagrangian Fundamentals

Classical continuum mechanics focuses on the deformation field of moving continua. This
deformation field is composed of the trajectories of all material elements, labeled by their
initial positions. This initial-condition-based, material description is what we mean here by
the Lagrangian description of fluid motion (see Fig. 2.1).

v(x,t)

U

∂U
x

Eulerian description

instantaneus!
  streamline

U

∂U

x0

Lagrangian description

x(t;t0 ,x0 )
trajectory

Figure 2.1 Lagrangian (trajectory-based) and Eulerian (velocity-field-based) de-
scriptions of fluid flow.

In contrast to typical solid-body deformations, however, fluid deformation may be orders
of magnitude larger than the net displacement of the total fluid mass. For example, the center
of mass of a turbulent, incompressible fluid in a closed tank experiences no displacement in
the lab frame, yet individual fluid elements undergo deformations that no material used in
structural engineering would withstand. The difficulty of tracking individual fluid elements
has traditionally shifted the focus in fluid mechanics from individual trajectories to the
instantaneous velocity field and quantities derived from the velocity field, such as the vorticity
and momentum. We refer here to the instantaneous-position-based approach to continuum
motion as the Eulerian description (see Fig. 2.1).

Our discussion of the Eulerian view of fluids will be substantially shorter than usual
in fluids textbooks, mainly because the focus here is on flow kinematics rather than the
governing equations of fluids. Indeed, all transport barriers and coherent structures to be
discussed in this book can be defined and located purely from available velocity data. The
only conceptual exceptions to this rule are barriers to the transport of dynamically active
quantities (see Chapter 9), whose identification depends on the constitutive equation of the
fluid. Once this dependence is clarified, however, the active barriers can still be identified
from operations performed solely on the velocity field.
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14 Eulerian and Lagrangian Fundamentals

In contrast, our review of Lagrangian aspects of fluid mechanics in this chapter will be
more extensive than customary in fluid mechanics textbooks, including those fully dedicated
to Lagrangian fluid dynamics (such as Bennett, 2006). This is because our analysis of
material barriers to transport will rely extensively on tools from dynamical systems theory
and continuum mechanics that are not traditionally part of the toolkit of fluid mechanics.

2.1 Eulerian Description of Fluid Motion
We refer to scalar, vector and tensor fields defined over spatial positions x ∈ U ⊂ Rn as
Eulerian quantities. The bounded spatial domain U will be either two-dimensional (2D) for
n = 2 or three-dimensional (3D) for n = 3. Unless otherwise noted, we will always assume
that these fields are known for times t ranging over a finite time interval [t1, t2].

The central Eulerian quantity in descriptions of flow evolution is the velocity field v(x, t),
which we call steady if it is constant in time (i.e., of the form v(x)). When the velocity field
does depend on time explicitly, we call it unsteady.

2.1.1 Eulerian Scalars, Vector Fields and Tensors
A scalar field defined at all positions x and times t is an Eulerian scalar field. For instance,
any evolving tracer concentration field c(x, t) is an Eulerian scalar field.

An Eulerian vector field is a time-dependent vector field u(x, t) defined on the domain U.
The velocity field v(x, t) of a moving fluid as well as its vorticity ω (x, t) = ∇ × v(x, t) are
examples of Eulerian vector fields. In contrast, an eigenvector field ei(x, t) of an Eulerian
tensor field (to be defined below) is, in general, not an Eulerian vector field because it has
no well-defined length or orientation. Accordingly, we refer to such eigenvector fields as
Eulerian direction fields.

An Eulerian tensor field A(x, t) is a linear mapping family that maps each tangent space
TxR

n (see Appendix A.4) into itself at all positions x ∈ U for all times t ∈ [t1, t2]. Examples
include the velocity gradient tensor∇v(x, t), the symmetric rate-of-strain tensor S(x, t) and
the skew-symmetric spin tensorW (x, t),with the latter two defined as

S =
1
2

[
∇v + (∇v)T

]
, W =

1
2

[
∇v − (∇v)T

]
. (2.1)

Here and going forward, the superscript T will refer to transposition. An important relation-
ship between the spin tensor and the vorticity vector is

We =
1
2
ω×e (2.2)

for all vectors e ∈ R3 (see Appendix A.12). In other words, the vector associated with the
spin tensor is half of the vorticity vector.

Passive Eulerian scalar, vector and tensor fields are field quantities whose evolution has no
impact on the underlying velocity field v. Examples of such fields include a dye concentration
field c (x, t), its gradient vector field∇c(x, t) and its Hessian tensor field∇2c(x, t). In contrast,
active Eulerian fields, such as the velocity norm |v(x, t)|, the vorticity vector ω (x, t) and the
rate-of-strain tensor S(x, t), are fields whose evolution directly impacts the velocity field.
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2.1 Eulerian Description of Fluid Motion 15

2.1.2 Streamlines and Stagnation Points in 2D Flows
A parametrized curve that is everywhere tangent to the velocity field v(x, t) at time t is called
an instantaneous streamline, as shown in Fig. 2.1. Any streamline x(s; t), parametrized by
s ∈ R at time t, is therefore composed of solutions of the autonomous ordinary differential
equation (ODE)

x′ = v(x, t), (2.3)

in which the prime denotes differentiation with respect to s and t plays the role of a parameter.
We call the flow incompressible if v is divergence-free (or solenoidal), i.e.,∇ · v ≡ 0.

For 2D incompressible flows, there exists a stream function ψ(x, t) such that the velocity
field can be written as

v(x, t) = J∇ψ(x, t), J =
(

0 1
−1 0

)
. (2.4)

At any time instant t, streamlines are contained in the level curves (or isocontours) of ψ(x, t),
given that

d
ds
ψ(x(s), t) =∇ψ(x(s), t) · v (x(s), t) = 〈∇ψ(x(s), t),J∇ψ(x(s), t)〉 ≡ 0 (2.5)

holds by the skew-symmetry of the matrix J. Equation (2.4) says that the stream function
∇ψ(x, t) acts as a Hamiltonian function for 2D incompressible fluid particle motion (see
Appendix A.5 for more on Hamiltonian systems). We note that in 3D flows, no scalar stream
function is guaranteed to exist from which the full velocity field could be derived.

An instantaneous stagnation point is a time-dependent point p(t) at which the velocity
field v vanishes at time t, i.e.,

v(p(t), t) = J∇ψ(p(t), t) = 0. (2.6)

At such points, the linearization

ξ′ =∇v(p(t), t)ξ = J∇2ψ(p(t), t)ξ, ξ ∈ R2 (2.7)

of the differential equation (2.3) determines the instantaneous local streamline geometry,
which depends on the eigenvalues and eigenvectors of ∇v(p(t), t). The eigenvalues of the
velocity gradient satisfy the characteristic equation

λ2 − (∇ · v) λ + det∇v = 0. (2.8)

This equation simplifies to
λ2 + det∇v = 0 (2.9)

for incompressible flows, yielding the two eigenvalues of∇v(p(t), t) in the form

λ1,2(t) = ±
√
− det∇v(p(t), t). (2.10)

Figure 2.2 shows the possible local streamline geometries for different λ1,2 configurations:
hyperbolic (saddle-type) stagnation point; elliptic (center-type) stagnation point; nonde-
generate parabolic stagnation point (local shear flow arising near a stagnation point on
a free-slip boundary); degenerate parabolic stagnation point (locally quiescent flow aris-
ing near a point on a no-slip boundary). At nondegenerate parabolic stagnation points,
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16 Eulerian and Lagrangian Fundamentals

only one independent eigenvector exists. At degenerate parabolic stagnation points, any
vector is an eigenvector. Importantly, these instantaneous streamline geometries only give
an accurate description of fluid particle motion if the velocity field is steady. In unsteady
flows, the fluid motion can differ vastly from the local streamline geometry, as we shall see
throughout §2.2.

e1

e2

hyperbolic stagnation
            point

elliptic stagnation
          point

e1 = e2

parabolic stagnation
           points
  (nondegenerate)

parabolic stagnation
           points
      (degenerate)

1 = 2 {0} 1,2 =±i
1 = 2 = 0, e1 = e2 1 = 2 = 0, e1,e2

2

    

Figure 2.2 The four possible linearized streamline geometries at an instantaneous
stagnation point of a 2D incompressible flow. The eigenvalues of ∇v(p(t), t) are
λ1 and λ2, with corresponding real eigenvectors e1 and e2, whenever λ1,2 are real
numbers.

Instantaneous flow patterns in the velocity field of a 2D flow are separated from each
other by special streamlines, or separatrices, across which there is a change in the topology
of streamlines. By the implicit function theorem (see Appendix A.1), such a change in
the streamline geometry can only occur near points where the gradient ∇ψ(x, t) vanishes.
We then conclude by Eq. (2.6) that separatrices between different streamline patterns must
necessarily be streamlines that contain at least one stagnation point. With the exception
of elliptic stagnation points, all other types of stagnation points shown in Fig. 2.2 can be
contained in a streamline. Accordingly, the possible separatrices in 2D incompressible flows
are shown in Fig. 2.3.

Of these, homoclinic streamlines connecting hyperbolic stagnation points to themselves
and heteroclinic streamlines connecting two hyperbolic or nondegenerate parabolic stagna-
tion points on a boundary to each other are structurally stable, i.e., smoothly persist under
small perturbations of the stream function (see §2.2.7 for a more formal definition of struc-
tural stability). Indeed, the endpoints of these connecting streamlines are forced to be on the
same level set of the stream function even after small perturbations, as illustrated in Fig. 2.4
(left).

In contrast, heteroclinic streamlines connecting two points away from boundaries or an
off-boundary point to an on-boundary point are structurally unstable. Indeed, in the absence
of any symmetry that would force the endpoints of such a connection to remain on the same
level set of the stream function, small perturbations to the stream function will generally
cause the two stagnation points to move to different level curves of the stream function (see
Fig. 2.4 (right)).
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2.1 Eulerian Description of Fluid Motion 17

Separatrices between different streamline patterns

 Structurally stable  Structurally unstable 

(a)

(b)

(c)

(d)

Figure 2.3 Structurally stable and unstable separatrices between instantaneous
streamline patterns of 2D incompressible flows. (a) Streamline homoclinic to a hy-
perbolic stagnation point; (b) Streamline connecting a free-slip or no-slip boundary
to itself, acting as the boundary of a separation bubble; (c) Heteroclinic streamlines
between two hyperbolic stagnation points; (d) Heteroclinic streamline between a
free-slip or no-slip boundary and a hyperbolic stagnation point.
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Figure 2.4 (Left) Under a small perturbation ψ̃(x, t) of a stream function ψ(x, t),
a homoclinic streamline emanating from a saddle-type stagnation point p(t) will
persist as a nearby streamline homoclinic to a perturbed stagnation point p̃(t). (Right)
Under a similar perturbation, a heteroclinic streamline connecting two saddle-type
stagnation points, p1(t) and p2(t),will generically break into a homoclinic streamline
connecting p̃2(t) to itself and a pair of locally open streamlines emanating from p̃1(t).

2.1.3 Streamsurfaces and Stagnation Points in 3D Flows

A 2D surface that is everywhere tangential to the velocity field v(x, t) at time t is called
an instantaneous streamsurface. All streamsurfaces are composed entirely of streamlines,
including possible stagnation points. For this reason, streamsurfaces are invariant sets of the
ODE (2.3).
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18 Eulerian and Lagrangian Fundamentals

Stagnation points continue to be themost important building blocks of the global streamline
and streamsurface geometry in 3D flows. As in 2D flows, instantaneous stagnation points are
defined by the equation

v(p(t), t) = 0. (2.11)

The local geometry of streamlines near stagnation points can again be identified from the
linear stability analysis of the linearized streamline equation

ξ′ =∇v(p(t), t)ξ, ξ ∈ R3 (2.12)

at the stagnation point p(t).
At any point in the flow, the eigenvalues of the velocity gradient∇v satisfy the character-

istic equation

λ3 − (∇ · v) λ2 +
1
2

[
(∇ · v)2 + |W|2 − |S|2

]
λ − det∇v = 0, (2.13)

with the tensorsW andS defined inEq. (2.1) (see, e.g., Chong et al., 1990). For incompressible
flows, we have∇ · v = 0 and hence the characteristic equation (2.13) simplifies to

λ3 +
1
2

[
|W|2 − |S|2

]
λ − det∇v = 0. (2.14)

Based on the eigenvalue configuration of ∇v(p(t), t) determined by Eq. (2.14), Fig. 2.5
shows the four possible instantaneous streamline patterns near a hyperbolic stagnation point
of an incompressible flow. Just as in 2D flows, a hyperbolic stagnation point is a solution p(t)
of (2.11) at which the velocity gradient∇v(p(t), t) has no eigenvalues on the imaginary axis
of the complex plane.

Perry andChong (1987) give amore complete classification of local streamline geometries,
including some non-hyperbolic (and hence structurally unstable; see §2.2.7) stagnation points
as well. Surana et al. (2006) show that, after an appropriate rescaling near a no-slip boundary,
the streamline patterns in Fig. 2.5 also arise near generic instantaneous separation and
attachment points on free-slip boundaries.

Importantly, the linear stability analysis leading to the local streamline patterns in Fig. 2.5
is only relevant for fluid particle motion near stagnation points of steady flows, as we discuss
later in §2.2.8. The Perry–Chong classification has nevertheless been broadly invoked in
the literature for unsteady flows and for domains away from stagnation point. Both of these
practices are unjustified and generally lead to incorrect results.

2.1.4 Irrotational and Inviscid Flows
We call a velocity field v irrotational if it is curl-free, i.e., ω (x, t) =∇ × v(x, t) ≡ 0. For 3D
irrotational flows defined on a simply connected domain D,1 there exists a velocity potential
φ(x, t) such that the velocity field can be written as

v(x, t) =∇φ(x, t). (2.15)

1 The domain D may either be the whole space or must have boundary components to which v is everywhere
tangent (Stevenson, 1954; Tran-Cong, 1990; Mackay, 1994).
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Figure 2.5 The four possible instantaneous streamline patterns near a hyperbolic
stagnation point p(t) of a 3D incompressible flow. The eigenvalues and unit eigen-
vectors of∇v(p(t), t) are denoted by λj and ej , respectively.

On any bounded domain D, a smooth velocity field v can always be decomposed into the
sum of an incompressible and an irrotational component. Specifically, by the Helmholtz–
Hodge decomposition theorem (see Chorin and Marsden, 1993), there exists a velocity field
w(x, t) and a smooth scalar field σ(x, t) such that

v = w +∇σ, ∇ · w ≡ 0,

and w is tangent to the boundary ∂D of the domain. We call an incompressible velocity
field v inviscid if it satisfies the incompressible Navier–Stokes equation with zero viscosity
(ν = 0), i.e., it solves the Euler equation,

∂tv + (∇v) v = −
1
ρ
∇p + g, (2.16)

for an appropriate pressure field p, density field ρ and external body force-density field ρg.

2.2 Lagrangian Description of Fluid Motion
Fluid elements advected by the velocity field v(x, t)move along fluid trajectories. Therefore,
trajectories are time-parametrized curves {x(t)}t∈R that solve the differential equation

Ûx = v(x, t), (2.17)
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20 Eulerian and Lagrangian Fundamentals

with the dot referring to differentiation with respect to the time t. If v(x, t) is smooth,2 then
the ODE (2.17) has a unique trajectory x (t; t0,x0) for any initial trajectory position x0 ∈ U
and initial time t0 ∈ [t1, t2], as shown in Fig. 2.1. As a consequence, no trajectory of the
ODE (2.17) can cross another trajectory. Such an intersection would violate the uniqueness
of solutions of Eq. (2.17). Physically, this nonuniqueness would imply that two initially
different fluid elements end up occupying the same location x at the same time t.

The requirement of uniqueness for fluid element motion, however, does not prevent the
same trajectory or other trajectories to traverse through the same location x at different times,
as we indicated in the left subplot of Fig. 2.1. As a consequence, plots of trajectories of the
ODE (2.17) (called pathlines in this context) can contain a number of self intersections, as
well as mutual intersections.

2.2.1 Steady Flows as Autonomous Dynamical Systems
For steady velocity fields v(x), Eq. (2.17) becomes an autonomous dynamical system of the
form

Ûx = v(x), (2.18)

with no explicit dependence on time. Trajectory evolution in Eq. (2.18) only depends on
the elapsed time t − t0, with no explicit dependence on the initial time t0. Without loss of
generality, therefore, the t0 = 0 initial time can be selected for all trajectories, whose general
form, x (t; x0), now depends only on the present time and the initial condition. This also
implies that pathlines of ODE (2.18) cannot intersect each other or themselves by uniqueness
of solutions.3

On a related note, separatrices in 2D flows (see Fig. 2.3 and the related discussion) are
sometimes characterized as barriers to advective transport, i.e., they cannot be crossed by
other trajectories of Eq. (2.18). This characterization of separatrices, however, is self-evident:
no trajectory of Eq. (2.18) can be crossed by other trajectories by the uniqueness of solutions,
as we have already mentioned. Instead, separatrices are distinguished because they act as
boundaries between regions with different trajectory-topologies.

For a steady velocity field, v(x), fluid trajectories coincide with streamlines because the
differential equations (2.3) and (2.17) coincide for such velocity fields. For 2D steady flows,
formula (2.5) then implies the conservation of the stream function ψ(x), forcing trajectories
of v(x) to remain in level curves of ψ(x) for all times. For unsteady flows, however, the
two differential equations (2.3) and (2.17) no longer coincide and hence fluid trajectories
will differ from streamlines. Trajectories can only be expected to stay close to streamlines
temporarily in flow regions in which v(x, t) is slowly varying in time.

2 It is enough if v(x, t) is locally Lipschitz in x near x0 and continuous in t at t0 (see Arnold, 1978). The local
Lipschitz condition at a point x0 requires the existence, for some finite time interval [t0 − ∆, t0 + ∆], of a small
open neighborhoodUx0 around x and a constant Lx0 > 0 such that for any two points x1, x2 ∈ Ux and for all
times t ∈ [t0 − ∆, t0 + ∆], we have |v(x2, t) − v(x1, t) | ≤ Lx0 |x2 − x1 |.

3 At such an intersection, the same initial time t0 = 0 could be selected for both trajectories, and hence the
two trajectories through the intersection point would represent two different solutions to the same initial value
problem.
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2.2 Lagrangian Description of Fluid Motion 21

2.2.2 The Extended Phase Space
Any unsteady velocity field v(x, t) can also be viewed as a steady velocity field on the extended
phase space of the (x, t) variables. Indeed, letting

X =
(

x
t

)
, V(X) =

(
v(x, t)

1

)
, (2.19)

we obtain the autonomous dynamical system

ÛX = V(X), (2.20)

with X ∈ U × R, where U ⊂ Rn is the domain of definition of the unsteady vector field.
Note that∇X · V = ∇ · v. Thus the divergence of the velocity field is preserved under this
extension.

The conversion of an unsteady flow into a steady flow on a higher-dimensional system has
several advantages but does not provide a universal vehicle for extending the properties of
steady flows defined on U to unsteady flows. One of the reasons for this is that the steady
extended system (2.20) has a higher dimension and hence its trajectories can display a higher
level of topological and dynamical complexity than steady flows defined on U.

Another reason is that a number of useful properties of steady flows (e.g., recurrence
and ergodicity) that we will see later are only valid or defined on compact domains that
are invariant under the trajectories of the velocity field. No such compact invariant domain
will exist for the extended system (2.20) because all its trajectories become unbounded in
the t direction. This unboundedness issue can only be remedied for time-periodic and time-
quasiperiodic velocity fields, for which the time-dependence of v(x, t) can be confined to a
compact set (the circle or the torus), as we will see in §2.2.12.

2.2.3 The Flow Map and Its Gradient
The evolution of a trajectory x (t; t0,x0) as a function of its initial position is described by the
flow map

Ft
t0

: x0 7→ x (t; t0,x0) , (2.21)

which is well defined for any time t, as long as the trajectory stays in a compact domain U
where the underlying velocity field v(x, t) is known.4 By the definition of Ft

t0
, we have the

relation
d
dt

Ft
t0
(x0) = v

(
Ft
t0
(x0), t

)
. (2.22)

By fundamental results for differential equations, the flow map Ft
t0
is as smooth with respect

to initial conditions and velocity field parameters as v(x, t) is with respect to x and the same
flow parameters, respectively (see Arnold, 1978).

We call the domain U invariant under the flow if the velocity field v along ∂U is tangent
to ∂U for all times. This implies that for all times in [t1, t2], trajectories starting in U remain
4 Ft

t0
(x0) may generally become undefined for increasing t due to a finite-time blow-up of trajectories, even if the

velocity field is smooth
(
consider, e.g., the simple scalar ODE Ûx = 1 + x2) . However, no finite-time blow-up

is possible as long as the trajectory is confined to a compact flow domainU (see, e.g., Arnold, 1978).
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in U and trajectories starting in ∂U remain in ∂U. For autonomous dynamical systems of the
form (2.18), the flow map can simply be defined as

Ft : x0 7→ x (t; 0,x0) , (2.23)

with the initial time always taken to be t0 = 0. In this case, the flow map becomes a one-
parameter family of transformations, as opposed to a two-parameter family of transformations
in the nonautonomous case.

As long as it is well defined, the flow map is a diffeomorphism: it is as smooth as the
velocity field and has an equally smooth inverse

(
Ft
t0

)−1
= Ft0

t , the mapping taking current
positions at time t back to their initial positions at time t0. Flow maps between two arbitrary
times are orientation preserving and can be concatenated to give one net flow map for the
displacement of a fluid element. These two properties can be formally stated as

det∇Ft
s > 0, Ft

s

(
Fs
t0
(x0)

)
= Ft

t0
(x0), (2.24)

for any choice of the times t0, s, t ∈ [t1, t2]; see, e.g., Arnold (1978) for proofs of these
statements.

The flow map Ft
t0
does not inherit the time-dependence of the velocity field v(x, t). In-

deed, a steady velocity field v(x) with no explicit time dependence already generates a
flow map Ft with general (aperiodic) time dependence. Similarly, time-periodic and time-
quasiperiodic velocity fields generate flowmaps with general time dependence. Nevertheless,
the flow map Ft of a steady velocity field will become a steady map (the identity map) when
evaluated on specific initial conditions (fixed points) of the flow (see §2.2.11). Similarly, the
time-dependent image, Ft

t0
(x0), of an initial condition in a time-periodic velocity field is time-

periodic for exceptional x0 initial conditions that lie on periodic orbits of v(x, t) (see §2.2.12).
The derivative∇Ft

t0
(x0) of the flowmap with respect to its argument x0 is the deformation

gradient. Technically, ∇Ft
t0
(x0) is a two-point tensor (see §3.5 for more detail) that maps

vectors in the tangent space Tx0R
n of Rn at x0 to vectors in the tangent space TFt

t0
(x0)R

n of Rn

at the advected position Ft
t0
(x0).5 More formally, therefore,∇Ft

t0
is defined as

∇Ft
t0

: Tx0R
n → TFt

t0
(x0)R

n,

ξ0 7→∇Ft
t0
(x0)ξ0, (2.25)

mapping vectors ξ0 based at x0 to vectors based at Ft
t0
(x0), as shown in Fig. 2.6. Physically,

an initial infinitesimal perturbation, ξ0, to the initial condition x0 at time t0 evolves into a
perturbation∇Ft

t0
(x0)ξ0 to the trajectory location x(t; t0,x0) at time t.

The deformation gradient also allows us to express the derivative of the flow map Ft
t0
with

respect to the initial time t0. Indeed, differentiating the identity Ft
t0

(
Ft0
t (x)

)
= x with respect

to t0 gives the relationship
d

dt0
Ft
t0
(x0) = −∇Ft

t0
(x0)v(x0, t0). (2.26)

For a steady velocity field v(x), this relationship simplifies to
d

dt0
Ft
t0
(x0) = −v(Ft

t0
(x0)),

5 See Appendix A.4 for a brief summary of concepts from differential geometry, including tangent spaces of Rn ,
that are relevant for derivatives of mappings between manifolds.
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Figure 2.6 The definition of the deformation gradient.

given that v(Ft
t0
(x0)) =∇Ft

t0
(x0)v(x0, t0) holds, as we will deduce later in formula (2.55).

As a mapping between two different linear spaces,∇Ft
t0
(x0) does not have well-defined

eigenvalues and eigenvectors, even though they are sometimes erroneously introduced in the
literature for its specific matrix representations. Indeed, it is tempting to introduce coordi-
nates in the domain spaceTx0R

n and the range spaceTFt
t0
(x0)R

n, then solve a formal eigenvalue
problem for the linear map∇Ft

t0
(x0) in those coordinates. These formally computed eigen-

values and eigenvectors, however, will depend on the coordinates introduced and hence
will no longer be invariants of∇Ft

t0
(x0). The eigenvalues and eigenvectors of∇Ft

t0
(x0) are

only well defined in a coordinate-free fashion if Tx0R
n ≡ TFt

t0
(x0)R

n holds, i.e., the trajectory
x(t; t0,x0) returns to its initial position x0 at time t. Even then, the eigenvalues are irrelevant
for the long-term evolution for the perturbation ξ0 to x0 unless the velocity field v(x, t) is
time-periodic with period T = t − t0, and hence x(t; t0,x0) is a periodic trajectory. In that
case, Ft

t0
(x0) is a period-t map or Poincaré map, as discussed in §2.2.12.

In contrast, the velocity gradient∇v(x, t) discussed in §3.3 is a linear operator mapping
the tangent space TxR

n into itself and hence ∇v(x, t) admits well-defined eigenvalues and
eigenvectors.

2.2.4 Material Surfaces, Material Lines and Streaklines
A material surfaceM(t) is an evolving surface of fluid particles that move from their initial
positions along trajectories of the velocity field v. More precisely,

M (t) = Ft
t0
(M0) , M0 =M (t0) . (2.27)

As shown in Fig. 2.7, the surfaceM (t) is a smooth manifold ifM0 is a smooth manifold,
because the flow map Ft

t0
is a diffeomorphism. In that case, Ft

t0
is a smooth mapping between

manifolds and hence∇Ft
t0
(x0) maps the tangent space Tx0M0 ofM0 at x0 onto the tangent

space ofM (t) at the point Ft
t0
(x0), i.e.,

∇Ft
t0
(x0)Tx0M0 = TFt

t0
(x0)M (t) , (2.28)

as shown in Fig. 2.7 (see Abraham et al., 1988).
Let Nx0M0 denote the normal space ofM0 at x0, defined as the orthogonal complement of

Tx0M0 in the ambient space Rn, as shown in Fig. 2.7 (see also Appendix A.4). Consequently,
if a is a vector in Tx0M0 and b is a vector in Nx0M0, then the inner product of these vectors
must vanish by their orthogonality: 〈a,b〉 = 0. This identity can be written equivalently as
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Figure 2.7 Geometry near a material surfaceM (t). Tangent and normal spaces at
the same material point of this evolving surface are mapped into each other by the
deformation gradient∇Ft

t0
and by its inverse transpose,

[∇Ft
t0

]−T, respectively.

〈b,a〉 =
〈
b,

[∇Ft
t0
(x0)

]−1∇Ft
t0
(x0)a

〉
=

〈[∇Ft
t0
(x0)

]−T b,∇Ft
t0
(x0)a

〉
= 0, (2.29)

where −T denotes inverse transpose. Note that a ∈ Tx0M0 and b ∈ Nx0M0 are arbitrary in
the relationship (2.29), and hence Eq. (2.28) implies that

[∇Ft
t0
(x0)

]−T b ∈ NFt
t0
(x0)M (t).

Therefore, we have obtained that any vector b ∈ Nx0M0 is mapped by
[∇Ft

t0
(x0)

]−T into
a vector normal to TFt

t0
(x0)M (t), or, equivalently,[∇Ft

t0
(x0)

]−T
Nx0M0 = NFt

t0
(x0)M (t) . (2.30)

In other words, a normal of a material surface at the point x0 at time t0 is advected by the
inverse transpose

[∇Ft
t0
(x0)

]−T of the deformation gradient to a normal to the same material
surface at the point Ft

t0
(x0) at time t. Consequently, as illustrated in Fig. 2.7, we also have[∇Ft

t0
(x0)

]T
NFt

t0
(x0)M (t) = Nx0M0. (2.31)

SinceM0 was arbitrary in this argument, so was the subspace Nx0M0 ⊂ Tx0R
n. Therefore,

the linear mapping
[∇Ft

t0
(x0)

]−T is defined for any vector Tx0R
n and maps any such vector

into TFt
t0
(x0)R

n: [∇Ft
t0
(x0)

]−T : Tx0R
n → TFt

t0
(x0)R

n. (2.32)

Reversing the role of x0 and Ft
t0
(x0) in formula (2.32) leads to[∇Ft

t0
(x0)

]T : TFt
t0
(x0)R

n → Tx0R
n, (2.33)

showing that the transpose (or adjoint) of the deformation gradient can be viewed as a
mapping of vectors in TFt

t0
(x0)R

n back to Tx0R
n.
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A more specific consequence of Eq. (2.30) is the following classic result: if n0 ∈ Nx0M0
is a unit normal toM0 to at x0, then the surface element n0dA0 ofM0 at x0 is carried by the
flow into the surface element

ndA = det∇Ft
t0
(x0)

[∇Ft
t0
(x0)

]−T n0dA0 (2.34)

ofM (t) at the point Ft
t0
(x0) (see Gurtin, 1981; Truesdell, 1992).

A material line (sometimes called a timeline) is an evolving curve composed of the same
fluid particles, i.e., the image,

L(t) = Ft
t0
(L(t0)) , (2.35)

of a curve L(t0) of initial particle particle positions under the flow map Ft
t0
(see Fig. 2.8).

x1

x2

tt1t0

x2

tt1t0

x1

p0

material line streakline

p0 = S(t0 )

S(t1)

S(t)

<latexit sha1_base64="L3hiCIOB5n4eX9fZ+HpEVsyNf7A=">AAAB+nicbVDLSsNAFJ34rPUVdelmsAh1UxJR7LLgxoWLCvYBbQiT6aQdOpmEmZtCif0TV4KCuPVPXPk3TtostPXAwOGce7lnTpAIrsFxvq219Y3Nre3STnl3b//g0D46bus4VZS1aCxi1Q2IZoJL1gIOgnUTxUgUCNYJxre535kwpXksH2GaMC8iQ8lDTgkYybftfkRgRInI7mdV8N0L3644NWcOvErcglRQgaZvf/UHMU0jJoEKonXPdRLwMqKAU8Fm5X6qWULomAxZz1BJIqa9bJ58hs+NMsBhrMyTgOfq742MRFpPo8BM5jn1speL/3m9FMK6l3GZpMAkXRwKU4EhxnkNeMAVoyCmhhCquMmK6YgoQsGUVS6bFtzlP6+S9mXNva45D1eVRr3oo4RO0RmqIhfdoAa6Q03UQhRN0DN6RW/Wk/VivVsfi9E1q9g5QX9gff4AVtmTJA==</latexit>L(t1)

<latexit sha1_base64="VKbNivUN9yFU8gDJaa4vocYLPLA=">AAAB+nicbVDLSsNAFL3xWesr6tLNYBHqpiSi2GXBjQsXFewD2hAm00k7dDIJM5NCif0TV4KCuPVPXPk3TtostPXAwOGce7lnTpBwprTjfFtr6xubW9ulnfLu3v7BoX103FZxKgltkZjHshtgRTkTtKWZ5rSbSIqjgNNOML7N/c6ESsVi8ainCfUiPBQsZARrI/m23Y+wHhHMs/tZVfvOhW9XnJozB1olbkEqUKDp21/9QUzSiApNOFaq5zqJ9jIsNSOczsr9VNEEkzEe0p6hAkdUedk8+QydG2WAwliaJzSaq783MhwpNY0CM5nnVMteLv7n9VId1r2MiSTVVJDFoTDlSMcorwENmKRE86khmEhmsiIywhITbcoql00L7vKfV0n7suZe15yHq0qjXvRRglM4gyq4cAMNuIMmtIDABJ7hFd6sJ+vFerc+FqNrVrFzAn9gff4AVVOTIw==</latexit>L(t0)

<latexit sha1_base64="EyD7uAAXiyZDkAYjwf5jQRvHpd8=">AAAB9nicbVDLSgNBEOz1GeMr6tHLYBDiJeyKYo4BLx48RDAPSNYwO5lNhsw+mOkVw5L/8CQoiFf/xZN/42yyB00sGCiquuma8mIpNNr2t7Wyura+sVnYKm7v7O7tlw4OWzpKFONNFslIdTyquRQhb6JAyTux4jTwJG974+vMbz9ypUUU3uMk5m5Ah6HwBaNopIdeQHHEqExvpxU865fKdtWegSwTJydlyNHol756g4glAQ+RSap117FjdFOqUDDJp8VeonlM2ZgOedfQkAZcu+ks9ZScGmVA/EiZFyKZqb83UhpoPQk8M5ml1IteJv7ndRP0a24qwjhBHrL5IT+RBCOSVUAGQnGGcmIIZUqYrISNqKIMTVHFomnBWfzzMmmdV53Lqn13Ua7X8j4KcAwnUAEHrqAON9CAJjBQ8Ayv8GY9WS/Wu/UxH12x8p0j+APr8weu3ZJP</latexit>L(t)

Figure 2.8 (Left) Material lineL(t) evolving from its initial curveL(t0), and (Right)
a streakline S(t) evolving from its release location point p0(t0) = S(t0).

As we have seen for general material surfaces,∇Ft
t0
(x0)maps the tangent vector of L(t0)

at x0 into a tangent vector ofL (t) at the point Ft
t0
(x0). Similarly,

[∇Ft
t0
(x0)

]−T maps a vector
normal to L(t0) at x0 to a vector normal to L (t) at the point Ft

t0
(x0) (see Fig. 2.7).

A streakline is a set formed of an increasing number of fluid particles, all released
continually from the same point p0. Specifically, a streakline is a time-dependent curve S(t)
defined as

S(t) =
⋃

τ∈[t0 ,t]

Ft
τ (p0) , (2.36)

as illustrated in Fig. 2.8. As a consequence of this definition, for any fixed τ ∈ [t0, t], the
evolving subset L(t) = Ft

τ (S(τ)) of a streakline S(t) is a material line. Yet S(t) itself is not
a material line, given that it contains an increasing number of fluid particles over time.

We have already noted that full fluid trajectories (or pathlines), {x(t)}t∈R, coincide with
streamlines in steady flows. We further note here that in steady flows, a pathline emanating
from a point p0 fills an increasing, one-sided subset of the streamline starting from p0 as the
time increases. This is why streaklines are generally used to visualize pieces of streamlines
in steady flows, as illustrated in Fig. 2.9.

While streamlines and streamsurfaces have the exact same type of time dependence as the
underlying velocity field, no such conclusion can be drawn generally for general material
lines, material surfaces and streaklines. This is because the flow map does not inherit the
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Figure 2.9 Streaklines used to visualize subsets of streamlines in a steady flow
around a Nio ET7 electric vehicle. Image: Courtesy of Nio Inc.

time dependence of the underlying velocity field, as we have already noted in §2.2.3. Very
special material lines and surfaces can, however, inherit the time-dependence of the velocity
field. These will be precisely the advective transport barriers we will discuss in Chapter 4 for
temporally recurrent flows.

2.2.5 Invariant Manifolds
An invariant manifold of a velocity field v(x, t) is an evolvingmaterial setM(t) = Ft

t0
(M(t0))

that is a k-dimensional differentiablemanifold (seeAppendixA.4) at any fixed time t ∈ [t0, t1].
Therefore, a 1D invariant manifold is a material curve, a 2D invariant manifold is a material
surface and a 3D invariant manifold is an evolving open subset of the flow domain in 3D
fluid flows.

Because the flow map Ft
t0
is a diffeomorphism, any choice of a smooth setM(t0) of initial

conditions will generate an invariant manifoldM(t) under Ft
t0
over any finite time interval

[t0, t1].
6 Therefore, there are infinitely many invariant manifolds through each point of a fluid

flow. Of these, we are generally interested in the ones that have a strong impact on nearby
trajectories and are robust under small perturbations to the flow. Over finite time intervals,
there are different ways to define such a strong impact, which explains why this whole
book is devoted to finding transport barriers as uniquely influential invariant manifolds.
Our discussion will focus on techniques that render invariant manifolds that are robust, i.e.,
structurally stable; this notion is defined in §2.2.7.

2.2.6 Evolution of Material Volume and Mass
A subset V0 of initial conditions will evolve under the flow map as a material set

V(t) = Ft
t0
(V0) , (2.37)

6 This statement does not hold over infinite time intervals as the flow map is generally not even defined in that
limit for most points.
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as shown in Fig. 2.10. The rate of change of the material volume vol (V(t)) (or material area
in 2D) can be computed as

d
dt
vol (V(t)) =

d
dt

ˆ
V (t)

dV =
d
dt

ˆ
V0

det∇Ft
t0
(x0) dV0 =

ˆ
V0

d
dt

det∇Ft
t0
(x0) dV0

=

ˆ
V (t)

d
dt

det∇Ft
t0
(x0)

det∇Ft
t0
(x0)

dV (2.38)

=

ˆ
V (t)

∇ · v(x, t) dV,

where we have used the classic formula dV = det∇Ft
t0
(x0) dV0 for the change of variables

defined by x = Ft
t0
(x0), and formula (2.50) to compute d

dt
det∇Ft

t0
. The volume evolution

formula (2.38) is often referred to as Liouville’s theorem in the dynamical systems literature
(see, e.g., Arnold, 1978).

⇒
F
t0

t V(t)

V
0

Figure 2.10 Material set V(t) evolving under the flow map Ft
t0
.

We will mostly assume that the flow is incompressible, i.e., the velocity field is divergence
free:

∇ · v = 0. (2.39)

Under this incompressibility assumption, the formulas (2.50) and (2.38) imply the local and
global forms of the conservation of material volume:

det∇Ft
t0
(x0) ≡ 1, volV(t) ≡ volV0 (2.40)

for all points x0 and all subsets V0 of U. For 2D flows, the volume is to be replaced with area
in these statements.

Inmost applications, even compressible flows aremass preserving, with their mass-density
field ρ(x, t) satisfying the equation of continuity

∂t ρ +∇ · (ρv) = 0. (2.41)

The equation of continuity (2.41) together with (2.50) then yields a relation between the
evolution of the density along trajectories and the deformation gradient:

ρ
(
Ft
t0
(x0), t

)
= ρ0(x0) exp

[
−

ˆ t

t0

∇ · v (
Fs
t0
(x0), s

)
ds

]
=

ρ0(x0)

det∇0Ft
t0
(x0)

. (2.42)

An evolving material volume V(t) of a mass-conserving flow then obeys the conservation
law ˆ

V (t)

ρ(x, t) dV =
ˆ
V0

ρ0(x0) dV0, (2.43)
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obtained by changing the variables of integration from x to x0 and using formula (2.42).

2.2.7 Topological Equivalence and Structural Stability
Topological equivalence seeks to formalize the notion of similar behavior in different flows.
The idea is to consider one flow to be equivalent to another flow if their trajectory structures
are the same up to a continuous deformation that keeps the orientation of the trajectories.

Specifically, two steady velocity fields, v(x) and w(x), defined on a compact domain
U ⊂ Rn are said to be topologically equivalent over a time interval [t0, t1] if there exists
a homeomorphism (i.e., a continuous map with a continuous inverse) h : U → U that
transforms the oriented trajectories of v(x) into the oriented trajectories of w(x). In particular,
if Ft is the flow map of v and Gt is the flow map of w, then topological equivalence between
the two flows requires the existence of a function h as above, along with a monotonically
increasing, scalar-valued function τ(x, t) on U × [t0, t1], such that

h
(
Fτ(x0 ,t) (x0)

)
= Gt (h(x0)) (2.44)

for all x0 ∈ U and all t ∈ [t0, t1]. The notion of topological equivalence of unsteady velocity
fields is more involved and will not be discussed here.7

Topological equivalence can be used to express the robustness of a flow on its compact
domain of definition U. Namely, the velocity field v(x) is called a structurally stable velocity
field if any other velocity field on U that is close enough to v in the C1 norm is also
topologically equivalent to v. For instance, any steady velocity field is structurally stable in
some vicinity of its saddle-type stagnation points. Also, any planar incompressible velocity
field is structurally stable (within the family of incompressible, steady velocity fields) in a
vicinity of its center-type stagnation points.

We will also use the notion of structural stability for individual invariant sets of v(x, t). We
call a material set X(t) ⊂ Rn (see formula (2.37) for a definition) over a finite time interval
t ∈ [t0, t1] a structurally stable set if it smoothly persists under small enough perturbations
of v(x, t). Specifically, X is structurally stable if for any velocity field w(x, t) close enough
in the C1 norm to v(x, t), there exists a nearby material set Y (t) for the flow map Gt

t0
(i.e.,

Gt
t0
(Y (t0)) =Y (t) for all t ∈ [t0, t1]) such thatY (t) isCr diffeomorphic to X(t) for all t ∈ [t0, t1].

Structurally stable invariant sets of steady velocity fields include saddle-type stagnation fields
along with their local stable and unstable manifolds, homoclinic orbits, families of invariant
tori within the class of volume-preserving velocity fields and limit cycles and attracting tori
in compressible flows.

7 For a nonautonomous velocity field v(x, t) with flow map Ft
t0
and another velocity field w(x, t) with flow map

Gt
t0
, it is tempting to define topological equivalence between v(x, t) and w(x, t) by requiring the time-dependent

version of Eq. (2.44) to hold, i.e., hτ(x0 ,t )
(
Fτ(x0 ,t )
t0

(x0)
)
= Gt

t0
(ht (x0)) for all x0 ∈ U and all t ∈ [t0, t1]. In

that case, however, any v(x, t) would be topologically equivalent to w(x, t) ≡ 0 via the homeomorphism family
ht = Ft0

t for any fixed t0, as noted by Aulbach and Wanner (2000). Indeed, this choice of ht would simply map
any point x into the initial condition x0 at time t0 of the trajectory that is at x at time t . Therefore, we would
obtain ∂

∂t
ht (x) ≡ 0.
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2.2.8 Linearized Flow: The Equation of Variations
Infinitesimally small perturbations, ξ0, to an initial position x0 in the flow evolve in time
as vectors ξ(t) along the trajectory x (t; t0,x0). This evolution is described by the linearized
version of the ODE (2.17), defined as the equation of variations

Ûξ =∇v(x (t; t0,x0) , t)ξ. (2.45)

By direct substitution, one verifies that solutions of this linear ODE are of the form

ξ(t) =∇Ft
t0
(x0) ξ0, (2.46)

and hence the deformation gradient∇Ft
t0
(x0) is the normalized fundamental matrix solution

to the equation of variations. Differentiation of the second identity in Eq. (2.24) for the flow
map implies a similar group property for the deformation gradient:

∇Ft
t0
(x0) =∇Ft

s

(
Fs
t0
(x0)

)∇Fs
t0
(x0). (2.47)

We note that a direct substitution shows
[∇Ft

t0
(x0)

]−T to be the normalized fundamental
matrix solution of the adjoint equation of variations

Ûη = − [∇v(x (t; t0,x0) , t)]
T η, (2.48)

whose solutions can, therefore, be written as

η(t) =
[∇Ft

t0
(x0)

]−T
η0 =

[∇Ft0
t (x0)

]T
η0. (2.49)

By Abel’s theorem for fundamental matrix solutions of linear differential equations (see
Chicone, 2006), we conclude from Eq. (2.45) that

det∇Ft
t0
(x0) = exp

ˆ t

t0

∇ · v(x (s; t0,x0) , s) ds. (2.50)

Evaluating the general solution (2.46) requires knowledge of the deformation gradient,
which is typically only available numerically. An exception is the case of directionally steady
velocity fields v(x, t), defined as

Ûx = v(x, t) = α(t)v0(x) (2.51)

for some nonzero, scalar-valued function α(t) of time and a steady velocity field v0(x), whose
flow map we denote by Ft

t0
. By direct substitution, we find that the flow map of the ODE

(2.51) is given by

Ft
t0
= F

´ t
t0
α(s) ds

t0
. (2.52)

Then, for any directionally steady velocity field v(x, t), an explicit solution of its equation of
variations (2.45) is given by the scaled Lagrangian velocity

ξ1(t) = v0 (
Ft
t0
(x0)

)
. (2.53)

Applying the general solution formula (2.46) for the equation of variations to the specific
solution (2.53) gives the identity

v0 (
Ft
t0
(x0)

)
=∇Ft

t0
(x0) v0 (x0) , (2.54)
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where the flow map Ft
t0
is computable from formula (2.52) if the steady flow map Ft

t0
of

v0(x) is known.
For steady flows

(
α(t) ≡ 1 and hence Ft

t0
≡ Ft

t0

)
, a comparison of Eqs. (2.46) and (2.53)

gives

v (x(t; x0)) =∇Ft
t0
(x0) v (x0) , (2.55)

confirming that the Lagrangian velocity

v(t; x0) := v (x (t; t0,x0) , t) (2.56)

is a solution of the equation of variations for any steady flow. In other words, the Lagrangian
velocity v(t; x0) evolves as a material element in steady flows. For 2D steady flows, formula
(2.55) leads to an explicit expression for the general solution (2.46) (see Haller and Iacono,
2003).

The equation of variations (2.45) is generally nonautonomous: it is an explicitly time-
dependent system of linear differential equations, even if v is steady. As a consequence, the
matrix ∇Ft

t0
(x0) appearing in the solution (2.46) of this system is generally not a matrix

exponential.8 Accordingly, the eigenvalues of the matrix ∇v(x (t; t0,x0) , t), or of its time
integral,

´ t

t0
∇v(x (s; t0,x0) , s) ds, have no relevance for the stability of the trivial solution

ξ ≡ 0 of this system (Verhulst, 2000). More generally, there is no systematic recipe available
for solving nonautonomous linear ODEs: the eigenvalues and eigenvectors of their coefficient
matrices have no general relationship to the solutions of these systems, which typically have
to be found numerically. Example 2.1 illustrates this point for a planar Navier–Stokes velocity
field.

Example 2.1 Consider the spatially linear velocity field

Ûx = v(x, t) = A(t)x, A(t) =
(

sin 4t cos 4t + 2
cos 4t − 2 − sin 4t

)
, (2.57)

which solves the planar, incompressible Navier–Stokes equation for any Reynolds number
(Haller, 2005, 2015). The corresponding stream function is

ψ(x, t) =
1
2
(cos 4t + 2) x2

2 −
1
2
(cos 4t − 2) x2

1 +
1
2

x1x2 sin 4t, (2.58)

whose instantaneous level curves at three different times are shown in the upper subplots of
Fig. 2.11.

Along any trajectory x (t; t0,x0) of this velocity field, the equation of variations (2.45)
coincides with the velocity field:

Ûξ =∇v(x (t; t0,x0) , t)ξ = A(t)ξ. (2.59)

The eigenvalues of the coefficient matrix of this linear ODE are λ1,2 = ±i
√

5, independent of
the time t. By an ill-conceived analogy with the stability theory of autonomous linear ODEs,
one could conclude that the ξ = 0 solution of (2.59) is a center-type, neutrally stable fixed

8 A rare exception is when the matrix ∇v(x (t; t0, x0) , t) commutes with
´ t

t0
∇v(x (s; t0, x0) , s) ds (see Epstein,

1963). This happens, for instance, when ∇v(x (t; t0, x0) , t) is a diagonal matrix for a 2D or a 3D flow, or a
skew-symmetric matrix for a 2D flow.
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Figure 2.11 (Top) Streamlines obtained from the stream function (2.58) at three
different time instances in the original x-frame. (Bottom) Streamlines marking actual
trajectories of the same flow in the y-frame in which the velocity field becomes steady.

point, and hence all trajectories of Eq. (2.57) are neutrally stable, including its fixed point at
x = 0. However, passing to a rotating y-frame via the transformation

x = T(t)y, T(t) =
(

cos 2t − sin 2t
sin 2t cos 2t

)
,

transforms the velocity field (2.57) to the form

Ûy = T−1 [
AT − ÛT

]
y =

(
0 1
1 0

)
y, (2.60)

which is an autonomous, homogeneous linear system of ODEs. This system is explicitly
solvable and the eigenvalues λ1,2 = ±1 of the time-independent coefficient matrix in Eq.
(2.60) gives the correct characterization of the stability of the y = 0 fixed point: it is a
saddle-type fixed point and hence is unstable, as shown in the lower subplot of Fig. 2.11.

2.2.9 When Are the Eigenvalues of ∇v Relevant?
As Example 2.1 illustrates, even if the eigenvalues of a nonautonomous linear system of
ODEs – such as Eqs. (2.57) and (2.59) – are constant in time, these eigenvalues generally
have no relationship to the solutions or the stability type of the ODE.
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An exception to this general rule is when the explicit time-dependence of∇v(x (t; t0,x0) , t)
is slow enough (see, e.g., Haller, 2000; Haller and Iacono, 2003). In that case, a lin-
ear transformation ξ = T(t)η to the time-evolving eigenbasis of ∇v(x (t; t0,x0) , t) can
be constructed when such an eigenbasis exists, with T(t) containing the unit eigenvectors
of∇v(x (t; t0,x0) , t). As in Example 2.1, this transformation puts the equation of variations
(2.45) in the form

Ûη = T−1(t)
[∇v(x (t; t0,x0) , t)T(t) − ÛT(t)

]
η

=
[
Λ(t) + T−1(t) ÛT(t)

]
η, (2.61)

where Λ(t) is a diagonal matrix that contains the time-dependent eigenvalues of
∇v(x (t; t0,x0) , t). If ∇v (x (t; t0,x0) , t) is slowly varying, then ÛT(t) is small in norm and
hence the solutions of (2.61) remain close to those of the diagonalized system Ûη = Λ(t)η
for some time. The latter system is explicitly solved by η(t) =

[
exp
´ t

t0
Λ(s) ds

]
η(t0), which

shows that the time-integrated eigenvalues ∇v(x (t; t0,x0) , t) determine the stability of the
η = 0 fixed point of Eq. (2.61), and hence the linearized stability of the underlying trajectory
x (t; t0,x0) for some finite time. However, the slow-variation assumption on∇v(x (t; t0,x0) , t)
leading to this conclusion will, in general, be violated even in steady flows. Indeed, along
a nonequilibrium trajectory x (t; t0,x0) of a steady velocity field v(x), the velocity gradient
∇v(x (t; t0,x0)) will, in general, be highly unsteady.

In contrast, if the velocity field v is steady and has a fixed point at p, then the equation of
variations (2.45) along the trajectory x (t; t0,p) ≡ p is the autonomous ODE

ξ =∇v(p)ξ, (2.62)

which is solved by

ξ(t) =∇Ft (p) ξ0 = e∇v(p)tξ0. (2.63)

In this case, therefore, the fundamental matrix solution of the equation of variations is a
matrix exponential and hence the eigenvalues and eigenvectors of the velocity Jacobian
∇v(p) correctly determine the linearized flow geometry near p. Therefore, the linearized
streamline geometries we showed in Figs. 2.2 and 2.5 coincide with actual linearized fluid
trajectory patterns near stagnation points of steady flows.

2.2.10 Lagrangian Aspects of the Vorticity
Taking the curl of both sides of the incompressible Euler equation (2.16) and using some
classic vector identities gives the inviscid vorticity transport equation

Dω
Dt
= (∇v)ω, (2.64)

where D( · )

Dt
= ∂t ( · ) +∇ ( · ) v denotes the material derivative, the derivative of a quantity

( · ) along trajectories of the velocity field v. Along a trajectory x(t; t0,x0), the linear system
of ODEs (2.64) coincides with the equations of variations (2.45). Therefore, we must have

ω (x(t; t0,x0), t) =∇Ft
t0
(x0)ω (x0, t0) , (2.65)
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which means that the vorticity vector along a trajectory of an inviscid flow evolves as
a material element advected by the linearized flow along the same trajectory. The same
conclusion does not hold for viscous flows, because the viscous vorticity transport equation,

Dω
Dt
= (∇v)ω + ν∆ω, (2.66)

obtained through the same steps form the Navier–Stokes equation

∂tv + (∇v) v = −
1
ρ
∇p + ν∆v + g, (2.67)

with pressure p, density ρ, viscosity ν and constant of gravity g, contains the additional term
ν∆ω compared to the equation of variations. Using the variation of constants formula for
inhomogeneous linear systems of ODEs, we obtain

ω (x(t; t0,x0), t) =∇Ft
t0
(x0)ω (x0, t0) + ν

ˆ t

t0

∇Ft
s (x(s; t0,x0))∆ω (x(s; t0,x0), s) ds.

This expression is not explicit for ω, but shows that the non-material nature of the vorticity
is governed by the integral of the materially advected vorticity Laplacian, multiplied by the
viscosity.

For 2D flows with a velocity field v(x) = (u(x, y), v(x, y),0), the vorticity vector takes the
form ω = (0,0,ωz), with ωz(x) = ωz(x, y) denoting its z-component. In that case, only the
z-component of Eq. (2.66) is nonzero, yielding the 2D vorticity transport equation as a scalar
advection–diffusion equation

Dωz

Dt
= ν∆ωz . (2.68)

Accordingly, for inviscid flows (ν = 0), we obtain the conservation law

Dωz

Dt
= ∂tωz +∇ωz · v = 0. (2.69)

This means that the scalar vorticity is preserved along the trajectories of 2D incompressible
flows.

Taking the gradient of Eq. (2.69) then gives

∂t (∇ωz) +∇ (∇ωz) v = − (∇v)T∇ωz, (2.70)

or, equivalently,
D
Dt
∇ωz = − (∇v)T∇ωz . (2.71)

This shows that the vorticity gradient along trajectories satisfies the adjoint equation of
variations (2.48). Therefore, the adjoint solution formula (2.49) implies that the vorticity
gradient along a trajectory x(t; t0,x0) of a planar inviscid flows evolves according to the
formula

∇ωz (x(t; t0,x0), t) =
[∇Ft

t0
(x0)

]−T∇ωz (x0, t0) . (2.72)
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2.2.11 Dynamics Near Fixed Points of Steady Flows
We now discuss the implications of the linearized stability type of a fixed point p of a steady
velocity field v(x) (see Eq. (2.62)) for nearby fluid trajectories. We call p a hyperbolic fixed
point if Re λi , 0 holds for all eigenvalues λi of the matrix∇v(p).

By the Hartman–Grobman theorem (see Guckenheimer and Holmes, 1983), autonomous
dynamical systems are locally topologically conjugate to their linearization near hyperbolic
fixed points. This means that locally near p, there exists a continuous and continuously
invertible change of coordinates x = h

(
ξ
)
that transforms the trajectories of the velocity

field v(x) into those of ∇v(p)ξ, preserving the parametrization of orbits by time.9 Any
robust nonlinear trajectory pattern near an off-boundary fixed point is, therefore, a small
deformation of one of the hyperbolic instantaneous streamline patterns shown in Fig. 2.2 and
Fig. 2.5.

A notable nonhyperbolic fixed point in steady incompressible flows is one with a pair of
purely imaginary eigenvalues. In 2D steady flows, the linearized Lagrangian dynamics at
such an elliptic fixed point (see Fig. 2.2) nevertheless correctly represent nearby trajectory
patterns of the full flow, although the Hartman–Grobman theorem is formally inapplicable to
such a fixed point.10 In 3D, steady incompressible flows, nonhyperbolic fixed points are those
where∇v has either three zero eigenvalues or a purely imaginary pair and a zero eigenvalue.
For such fixed points, further analysis is needed beyond the linearization to understand the
local geometry of material trajectories.

Another frequent type of nonhyperbolic fixed point in steady flows is any point on a no-slip
boundary. In two dimensions, such boundary points occur along a parametrized curve γ(s),
implying v (γ(s)) ≡ 0. Differentiating this equation with respect to s and invoking the chain
rule, we obtain that∇v(γ(s)) must have a zero eigenvalue for each s, corresponding to the
eigenvector γ ′(s). Incompressibility then implies the other eigenvalue of ∇v(γ(s)) to be
zero as well, as we indicated for degenerate parabolic stagnation points in Fig. 2.2. One can,
however, remove this degeneracy from the equation of motion x =v (x) by introducing the
new time τ via the relation dτ/dt = y(t), with y(t) denoting the boundary-normal component
of trajectories (see Haller, 2004 and Surana et al., 2006). After this rescaling, the fixed points
along the no-slip boundary typically disappear or become hyperbolic fixed points, as we
noted for instantaneous stagnation points in §2.1.3 (see Fig. 2.5).

2.2.12 Poincaré Maps
Here we discuss how flows generated by temporally recurrent velocity fields can be analyzed
in a simpler fashion through stroboscopic images of evolving fluid particles.

9 More specifically, in a small enough, open neighborhoodU ⊂ Rn of the fixed pointp, we have e∇v(p)th−1 (x0) =

h−1 (Ft (x0)) for all initial conditions x0 ∈ U and for all times t satisfying Ft (x0) ∈ U .
10 This conclusion follows from the application of Lyapunov’s second method (see, e.g., Rouche et al., 1977,

Chicone, 2006) for stability analysis if one chooses the stream function ψ(x) as a Lyapunov function. This
Lyapunov function has a local minimum or maximum at elliptic fixed points, which are encircled by closed
streamlines in this case. By Eq. (2.5), the Lyapunov function ψ(x) is also constant along trajectories, implying
the stability of the elliptic fixed point by Lyapunov’s classic stability theorem.
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Time-Periodic Flows
An important special class of flows is generated by time-periodic velocity fields. Trajectories
of such flows satisfy an ODE of the specific form

Ûx = v(x, t), v(x, t) = v(x, t + T), (2.73)

for some time period T > 0, for x ∈ Rn with n = 2 or n = 3. The evolution rule for
trajectories, therefore, repeats itself periodically in time, enabling a simplified study of the
discretized evolution of trajectories over time intervals that are integer multiples of T .

Specifically, the Poincaré map (or period T-map), denoted Pt0 , of the ODE (2.73) is the
restriction of its flow map to one time period starting at time t0:

Pt0 := Ft0+T
t0

. (2.74)

We illustrate this definition for 2D flows in Fig. 2.12.

x
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t

t
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t
0
+T

x
0
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tify

P
t0
(x
0
)

x(t;t
0
,x
0
)

Figure 2.12 The definition of the Poincaré map Pt0 for a 2D velocity field whose
time dependence is T-periodic.

By the time-periodicity of the ODE (2.73), the flow map advancing particle positions
between times t0 + jT and t0 + ( j + 1)T is the same map for any integer j. Therefore, by the
group property of flow maps (see Eq. (2.24)), the repeated iteration of the single mapping
Pt0 gives the fluid particle positions at forward and backward times that are separated from
t0 by an integer multiple of T :

Ft0+kT
t0

= Ft0+kT
t0+(k−1)T ◦ · · · ◦ Ft0+T

t0
= Pt0 ◦ · · · ◦ Pt0︸          ︷︷          ︸

k

= Pk
t0
(x0) .

The infinite set of iterations
{
x0,Pt0 (x0) ,P2

t0
(x0) , . . . ,Pk

t0
(x0) , . . .

}
is called the orbit of Pt0

starting from the point x0. We also note the relation

Pt1 = Ft1+T
t1
= Ft1+T

t0+T
◦ Ft0+T

t0
◦ Ft0

t1
= Ft1

t0
◦ Pt0 ◦ Ft0

t1
=

(
Ft0
t1

)−1
◦ Pt0 ◦ Ft0

t1
, (2.75)

which shows that Poincaré maps based at any two different times, t0 and t1, are always topo-
logically conjugate. Such maps share the same orbit structure up to the smooth deformation
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represented byFt0
t1
(seeGuckenheimer andHolmes, 1983). Topological conjugacy is a stronger

form of the notion of topological equivalence introduced in §2.2.7: it does not allow for a
reparametrization of time (i.e., τ(x0, t) ≡ t must hold).

The computation of the Poincaré map for a general 2D, time-periodic velocity field is
implemented in Notebook 2.1.

Notebook 2.1 (PoincareMap2D) Computes the Poincaré map defined for a 2D, time-
periodic velocity data set.
https://github.com/haller-group/TBarrier/tree/main/TBarrier/2D/
demos/AdvectiveBarriers/PoincareMap2D

If v(x, t) is divergence-free, then the flow map is volume-preserving (see condition (2.40))
and so is the Poincaré map

det∇Pt0 = 1, vol
(
Pt0(V)

)
= vol (V) (2.76)

for any set V ⊂ U. For an incompressible time-periodic flow, the volume-preservation of its
Poincaré map has important global consequence on the dynamics, which we will discuss in
§§2.2.13–2.2.14.

While we will discuss the power of Poincaré maps in later chapters, Fig. 2.13 shows a
preliminary illustration of their usefulness. The figure shows experimentally observedmixing
patterns whose transport barriers (or lack thereof) are revealed by Poincaré maps computed
from trajectories of the corresponding model velocity fields.

Quasiperiodic Flows
Quasiperiodic time-dependence in a velocity field can be represented by rewriting the general
particle equation of motion (2.17) as

Ûx = v(x,Ω1t, . . . ,Ωmt), x ∈ Rn, t ∈ R, (2.77)

with a velocity field v whose time-dependence involves several frequencies, Ωj , not just
one.11 We assume that the frequencies Ωj are rationally independent, which means that the
frequency vector Ω = (Ω1, . . . ,Ωm) satisfies

〈Ω,k〉 , 0 (2.78)

for all integer vectors k ∈ Zm. If the frequencies were not rationally independent, then one
could select a smaller number of Ωj frequencies to represent the velocity field (2.77).

We can turn system (2.77) into a temporally periodic, higher-dimensional dynamical
system by introducing the phase vectorφ = (φ2, . . . , φm)with the individual phases φ j = Ωj t
for j = 2, . . . ,m. We view this phase vector as an element of an (m − 1)-dimensional torus

Tm−1 = S1 × · · · × S1︸          ︷︷          ︸
m−1

, (2.79)

11 Time periodic flows (m = 1) also fall in this general family.
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Figure 2.13 (Bottom) Dye visualization vs. (top) Poincaré maps for two time-
periodic flows. (a) Leapfrogging vortex pair visualized by smoke (reproduced from
Shariff et al., 2006, who used the experimental photographs of Yamada and Matsui,
1978). (b) Experiment involving a moving mixer rod in sugar syrup. The figure-
of-eight path of the mixing rod is shown in the upper Poincaré maps, which were
computed numerically from a single trajectory of a model flow. An upper and a lower
stagnation point is shown in red. Adapted from Thiffeault et al. (2011).

i.e., the (m − 1)-fold topological product of the unit circle S1 with itself. We can now rewrite
system (2.17) as

Ûx = v(x,Ω1t,φ),

Ûφ =
©«
Ω2
...

Ωm

ª®®¬ , (2.80)

a time-periodic dynamical system on the (n + m − 1)-dimensional phase space Rn × Tm−1

with period T = 2π/Ω1.
Only some of the trajectories of the extended dynamical system (2.80) will, however, rep-

resent trajectories of the ODE (2.17). Indeed, while one can formally select an arbitrary initial
phase vector φ(t0) as initial condition in the ODE (2.80), the phase variables (Ω2t, . . . ,Ωmt)
in the original system (2.77) are constrained to evolve together from the initial vector

φ0 = (Ω2t0, . . . ,Ωmt0) . (2.81)
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Therefore, the elements of this vector cannot be selected arbitrarily relative to each other and
relative to the first phase variable Ω1t0. For this reason, only an (n + 1)-dimensional family
of initial conditions of the (n+m− 1)-dimensional system (2.80) are relevant for the original
system (2.17).12

This relevant set of initial conditions is a dense set in the (n + m − 1)-dimensional phase
space because the curve of initial conditions satisfying Eq. (2.81) forms a dense curve in the
torus Tm−1 due to the assumed rational independence of the frequencies (Ω2, . . . ,Ωm). This
dense set, however, has measure zero within the torus: it can be covered by a countable set of
open subsets of the torus that have arbitrarily small total volume (total length for m = 2 and
total area for m = 3). As a consequence, the trajectories of the extended system (2.80) that
are related to the original quasiperiodic velocity field v(x,Ωt) form a measure zero set in the
phase space of Eq. (2.80). As a consequence, mathematical statements obtained for almost
all (i.e., all but a measure zero set of) trajectories of the extended system (2.80) do not carry
over to the original quasiperiodic velocity field (2.77). Examples of such statements are the
Poincaré recurrence theorem (§2.2.13) and Birkhoff’s ergodic theorem (§2.2.14).

For the extended system (2.80), we can define a Poincaré map in the same way as for
the time-periodic system (2.73). Indeed, for any fixed initial time t0 and for the time period
T = 2π/Ω1, an extended Poincaré map Pt0 can be defined on the space Rn × Tm−1 as

Pt0 : Rn × Tm−1 → Rn × Tm−1,

(x0, φ20, . . . , φm0) 7→ (x (t0 + T ; t0,x0,Ω1t0,φ0) , φ20 +Ω2T, . . . , φm0 +ΩmT) . (2.82)

We sketch the geometry of this Poincaré map for 2D flows (n = 2) in Fig. 2.14. Similar
Poincaré maps can be defined based on any of the periods Tj = 2π/Ωj associated with the
remaining frequencies for j = 2, . . . ,m.

x1

x2

identify2D invariant tori( 2, , m) m 1

(x0, 20, , m0)

t

t0

Pt0
(x0, 20, , m0)

t0 + 2π/Ω1

Figure 2.14 The definition of the PoincarémapPt0 for a 2D, temporally quasiperiodic
velocity field with m rationally independent frequencies.

By our discussion in §2.2.12, the Poincaré map Pt0 defined for the extended system (2.80)
is volume preserving precisely when the velocity field v is incompressible. As we noted
for the extended flow (2.80), only a dense but measure zero set of orbits of the Poincaré

12 This restriction leads to conservation laws in the phase space of system (2.80), as we will see in §4.3.2.
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2.2 Lagrangian Description of Fluid Motion 39

Pt0 correspond to sampled fluid trajectories of the original vector quasiperiodic vector field
(2.77). Such a dense set of admissible trajectories of Pt0 will give a good description of the
overall behavior of the fluid but is still only a measure zero set.

3D Steady Flows
As we have already pointed out in the previous section, any steady flow can be considered
time-periodic with any period. This enables the sampling of 3D steady flows with arbitrary
stroboscopic maps. These sampling maps, however, are still 3D, so there is no immediate
practical advantage from such a temporal discretization of the steady flow. However, there
is an alternative way to construct Poincaré maps in 3D flows that does bring dimensional
reduction, as we discuss next.

Consider a 2D surface Σ ⊂ R3 that is everywhere transverse (i.e., nontangent) to the
velocity field v(x). For such a Poincaré section Σ, the first-return map, or Poincaré map,
PΣ : Σ→ Σ can then be defined as the mapping that takes an initial condition x0 ∈ Σ into the
first intersection of the trajectory starting from x0 with Σ, if such an intersection exists (see
Fig. 2.15).

<latexit sha1_base64="ysUhi06TDrwOnb5dXAM0HyyYJLI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RjQkkS5idzCZD5rHMzAphyUd48aCIV7/Hm3/jbLIHTSxoKKq66e6KEs6M9f1vr7Syura+Ud6sbG3v7O5V9w8ejUo1oS2iuNKdCBvKmaQtyyynnURTLCJO29H4JvfbT1QbpuSDnSQ0FHgoWcwItk5q9+7ZUOBKv1rz6/4MaJkEBalBgWa/+tUbKJIKKi3h2Jhu4Cc2zLC2jHA6rfRSQxNMxnhIu45KLKgJs9m5U3TilAGKlXYlLZqpvycyLIyZiMh1CmxHZtHLxf+8bmrjqzBjMkktlWS+KE45sgrlv6MB05RYPnEEE83crYiMsMbEuoTyEILFl5fJ41k9uKj7d+e1xnURRxmO4BhOIYBLaMAtNKEFBMbwDK/w5iXei/fufcxbS14xcwh/4H3+AKMUjxs=</latexit>

⌃

<latexit sha1_base64="S5pVRe5ORFaReFtKb70eeZDwAfM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSi6LLoxmUF+4A2hMl00g6dTMLMpFhC/sSNC0Xc+ifu/BsnbRbaemDgcM693DMnSDhT2nG+rcra+sbmVnW7trO7t39gHx51VJxKQtsk5rHsBVhRzgRta6Y57SWS4ijgtBtM7gq/O6VSsVg86llCvQiPBAsZwdpIvm0PIqzHQZg95X7m5LWab9edhjMHWiVuSepQouXbX4NhTNKICk04VqrvOon2Miw1I5zmtUGqaILJBI9o31CBI6q8bJ48R2dGGaIwluYJjebq740MR0rNosBMFjnVsleI/3n9VIc3XsZEkmoqyOJQmHKkY1TUgIZMUqL5zBBMJDNZERljiYk2ZRUluMtfXiWdi4Z71XAeLuvN27KOKpzAKZyDC9fQhHtoQRsITOEZXuHNyqwX6936WIxWrHLnGP7A+vwB4jiTKA==</latexit>x0

P⌃(x0)

P2
⌃(x0)

Figure 2.15 A Poincaré map (or first-return map) PΣ and its second iterate, P2
Σ
,

defined on a section Σ transverse to a 3D, steady velocity field.

More specifically, using the flow map Ft of v, we can write

PΣ(x0) := Ftmin(x0)(x0), tmin(x0) = min
{
t > 0 : x0 ∈ Σ, Ft(x0) ∈ Σ

}
. (2.83)

The computation of the Poincaré map for a general 3D steady velocity field is implemented
in Notebook 2.2.

Notebook 2.2 (PoincareMap3D) Computes the Poincaré map defined for a 3D steady
velocity data set.
https://github.com/haller-group/TBarrier/tree/main/TBarrier/3D/
demos/AdvectiveBarriers/PoincareMap3D

If Σ and v are smooth and nΣ(x) denotes a unit normal field along Σ with the orientation
v · nΣ > 0,13 then the Poincaré map PΣ is a diffeomorphism that preserves the generalized
area element
13 It is always possible to choose such an orientation for the unit normal field nΣ globally on Σ. This is because the
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d Ã = v · nΣ dA, (2.84)

as we show in Appendix A.14. As a result, PΣ is generally not area preserving but falls in the
family of symplectic maps, defined as mappings that preserve a nondegenerate, closed two-
form (see, e.g., Abraham et al., 1988). For any symplectic map, appropriate local coordinates
can be constructed so that the map preserves the classic area element on Σ in the new
coordinates (see Appendix A.14). Therefore, the classification of the linearized Poincaré
map∇PΣ (p) at a fixed point p on Σ is identical to that of the Poincaré map of a 2D, time-
periodic flow (see Fig. 4.3). Global features of 2D symplectic maps coincide with those we
already mentioned for area-preserving maps in §4.1 (see Mackay et al., 1984; Meiss, 1992).

Similarly, a first-return map PΣ defined on a transverse cross section Σ of a compressible
but mass-preserving, steady, 3D flow preserves the generalized area element

d Ã = ρv · nΣ dA, (2.85)

where ρ(x) > 0 is the mass density field of the fluid (see Appendix A.14). Local and global
qualitative properties of Poincaré maps in such flows, therefore, also coincide with those of
period-T maps of time-periodic 2D flows.

2.2.13 Revisiting Initial Conditions: Poincaré’s Recurrence Theorem
Assume that the Poincaré map Pt0 of a T-periodic velocity field v(x, t) leaves a compact
domain D ⊂ U invariant, i.e., Pt0 (D) = D holds. This is the case, for instance, if the velocity
field v is defined on a closed and bounded domain D ≡ U surrounded by impenetrable
boundaries. In such cases, Poincaré’s recurrence theorem for measure-preserving maps
(Arnold, 1989) guarantees that almost all orbits of Pt0 return arbitrarily close to their initial
position x0 over long enough time intervals, as illustrated in Fig. 2.16. In other words,
trajectories that do not return arbitrarily close to their initial positions over long times form
a set of zero volume. Note that Poincaré’s theorem also guarantees repeated returns to D
occurring after an arbitrarily large threshold time t∗. This can be deduced by applying the
theorem to the measure-preserving map P̃t0 := PN

t0
, with the positive integer N selected so

that NT > t∗ holds.
Phrased in terms of the orbits of v(x, t) in continuous time, almost all trajectories of a time-

periodic incompressible flow defined on a closed and bounded domain revisit their initial
conditions repeatedly with arbitrarily high accuracy over arbitrarily long times. Since steady
flows can be considered periodic with any period, Poincaré’s recurrence theorem applies to
them as well. Remarkably, therefore, almost all trajectories of a steady incompressible flow
confined to a closed and bounded 2D or 3D domain revisit their initial positions arbitrarily
closely over arbitrary long times.

In its most general form, Poincaré’s recurrence theorem only assumes the conservation
of a measure (Arnold, 1989). As we have seen, compressible flows obeying the equation of
continuity conserve mass (see formula (2.43)), which makes their Poincaré maps measure
preserving. Therefore, almost all trajectories of a compressible but mass-preserving, steady

inner product v · nΣ cannot vanish anywhere on Σ by the transversality of v to Σ, and hence this inner product
cannot change sign on Σ.
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P
t0

k(x
0
)

x
0

P
t0
(x
0
)

D
U
δ

P
t0

N (x
0
)

Figure 2.16 The statement of the Poincaré recurrence theoremapplied to the Poincaré
map Pt0 on a compact invariant domain D. Almost all (i.e., all but a measure zero set
of) initial conditions x0 generate trajectories for Pt0 that return for some large enough
iteration N of Pt0 to any small neighborhood Uδ of x0.

or time-periodic flow defined on a closed and bounded domain revisit their initial positions
arbitrarily closely over arbitrarily long times.

At first sight, it might seem that Poincaré’s recurrence theorem is also applicable to the
quasiperiodic vector fields v(x,Ωt) with frequency vector Ω = (Ω1, . . . ,Ωm) discussed in
§2.2.12. Indeed, if the original quasiperiodic velocity field (2.77) is defined on a compact
invariant domain D, then the extended Poincaré map Pt0 , introduced in formula (2.82), is
defined on the compact set D × Tm, given that the m-dimensional torus, Tm, is compact.
This enables us to apply the Poincaré recurrence theorem to the extended map Pt0 and
conclude that almost all trajectories X(t; X0) = (x(t; x0),φ0 +Ωt) return arbitrarily close to
X0 = (x0,φ0) for large enough times t. Note, however, that Poincaré’s recurrence theorem
allows for the existence of ameasure zero set of nonrecurrent trajectories in the phase space of
the extended system (2.80). The trajectories in that extended phase space that correspond to
actual trajectories of the original quasiperiodic velocity field (2.77) also form just a measure
zero set. Therefore, for all we know from this argument, all trajectories of v(x,Ωt) may be
nonrecurrent. Consequently, recurrence in temporally quasiperiodic velocity fields does not
follow from Poincaré’s recurrence theorem.

The recurrence theorem, however, is applicable to Poincaré maps defined on transverse
sections of 3D steady, volume-preserving or mass-preserving flows (see §2.2.12). Namely,
on any compact spatial domain invariant under such a flow, typical trajectories will return to
any Poincaré section that is transverse to the velocity field. This recurrence guarantees the
existence of initial conditions arbitrarily close to Σ that will return to their arbitrarily small
neighborhoods. These returning trajectories will, therefore, come back arbitrarily close to Σ
over time and hence will have to intersect Σ at some point due to the transversality of the
vector field v to Σ. The same argument in backward time guarantees that such trajectories
also had an intersection with Σ at some point in the past, and hence these trajectories start
from, and return to, Σ.

Poincaré’s recurrence theorem, however, does not hold when the domain of definition D
of the field (2.77) is not a bounded invariant set, or when the time-dependence of the velocity
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field is not periodic or steady. Indeed, in the latter case one cannot associate an extended
dynamical system to v(x, t)with a compact phase space given that t must be taken fromall ofR.

2.2.14 Convergence of Time-Averaged Observables: Ergodic Theorems
Herewe discuss how temporal averages of observed scalar fields relate to their spatial averages
in perfectly mixing flows. We first state the results for averages taken under stroboscopic
samplings (Poincaré maps) of the flow, then directly for the full flow. We first consider a
Poincaré map Pt0 : S → S defined on a physical domain S. As a special case of the general
flow map Ft

t0
, a Poincaré map of a smooth vector field is always a diffeomorphism (see

§2.2.3). This will enable us to give a simplified treatment here relative to the more general
results of ergodic theory (see, e.g., Walters, 1982).

Ergodic theory is concerned with the dynamics of maps on measurable subsets of S. The
measures µ relevant for physically observable mixing in fluids are the volume when S is
a 3D flow domain, the area (or the scaled areas, given by formulas (2.84) or (2.85)) when
S is a 2D surface, and the arc length when S is a one-dimensional curve. Ergodic theory
additionally requires S itself to have a finite measure µ(S). For practical applications to
fluids, this finiteness assumption on µ amounts to the requirement that the domain S must be
bounded.

We will assume that Pt0 is measure preserving on S, i.e., the measure of any subset A ⊂ S
is preserved under iterations of Pt0 :

µ(A) = µ
(
Pi
t0
(A)

)
(2.86)

for all i ≥ 1. This requirement holds for Poincaré maps of time-periodic incompressible flows
and for extended Poincaré maps of time-quasiperiodic incompressible flows (see §2.2.12). As
already noted, if the flow is compressible but conserves mass, then its associated stroboscopic
maps are still measure preserving with respect to the fluid mass as a measure.

Note, however, that these conclusions about measure preservation only follow directly
from the volume- or mass-preservation of the flow when S has the same dimension as the
underlying velocity field v. For instance, if S ⊂ R2 is an invariant curve in a 2D flow, then
the 2D period-T map, Pt0 , restricted to S is generally not a measure-preserving map on
S. Examples of such invariant curves are stable or unstable manifolds of saddle-type fixed
points, to be discussed later in §4.1.1. Along such invariant curves, Pt0 shrinks or expands the
measure (arclength), respectively. Similarly, a measure-preserving Poincaré map, Pt0 , on a
3D domain does not generally preserve any nondegenerate measure on a 2D invariant surface
M = Pt0(M), as examples of 2D stable and unstable manifolds in 3D mappings illustrate.
In contrast, Poincaré maps defined as first-return maps to a 2D transverse section S of 3D,
steady, volume-preserving or mass-preserving flow are measure preserving on S with respect
to the areas computed from the area elements (2.84) or (2.85).

We assume that the mapping Pt0 is ergodic on S, i.e., the invariant sets of Pt0 have either
full measure or zero measure in S. This means that one cannot identify any experimentally
observable part of S that does not mix with the rest of S under iterations of Pt0 . For instance,
the Poincaré map shown in Fig. 2.13(a) is not ergodic on the flow domain because the
interiors of the two leapfrogging vortices are invariant subsets of nonzero area within the 2D
Poincaré section S. The same map, however, is ergodic when restricted to its closed invariant
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curves because orbits within such elliptic transport barriers (see §4.1.2) are quasiperiodic
and hence densely cover the barrier. As a consequence, there is no invariant set of nonzero
arc length within the barrier. As another example, the Poincaré map shown in Fig. 2.13(b) is
ergodic on its bounded 2D domain because the only invariant sets smaller than the full flow
domain are the one-dimensional stable and unstable manifolds of its fixed points.

Consider now an observable, i.e., a scalar field c(x) that is defined and integrable on the
domain S of an ergodic, measure-preserving mapping Pt0 .14 Because of the perfect mixing of
points in S under iterations of the ergodic map Pt0 , one hopes to uncover dynamical features
of Pt0 by averaging c(x) along the orbits

{
x0,Pt0(x0),P2

t0
(x0), . . .

}
of Pt0 . Indeed, Birkhoff’s

ergodic theorem (Birkhoff, 1931) guarantees that

lim
N→∞

1
N

N∑
k=1

c
(
Pk
t0
(x0)

)
=

1
µ(S)

ˆ
S

c(x) dµ

holds for almost all x0 ∈ S.15 In other words, with the possible exception of an unobservable
set of x0 locations, the temporal average of any observable along an orbit starting from x0
converges to the spatial average of that observable over the whole of S. For instance, if
c(x) = x is the x-coordinate component of x = (x, y, z), then the averaged x-coordinate along
a trajectory of a volume-preserving, ergodic Poincaré map, Pt0(x0), is equal to 1

µ(S)

´
x dµ,

the x-coordinate of the center of mass of the material set S.
In practice, velocity fields will generally not repeat themselves periodically in time and

hence concepts from ergodic theory will not apply to them. Nevertheless, ergodicity is a
useful conceptual tool for understanding and visualizing certain types of transport barriers
(or lack thereof) in idealized model flows. Ergodicity also helps in interpreting mixing
phenomena in low Reynolds number experiments whose velocity fields are very close to
time-periodic (see Chapter 4).

Amore general version of the classic ergodic theorem of Birkhoff is the Birkhoff–Khinchin
ergodic theorem, which also applies to continuous flows of steady velocity fields (seeCornfeld
et al., 1982). To state this theorem, we consider the flow map Ft : S → S of a steady velocity
field v(x) and a scalar field c(x) whose integral exists with respect to a measure µ defined
on the bounded and invariant 2D or 3D domain S. We assume that Ft preserves the measure
µ, i.e., all subsets A ⊂ S satisfy µ(Ft (A)) = µ(A) for all times. For an incompressible
flow, the measure µ preserved by Ft on the flow domain S is the volume or the area. For
a mass-preserving flow on S, the measure preserved by Ft is the mass. If, however, S is a
2D invariant surface in a 3D flow, then Ft does not necessarily preserve any nondegenerate
measure on S, even if it preserves volume or mass on the full 3D flow domain.

In analogy with the discrete case already discussed, we also assume that Ft is ergodic on
S, i.e., the measure of any invariant sets of Ft in S is either zero or equal to µ(S). Then,
according to the Birkhoff–Khinchin ergodic theorem (Cornfeld et al., 1982), for almost all
initial conditions x0 ∈ S,we must have

14 The observable c can also be a time-periodic scalar field, c(x, t) ≡ c(x, t + T ), where T is the time period
of the underlying velocity field v(x, t). The scalar field c does not even have to be smooth, but it has to be
integrable with respect to the measure on S.

15 Here “almost all” refers to all points x0 ∈ S with the possible exception of a measure-zero subset of S.
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lim
t→∞

1
t

ˆ t

0
c (Fs(x0)) ds = lim

t→∞

1
t

ˆ t

0
c (F−s(x0)) ds = lim

t→∞

1
2t

ˆ t

−t

c (Fs(x0)) ds

=
1
µ(S)

ˆ
S

c(x) dµ. (2.87)

In other words, with the possible exception of an unobservable set of x0 initial conditions,
the forward, backward and full temporal averages of any observable along an orbit starting
from x0 converge to the spatial average of the observable over the whole of S.

As we will see in examples in Chapter 4, typical 3D steady flows are not ergodic on their
full domain D butmight admit open ergodic subsets.More frequently, they admit 2D invariant
surfaces (invariant tori) or 1D closed invariant curves (periodic orbits) restricted to which
Ft becomes ergodic. Applying the Birkhoff–Khinchin ergodic theorem on the full domain
D does not guarantee anything for averages of scalars taken over these lower-dimensional
invariant surfaces given that those have measure zero in D. Thus, for all we know, these
surfaces may be part of the set of locations that violate the Birkhoff–Khinchin ergodic
theorem. The statement (2.87), therefore, is only meaningful for lower-dimensional invariant
sets S ⊂ D if the theorem is applicable directly to S with respect to a measure preserved by
Ft on S. This measure is generally not known explicitly, but its existence is guaranteed by
the type of dynamics (quasiperiodic or periodic) on these lower-dimensional invariant sets.

2.2.15 Lagrangian Scalars, Vector Fields and Tensors
We refer to scalar, vector and tensor fields defined over initial trajectory positions x0, initial
times t0 and current times t as Lagrangian quantities.

Specifically, we refer to scalar fields defined at arbitrary initial conditions (x0, t0) for all
times t as Lagrangian scalar fields. For instance, a concentration field c(x, t) subject to advec-
tion and diffusion can be expressed as a Lagrangian scalar field ĉ(x0, t0; t) := c

(
Ft
t0
(x0), t

)
,

depending on the current time t, initial time t0 and the initial position x0 of the material
trajectory that is at the point x = Ft

t0
(x0) at time t.

A Lagrangian vector field is a time-dependent vector field u(x0, t0; t) comprising vectors
based in the tangent spaces Tx0R

n of Rn at the initial positions x0 ∈ U. These vectors
remain based at the points x0 for all times t ∈ [t1, t2] but they generally vary as functions
of t. In contrast, an eigenvector field αi(x0; t0, t) of a Lagrangian tensor field (to be defined
below) is not a Lagrangian vector field because it has no well-defined length or orientation.
Accordingly, we refer to such eigenvector fields as Lagrangian direction fields, in line with
our terminology in §2.1.1 for the Eulerian case.

Despite their commonly used names, the Lagrangian velocity v
(
Ft
t0
(x0), t

)
and the La-

grangian vorticity ω
(
Ft
t0
(x0), t

)
are not Lagrangian vector fields, as they comprise vectors

based at the time-evolving current location x(t). In other words, these vector fields are point-
wise elements of the tangent space TFt

t0
(x0)R

n, as opposed to Tx0R
n,which would be required

for a Lagrangian vector field.
In contrast, the pullback velocity field

[
Ft
t0

]∗ v and the pullback vorticity field
[
Ft
t0

]∗
ω,

defined respectively as
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Ft
t0

]∗ v (x0, t0; t) =
[∇Ft

t0
(x0)

]−1 v
(
Ft
t0
(x0), t

)
,[

Ft
t0

]∗
ω (x0, t0; t) =

[∇Ft
t0
(x0)

]−1
ω

(
Ft
t0
(x0), t

)
, (2.88)

are Lagrangian vector fields, as both are elements of Tx0R
n for all values of t. In general,

the pullback of a vector field with respect to a mapping is the most natural way to transport
a vector field defined at current particle positions back to a vector field defined over initial
positions, as shown in Fig. 2.17 for the velocity field. Similarly, the pushforward velocity
field, [

Ft
t0

]
∗

v (x, t; t0) =∇Ft
t0
(x0)v (x0, t0) , (2.89)

is a Lagrangian vector field with respect to the inverse flow map, comprising vectors defined
in the tangent spaces TxR

n of current positions in Ft
t0
(U) (see Fig. 2.17).
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v⇤(x̃, t) := rFt
t0(x̃0)v(x̃0, t0)

Figure 2.17 The geometry of the pullback v∗ =
[
Ft
t0

]∗ v and the pushforward v∗ =[
Ft
t0

]
∗

v of a velocity field v under the flow map Ft
t0
.

A Lagrangian tensor A(x0, t0; t) is a linear mapping of the tangent spaces Tx0R
n into

themselves at all initial positions x0 for all times t. Despite its formal dependence on the
same arguments, the deformation gradient ∇Ft

t0
(x0) is not a Lagrangian tensor but a two-

point tensor (see our discussion leading to formula (2.25) and Fig. 2.6), as it is a mapping
between two different tangent spaces. In contrast, the right Cauchy–Green strain tensor (see
§5.2.1),

Ct
t0
(x0) =

[∇Ft
t0
(x0)

]T∇Ft
t0
(x0), (2.90)

maps from the domain of∇Ft
t0
(x0) into the range of

[∇Ft
t0
(x0)

]T. Therefore, by Eqs. (2.25)
and (2.33), we can view this tensor pointwise as a linear operator
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Ct
t0
(x0) : Tx0R

n → Tx0R
n,

which renders Ct
t0
(x0) a Lagrangian tensor. By the same argument, the left Cauchy–Green

strain tensor (see §5.2.1), defined as

Bt
t0
(x0) =∇Ft

t0
(x0)

[∇Ft
t0
(x0)

]T
, (2.91)

maps from the domain of
[∇Ft

t0
(x0)

]T into the range of∇Ft
t0
(x0). Therefore, by Eqs. (2.25)

and (2.33), we can view this tensor pointwise as a linear operator

Bt
t0
(x0) : TFt

t0
(x0)R

n → TFt
t0
(x0)R

n, (2.92)

which renders Bt
t0
(x0) a Lagrangian tensor for the backward flow map

[
Ft
t0
(x0)

]−1
= Ft0

t (xt).
Alternatively, we can view

Bt
t0

(
Ft0
t (x)

)
: TxR

n → TxR
n (2.93)

as an Eulerian tensor (see §2.1.1). A direct calculation involving the definitions (2.90) and
(2.91) of the right and left Cauchy–Green strain tensors, respectively, gives the relation[

Ct
t0

]−1
=

[∇Ft
t0

]−1 [∇Ft
t0

]−T
=∇Ft0

t

[∇Ft0
t

]T
= Bt0

t . (2.94)

Let the eigenvalue problem associated with the symmetric, positive-definite tensor Ct
t0
(x0)

be defined as
Ct

t0
ξi = λiξi, (2.95)

with the eigenvalues
0 < λ1(x0; t0, t1) ≤ · · · ≤ λn(x0; t0, t1) (2.96)

and orthonormal eigenvectors ξi(x0; t0, t1) ∈ Tx0R
n. We note that��∇Ft

t0
(x0)ξi

�� = √〈∇Ft
t0
(x0)ξi,∇Ft

t0
(x0)ξi

〉
=

√〈
ξi,Ct

t0
(x0)ξi

〉
=

√
λi, (2.97)

and hence the deformation gradient stretches the eigenvectors of Ct
t0
(x0) by a factor equal to

the square root of the corresponding eigenvalue.
Applying the operator ∇Ft

t0
(x0) to both sides of the eigenvalue problem (2.95), using

formula (2.97), then dividing both sides of the resulting equation by
√
λi and defining the

unit vectors ηi via the relation

ηi(x0; t0, t1) =
1
√
λi
∇Ft

t0
(x0)ξi(x0; t0, t1) (2.98)

gives
Bt

t0
ηi = λiηi, (2.99)

with the eigenvalues 0 < λ1 ≤ · · · ≤ λn coinciding with the eigenvalues of Ct
t0
introduced in

formula (2.95). Therefore, Eq. (2.99) shows that the spectrum (i.e., the set of eigenvalues) of
Bt

t0
coincides with the spectrum of Ct

t0
. The corresponding unit eigenvectors ηi for Bt

t0
are

given in Eq. (2.98).
In summary, the linearized flow maps the unit eigenvectors of the right Cauchy–Green

strain tensor into the direction of the eigenvectors of the left Cauchy–Green strain tensor,
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scaled by the square root of the corresponding eigenvalue. Based on this observation, we
sketch the geometry of the strain eigenvalues and eigenvectors in Fig. 2.18.

3

2

1

x0

trajectory

in nitesimal
    sphere

0

Ft0

t
1 = 1 1

Ft0

t
2 = 2 2

Ft0

t
3 = 3 3

x t

in nitesimal
   ellipsoid

t = Ft0

t0

Ct0

t (x0 ) i = i i

Bt0

t (x0 ) i = i i

Figure 2.18 Deformation of a unit sphere based at x0 under the linearized flow map
∇Ft

t0
(x0) into an ellipsoid along a trajectory xt = Ft

t0
(x0). The principal axes of

the ellipsoid have lengths equal to the square roots of the eigenvalues λi of the right
Cauchy–Green strain tensorCt

t0
(x0). These axes are aligned with the unit eigenvectors

ηi of the left Cauchy–Green strain tensor Bt
t0
(x0).

Switching the times t0 and t in formula (2.94) and taking the inverse of both sides gives

Ct0
t =

[
Bt

t0

]−1
. (2.100)

Therefore, by formula (2.99), for the spectrum of the backward-time right Cauchy–Green
tensor Ct0

t we have

spect
(
Ct0

t

(
Ft
t0
(x0)

) )
=spect

( [
Ct

t0
(x0)

]−1
)
=

{
1

λ1(x0; t0, t1)
, . . . ,

1
λn(x0; t0, t1)

}
, (2.101)

even though Ct0
t ,

[
Ct

t0

]−1, as pointed out in Haller and Sapsis (2011). Furthermore, by Eq.
(2.100), the unit eigenvectors of Ct0

t coincide with those of Bt
t0
and hence we have

Ct0
t ηi =

1
λi
ηi, ηi(x0; t0, t) = ξi(x0; t0, t), i = 1,2,3. (2.102)

In two dimensions, if both pairs (ξ1,ξ2) and (η1,η2) are selected to have the same orientation,
then we can define an orthogonal rotation tensor Rπ/2 so that

ξ2 = Rπ/2ξ1, η2 = Rπ/2η1. (2.103)

In §2.3.2, we will also identify the linear operator, represented by the polar rotation tensor
Rt

t0
, that rotates all unit eigenvectors ξi into the unit eigenvectors ηi in any dimension. For

2D flows, using the tensor Rt
t0
and the relations (2.103), we therefore obtain

〈ξ1,η1〉 =
〈
ξ1,Rt

t0
ξ1

〉
=

〈
R−1
π/2ξ2,Rt

t0
R−1
π/2ξ2

〉
=

〈
ξ2,Rt

t0
R1
π/2R−1

π/2ξ2

〉
=

〈
ξ2,Rt

t0
ξ2

〉
= 〈ξ2,η2〉 , (2.104)
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because all rotations commute in two dimensions.
We also mention a further Lagrangian strain tensor that has been used in continuum

mechanics. This tensor, the Green–Lagrange strain tensor, is defined as

Et
t0
=

1
2

[
Ct

t0
− I

]
, (2.105)

and measures how close the material deformation is to the identity mapping. Note that
the eigenvectors of this tensor coincide with the eigenvectors of Ct

t0
with corresponding

eigenvalues λi(x0; t0, t) − 1 for i = 1, . . . ,n.
We close by noting a property for 2D (n = 2) symmetric, nonsingular Lagrangian tensors

A(x0, t0; t) = AT(x0, t0; t), such as the strain tensors Ct
t0
and Bt

t0
for 2D flows. For any such

tensor, one can verify in coordinates the identity

JTAJ = (det A)A−1, J =
(

0 1
−1 0

)
, (2.106)

which we will use repeatedly in later chapters.

2.3 Lagrangian Decompositions of Infinitesimal Material Deformation
Various approaches exist for identifying qualitatively different components of the deformation
of material elements along trajectories. These decompositions have proven useful in isolating
material properties of perceived purely advective transport barriers (or coherent structures).
For later use, we survey here three available decompositions of the deformation gradient: the
singular value decomposition (SVD), the polar decomposition (PD) and the dynamic polar
decomposition (DPD). While these decompositions into rotation and deformation apply to
more general linear operators as well, we will only discuss them here for the deformation
gradient.

2.3.1 Singular Value Decomposition (SVD)
By a fundamental result in linear algebra, the nonsingular linear operator ∇Ft

t0
(x0) can be

decomposed into a product

∇Ft
t0
= Pt

t0
Σt

t0

[
Qt

t0

]T
, (2.107)

wherePt
t0
andQt

t0
are proper orthogonalmatrices andΣt

t0
is a positive-definite diagonalmatrix

(Golub and Van Loan, 2013). Therefore, Pt
t0
and Qt

t0
represent rotations and Σt

t0
represents the

combination of n independent, uniaxial compressions or extensions in mutually orthogonal
directions.

Specifically, in terms of the strain eigenvalues λi and unit eigenvectors ξi and ηi defined
in the Cauchy–Green strain eigenvalue problems (2.95) and (2.99), we have

Σt
t0
=

©«
√
λ1 . . . 0
...

. . .
...

0 . . .
√
λn

ª®®¬ , Pt
t0
= [ηi, . . . ,ηn] , Qt

t0
= [ξi, . . . ,ξn] . (2.108)
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In this context, the ηi are called the left singular vectors and the ξi the right singular vectors
of the deformation gradient ∇Ft

t0
. The diagonal entries

√
λi are called the corresponding

singular values of ∇Ft
t0
. Apart from the ordering of singular values and singular vectors, the

decomposition (2.107) is unique. The geometry of the two rotations,
[
Qt

t0

]T and Pt
t0
, together

with that of the stretching-compression Σt
t0
, is shown in Fig. 2.19. The figure also illustrates

that

Σt
t0

: Tx0R
n → TxR

n (2.109)

is a two-point tensor (see §2.2.15), just like the deformation gradient∇Ft
t0
.

Ft0

t
3 = 3 3
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t
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t
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T
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t
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t
T
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t
T
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t
T

3
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t
T

3

Qt0

t
T

2

Figure 2.19 The geometric meaning of the rotation tensors Qt
t0
and Pt

t0
, together

with the triaxial stretching-compression tensor Σtt0 involved in the singular value
decomposition (2.107) of the deformation gradient∇Ft

t0
.

A classic use of SVD is for the solution of linear algebraic equations. In our context, SVD is
a quick and accurate tool for identifying the eigenvectors of the right and left Cauchy–Green
strain tensors, which arise in several coherent structure detection methods discussed in later
chapters.

The computation of the SVD of the deformation gradient for 2D and 3D flows is imple-
mented in Notebooks 2.3 and 2.4, respectively.
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Notebook 2.3 (SVD2D) Computes the singular value decomposition (SVD) of the defor-
mation gradient∇Ft

t0
for a 2D velocity data set.

https://github.com/haller-group/TBarrier/tree/main/TBarrier/2D/
demos/Decompositions/SVD2D

Notebook 2.4 (SVD3D) Computes the singular value decomposition (SVD) of the defor-
mation gradient∇Ft

t0
for a 3D velocity data set.

https://github.com/haller-group/TBarrier/tree/main/TBarrier/3D/
demos/Decompositions/SVD3D

2.3.2 Polar Decomposition
By the polar decomposition theorem, at any initial location x0, the deformation gradient
∇Ft

t0
(x0) can also be uniquely decomposed as

∇Ft
t0
= Rt

t0
Ut

t0
= Vt

t0
Rt

t0
, (2.110)

with the proper orthogonal rotation tensor Rt
t0
, the symmetric and positive definite right

stretch tensor Ut
t0
and the symmetric and positive definite left stretch tensor Vt

t0
(Gurtin et al.,

2010; Truesdell, 1992). One can verify by direct substitution into Eq. (2.110) that these
tensors must be of the form

Ut
t0
=

[
Ct

t0

]1/2
, Vt

t0
=

[
Bt

t0

]1/2
, Rt

t0
=∇Ft

t0

[
Ut

t0

]−1
=

[
Vt

t0

]−1∇Ft
t0
, (2.111)

with Ct
t0
and Bt

t0
denoting the right and left Cauchy–Green strain tensors, respectively, as de-

fined in Eqs. (2.90) and (2.91). The decomposition (2.110) means that a general deformation
can locally always be viewed as triaxial stretching and compression followed by a rigid-body
rotation, or as a rigid-body rotation followed by triaxial stretching and compression, as shown
in Fig. 2.20. The figure also illustrates that

Rt
t0

: Tx0R
n → TxR

n (2.112)

is a two-point tensor (see §3.50), whereas

Ut
t0

: Tx0R
n → Tx0R

n,

Vt
t0

: TxR
n → TxR

n (2.113)

are Lagrangian and Eulerian tensors, respectively (see §§2.2.15 and 2.1.1).
The polar rotation tensor Rt

t0
also turns out to be the closest rotation tensor to∇Ft

t0
in the

Frobenius matrix norm (see Neff et al., 2014). A further geometrically appealing property
of the polar rotation is obtained by applying the deformation gradient to the Cauchy–Green
eigenvector ξi and using the relations (2.110)–(2.111), which yields

∇Ft
t0
ξi = Rt

t0
Ut

t0
ξi = Rt

t0

[
Ct

t0

]1/2
ξi =

√
λiRt

t0
ξi .

Comparing this formula with Eq. (2.98) then gives the result

Rt
t0
ξi = ηi, (2.114)
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Figure 2.20 The geometric meaning of the polar rotation tensor, the left stretch
tensor and the right stretch tensor, with their actions illustrated on an infinitesimal
material cube.

showing that the polar rotation rotates the eigenvectors of Ct
t0
into those of Bt

t0
. Substituting

the polar decomposition formula (2.110) into the definitions (2.95) and (2.99) of the right
and left Cauchy–Green strain tensors, respectively, we obtain

Ct
t0
= Ut

t0
Ut

t0
=

[
Ut

t0

]T Ut
t0
, Bt

t0
= Vt

t0
Vt

t0
=

[
Vt

t0

]T Vt
t0
.

This shows that the singular values and singular vectors of Ut
t0
coincide with the eigenvalues

and eigenvectors of Ct
t0
; a similar relationship holds between Vt

t0
and Bt

t0
.

The computation of the polar decomposition of the deformation gradient for 2D and 3D
flows is implemented in Notebooks 2.5 and 2.6, respectively.

Notebook 2.5 (PD2D) Computes the polar decomposition (PD) of the deformation gradient
∇Ft

t0
for a 2D velocity data set.

https://github.com/haller-group/TBarrier/tree/main/TBarrier/2D/
demos/Decompositions/PD2D

Notebook 2.6 (PD3D) Computes the polar decomposition (PD) of the deformation gradient
∇Ft

t0
for a 3D velocity data set.

https://github.com/haller-group/TBarrier/tree/main/TBarrier/3D/
demos/Decompositions/PD3D

To associate a rotation angle with polar rotations, we recall the Rodrigues formula (see Basar
and Weichert, 2000) by which Rt

t0
, as any 3D rotation, can be written in the form

Rt
t0
= I + sinΘP + (1 − cosΘ)P2, P = ©«

0 −k3 k2
k3 0 −k1
−k2 k1 0

ª®¬ , |k| = 1. (2.115)

Here, the skew-symmetric matrix P is determined by the unit vector k = (k1, k2, k3) defining
the axis of the rotation performed by Rt

t0
, and the polar rotation angle (PRA),

PRAt
t0
(x0) := Θ(x0), (2.116)
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is the angle of rotation generated by Rt
t0
around k.

By formula (2.112), Rt
t0
is a two-point tensor and hence its trace is no longer an invariant

(see §3.5).16 Keeping that in mind, we take the trace of both sides of the equation in
(2.115), Farazmand and Haller (2016) obtain that the polar rotation angle satisfies

cos
[
PRAt

t0
(x0)

]
=

1
2

(
trRt

t0
(x0) − 1

)
. (2.117)

Here, we have pointed out the dependence of this rotation angle on the initial position x0, as
well as on the initial time t0 and the current time t.

Choosing {ξi}3i=1 (i.e., the eigenbasis of the right Cauchy–Green strain tensor Ct
t0
(x0)) as

a basis in Tx0R
n and parallel-translating this basis to obtain another basis in TxR

n, we can
specifically compute trRt

t0
in this set of bases and use formula (2.114) to obtain

trRt
t0
=

3∑
i=1

〈
ξi,Rt

t0
ξi

〉
=

3∑
i=1

〈ξi,ηi〉 , (2.118)

with the inner product computed by parallel-translating ξi into TxR
n.17 Thus, as noted by

Kulkarni (2021), Eqs. (2.117)–(2.118) imply that in the chosen set of bases, the PRA can be
computed from the strain eigenvectors as

PRAt
t0
(x0) = cos−1

[
1
2

(
3∑
i=1

〈ξi,ηi〉 − 1

)]
, (2.119)

with ξi and ηi computed as right and left singular vectors of∇Ft
t0
(x0), as in Eq. (2.108).

For 2D flows, setting k3 = 1 and k1 = k2 = 0, then taking the trace of both sides of Eq.
(2.115) and using formula (2.104) gives

cosPRAt
t0
(x0) =

1
2
trRt

t0
(x0) =

1
2

2∑
i=1

〈
ξi,Rt

t0
ξi

〉
= 〈ξ1,η1〉 = 〈ξ2,η2〉 , (2.120)

yielding the 2D analogue of the polar rotation angle formula (2.119) in the form

PRAt
t0
(x0) = cos−1 〈ξ1,η1〉 = cos−1 〈ξ2,η2〉 , (2.121)

as noted by Kulkarni (2021).
The polar decomposition is an appealing tool in continuum mechanics for decomposing

linearized material deformation between fixed initial and final configurations. This decompo-
sition, however, also has a lesser known disadvantage under variations of the initial and final
configurations. Namely, polar rotation tensors computed over adjacent time intervals cannot
be superimposed, i.e., they do not form a self-consistent family of subsequent rigid-body
rotations. Specifically, for any two adjacent time intervals [τ, s] and [s, t], we generally have

Rt
τ , Rt

sRs
τ, (2.122)

16 The Rodrigues formula is for rotation matrices mapping a linear space into itself, and hence the formula (2.115)
is only valid if the basis used in Tx0R

n is parallel-translated to TFt
t0
(x0)R

n . This implies that the Rodrigues
formula and the PRAt

t0
(x0) depend on the frames of reference chosen in Tx0R

n and TFt
t0
(x0)R

n .
17 In other words, the inner product can be evaluated as if ξi and ηi were elements of the same linear space.
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as illustrated in Fig. 2.21 (see Haller, 2016). This dynamical inconsistency implies, for
instance, that Rt

τ cannot be obtained from a sequence of incremental computations starting
from time τ.

x(s)
x(t)

R s
t

Aτ

Bτ

x(τ )

Rτ
t ≠ R s

tRτ
s

Rτ
s

As = Rτ
s Aτ

At = R s
tRτ

s Aτ

Bt = Rτ
t Bτ

Figure 2.21 Dynamical inconsistency of polar rotations. The action of the polar
rotations Rt

τ , Rs
τ and Rt

s , illustrated on two infinitesimal, geometric volume elements
Aτ and Bτ , based at the same initial point at time τ. The evolution of Aτ is shown
incrementally under the subsequent rotations Rs

τ and Rt
s . The evolution of the volume

Bτ (with initial orientation identical to that of Aτ) is shown under the polar rotation
Rt
τ . All volume elements shown are nonmaterial: they only serve to illustrate how

orthogonal directions are rotated by the various polar rotations involved.

The dynamical inconsistency of Rt
τ does not imply any flaw in the mathematics of the

polar decomposition, yet creates a need for another decomposition that can identify a truly
materially evolving (and hence dynamically consistent) rotation component for the time-
evolving deformation gradient∇Ft

t0
. Next, we describe such a decomposition.

2.3.3 Dynamic Polar Decomposition (DPD)
To address the dynamic inconsistency (2.122) of the classic polar rotation, Haller (2016)
derives a dynamic version of this decomposition for time-dependent families of linear oper-
ators. We spell out this general result here specifically for the deformation gradient. For the
statement of the main result, we will use the spin tensor W and the rate-of-strain tensor S
defined in Eq. (2.1). The spatial mean of the spin tensor over the entire evolving fluid mass
of interest, D(t) = Ft

t0
(D(t0)), will be denoted by the mean-spin tensor

W̄(t) =
1

vol D(t)

ˆ
D(t)

W(x, t) dV . (2.123)
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As shown by Haller (2016), the deformation gradient∇Ft
t0
(x0) admits a unique decom-

position of the form
∇Ft

t0
= Ot

t0
Mt

t0
= Nt

t0
Ot

t0
, (2.124)

where the proper orthogonal dynamic rotation tensor, Ot
t0
, is the deformation gradient of

a purely rotational flow, and the right dynamic stretch tensor Mt
t0
and the transpose of the

non-degenerate left dynamic stretch tensor Nt
t0
are deformation gradients of purely straining

flows. Specifically, these tensors satisfy the initial-value problems
ÛOt
t0
=W

(
Ft
t0
(x0), t

)
Ot

t0
, Ot0

t0
= I, (2.125)

ÛMt
t0
=

[
Ot0

t S
(
Ft
t0
(x0), t

)
Ot

t0

]
Mt

t0
, Mt0

t0
= I, (2.126)

d
dt0

(
Nt

t0

)T
= −

[
Ot

t0
S

(
Ft0
t (xt), t0

)
Ot0

t

] (
Nt

t0

)T
,

(
Nt

t

)T
= I. (2.127)

The geometric meaning of the dynamic tensors Ot
t0
, Mt

t0
and Nt

t0
is similar to that of Rt

t0
,Ut

t0

and Vt
t0
shown in Fig. 2.20. Correspondingly, Ot

t0
is also a two-point tensor, while Mt

t0
and

Nt
t0
are Lagrangian and Eulerian tensors, respectively. However, the dynamic rotation tensor

Ot
t0
, as the fundamental matrix solution of a linear ordinary differential equation (see Arnold,

1978), satisfies the group property

Ot
t0
= Ot

sOs
t0
, s, t ∈ [t0, t1], (2.128)

and hence is dynamically consistent. The tensor Ot
t0
represents twice the mean material

rotation observed for any small, passive rigid object (vorticity meter) carried on the surface
of fluid flows in experiments (see Shapiro, 1961; Haller, 2016). This tensor also admits a
further factorization

Ot
t0
= Φt

t0
Θt

t0
, (2.129)

into the relative rotation tensorΦt
t0
and themean rotation tensorΘt

t0
, which satisfy the initial

value problems
ÛΦ
t

t0
=

[
W

(
Ft
t0
(x0), t

)
− W̄ (t)

]
Φt

t0
, Φt0

t0
= I,

ÛΘ
t

t0
=

[
Φt0

t W̄ (t)Φt
t0

]
Θt

t0
, Θt0

t0
= I,

(2.130)

with the mean-spin tensor W̄ (t) defined in Eq. (2.123). The relative rotation tensor, Φt
t0
, as

the fundamental solution matrix of a linear ordinary differential equation, is also dynami-
cally consistent. The mean rotation tensor, Θt

t0
, however, solves a differential equation with

memory, just as Mt
t0
and Nt

t0
do. Indeed, the coefficient matrices of these linear differential

equations depend explicitly on the initial time t0. As a consequence, Θt
t0
, Mt

t0
and Nt

t0
are not

dynamically consistent.
The computation of the dynamic polar decomposition of the deformation gradient for 2D

and 3D flows is implemented in Notebooks 2.7 and 2.8, respectively.

Notebook 2.7 (DPD2D) Computes the dynamic polar decomposition (DPD) of the defor-
mation gradient∇Ft

t0
for a 2D velocity data set.

https://github.com/haller-group/TBarrier/tree/main/TBarrier/2D/
demos/Decompositions/DPD2D
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Notebook 2.8 (DPD3D) Computes the dynamic polar decomposition (DPD) of the defor-
mation gradient∇Ft

t0
for a 3D velocity data set.

https://github.com/haller-group/TBarrier/tree/main/TBarrier/3D/
demos/Decompositions/DPD3D

Haller (2016) shows that the instantaneous axis of rotation associated with the relative
rotation tensor Φt

t0
is aligned with the vector −

[
ω

(
Ft
t0
(x0), t

)
− ω̄(t)

]
, where

ω̄(t) =
1

vol D(t)

ˆ
D(t)

ω(x, t) dV (2.131)

is the mean vorticity of the fluid mass D(t). The total accumulated rotation (total angle swept
with no regard to direction) experienced by any vector under the action of Φt

t0
around this

time-varying rotation axis is given by the intrinsic dynamic rotation angle

ψt
t0
(x0) =

1
2

ˆ t

t0

��ω(Fs
t0
(x0), s) − ω̄(s)

�� ds, (2.132)

as illustrated in Fig. 2.22.

x(t)

(x , ) ( )

(x , ) ( )

(x(t ),t ) (t )

(x(t ),t ) (t )

r(t) = t r

r x

t (x )
Intrinsic dynamic rotation angle:

Figure 2.22 The geometry of the intrinsic dynamic rotation angle as the total angle
swept by an arbitrary initial vector rτ (based at an initial location xτ at time τ) under
the action of the relative rotation tensor Φt

τ (xτ). The vector r̂(t) denotes the rotated
position of rτ under the evolving axis of rotation of Φt

τ (xτ).

This rotation angle is independent of the frame of reference and can be computed incre-
mentally over any two times τ and t. Consequently, ψt

t0
(x0) gives an appealing alternative

to the polar rotation angle Θt
t0
(x0) for extracting a local rigid body rotation in the flow in a

self-consistent manner. The intrinsic dynamic rotation angle also creates a direct connection
with vorticity and hence is more connected with the fluid-mechanical intuition for local
rotation in the flow.

At the same time, ψt
t0
(x0) depends on the choice of the reference fluid mass D(t) with

respect to which the mean vorticity ω̄(s) is computed. In practice, one chooses D(t) to
be the full domain over which the velocity field is known. This arguably gives the best-
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informed assessment for the deviation of local rotation from the overall rotation of the fluid,
as represented by the integrand in Eq. (2.132).

2.4 Are the Eulerian and Lagrangian Approaches Equivalent?
The Lagrangian and Eulerian descriptions of fluid motion are sometimes portrayed as equiv-
alent alternatives, with each defined in a different frame. For steady flows, or more generally,
directionally steady velocity fields of the form (2.51), this statement is correct: an instan-
taneous snapshot of the velocity field holds all information about the past and future of all
material trajectories. Specifically, streamlines coincide with particle trajectories.

Another rare direct connection between Eulerian and Lagrangian evolution is known for
steady incompressible inviscid flows. In such a flow, any Lagrangian instability manifested
by a positive Lyapunov exponent (such as the instability caused by a saddle-type stagnation
point or by chaotic trajectories) implies that the flow, as a whole, is unstable. Specifically,
typical small, incompressible and inviscid perturbations to the velocity field will grow in
time at a rate that is at least as fast as the rate of the Lagrangian instability within the flow
(see Appendix A.3).

For general unsteady flows, however, the only connection between the Eulerian and La-
grangian descriptions is that the Lagrangian particle trajectories are solutions of the differ-
ential equation (2.17), whose right-hand side is the Eulerian velocity field. This differential
equation has solutions that generally differ vastly from those of the differential equation (2.3)
for streamlines. To illustrate this, we consider the 2D unsteady velocity field

v(x, t) =
(
− sin ct cos ct + a

cos ct − a sin ct

) (
x
y

)
− b

(
y2 − x2

2xy

)
, (2.133)

with the parameters a, b, c ∈ R (see Pedergnana et al., 2020). A direct substitution shows
that the velocity field (2.133) is a solution of the 2D version of the Navier–Stokes equation
(2.67) for any value of the viscosity, given that the Laplacian of Eq. (2.133) vanishes.
This velocity field has simple spatiotemporal behavior as it depends periodically on time and
quadratically on space. In the left subplot of Fig. 2.23, two broadly used Eulerian diagnostics,
the instantaneous streamlines and the Okubo–Weiss elliptic region (see §3.7.1) are shown
for Eq. (2.133).

This picture is qualitatively similar for all other initial times t0 , 0 as well, except that
the features rotate around the origin as t0 is varied. Therefore, the two Eulerian diagnostics
suggest the presence of a vortical feature in the center of the flow. In the right subplot of
the same figure, the same Eulerian analysis is shown, but now with the result of some key
Lagrangian flow structures superimposed. Specifically, the stable and unstable manifolds18

of the fixed point at the origin are shown, indicating chaotic mixing due to the presence of
a homoclinic tangle (see §4.1.1). This implies the complete lack of a closed, vortical region
surrounding the origin in the Lagrangian dynamics. Therefore, the two Eulerian diagnostics
provide a false positive for a coherent vortex that would inhibit mixing. Their prediction
would be inconsistent with any dye or particle experiment carried out on this flow.
18 These manifolds can be constructed numerically by observing that the flow linearized at the origin becomes

steady in an appropriate rotating frame (see Pedergnana et al., 2020), and hence the tangent spaces of stable
and unstable manifolds at the origin are known explicitly for all times.
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Figure 2.23 Eulerian and Lagrangian features in the Navier–Stokes velocity field
(2.133) for a = 2, b = 0.1 and c = −4 at time t = 0. (Left) Streamlines (black) and
Okubo–Weiss elliptic region (yellow), with the latter marking points where vorticity
dominates the rate-of-strain eigenvalues in norm. (Right) Same but with the stable
and unstable manifolds of the Poincaré map P0 = Fπ/40 (see §4.1.1) superimposed.

As a second example, Fig. 2.24 shows the results of similar analyses for the parameter
configuration for a different parameter configuration in the Navier–Stokes velocity field
(2.133) (see Pedergnana et al., 2020). In this case, the complete absence of closed streamlines
and Okubo–Weiss elliptic domains in the region shown suggests hyperbolic (stretching)
behavior, whereas the Lagrangian dynamics is, in fact, elliptic (vortical) around the origin.
Therefore, the two Eulerian diagnostics, provide a false negative for a coherent vortex, which
again would be in contradiction with the results of flow visualization experiments carried
out on this velocity field.

The 2D Navier–Stokes velocity-field family (2.133), depending on the planar variable
x = (x, y), also generates an exact solution family for the full, 3D Navier–Stokes equation
(2.67) (see Majda and Bertozzi, 2002). Indeed, if we partition the 3D spatial variable as
(x, z) and seek a corresponding 3D Navier–Stokes velocity field (v(x, t),w(x, t)) and pressure
field p(x, t), then substitution of this trial solution into Eq. (2.67) with g = 0 yields the
advection–diffusion equation

wt +∇w · v = ν∆w (2.134)

for the unknown vertical velocity componentw(x, t). This equationwill have a unique solution
w(x, t) for any initial vertical-velocity distribution w(x, t0) = w0(x), with the simplest solution
being w(x, t) ≡ 0. The latter choice extends our 2D conclusions above about discrepancies
between the Eulerian and the experimentally observable Lagrangian flow descriptions to 3D
flows.

One might still argue that instantaneous Eulerian features, such as streamlines, vorticity
and strain are more relevant for the physics of fluids than Lagrangian particle behavior.
This view, however, is in sharp contrast with the considerations involved in the heuristic
derivations of common Eulerian diagnostics (see §3.7.1), which all start out by seeking
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Figure 2.24 Eulerian and Lagrangian features in the Navier–Stokes velocity field
(2.133) for a = 0.5, b = −0.015 and c = −4 at time t = 0. (Left) Streamlines and
Okubo–Weiss hyperbolic region (white background), with the latter marking points
where the rate-of-strain eigenvalues dominate the vorticity in norm. (Right) Same but
with iterations of a grid of initial conditions under the Poincaré map P0 = Fπ/40 (see
§4.1.1) superimposed in blue.

to classify regions of qualitatively different fluid particle motion. All these derivations are
then invariably faced with the insurmountable challenge of classifying solution behavior in
nonlinear, non-autonomous differential equations without solving for trajectories of these
equations. It is at that point that the derivations depart from the originally stated objective
and replace Lagrangian considerations with instantaneous Eulerian reasoning.

The assessment from Eulerian diagnostics applied to the example velocity field (2.133)
also depends on the frame of the observer. In contrast, the assessment of Lagrangian flow
topology provided by the Poincaré map is independent of the frame and hence is intrinsic to
the flow. This discrepancy highlights the importance of the principle of objectivity (or frame-
indifference) as a fundamental requirement for self-consistent flow structure detection, as
proposed in the 1970s by Drouot (1976), Drouot and Lucius (1976) and Lugt (1979). We
will elaborate on this principle and its implications in Chapter 3.

2.5 Summary and Outlook
In this chapter, we have surveyed the basic Eulerian and Lagrangian concepts along with
results that we will be using throughout this book to describe transport barriers and coherent
structures. On the Eulerian side, we have recalled the notion of the velocity field v(x, t),
its gradient ∇v and the unique decomposition of ∇v as a sum of the symmetric rate-of-
strain tensor S and the skew-symmetric spin tensor W. We have also reviewed the notions
of stagnation points, streamlines and streamsurfaces from a geometric perspective, with an
emphasis on their structurally stable types.

Among the Lagrangian tools discussed, the central notion has been the flow map, Ft
t0
,

which enables a geometric treatment of sets of fluid particle trajectories (pathlines) in the
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phase space of the dynamical system generated by a velocity field v(x, t). Material lines,
material curves and fixed points can then all be viewed as invariant manifolds of this map.
Spatially or temporally recurrent flows are often easier to study under stroboscopic samplings
of Ft

t0
, which has led us to discuss temporal and spatial Poincaré maps.

We have reviewed detailed properties of the deformation gradient,∇Ft
t0
, including various

decompositions of this two-point tensor that seek to identify different components of material
deformation. The deformation gradient is also key to the definition of the various strain tensors
we have introduced to describe large deformations in fluid flows. We have also surveyed
available global mathematical predictions for volume- or mass-conserving flows confined to
compact domains. These predictions include the repeated return of trajectories arbitrarily
close to their initial positions (Poincaré’s recurrence theorem) and the convergence of time-
averages of observables to their spatial averages in perfectly mixing flows (Birkhoff’s ergodic
theorem). While neither of these theorems is applicable to particle motion in temporally
aperiodic velocity fields, both theorems will be important in the study of transport barriers
to steady and temporally recurrent flows in Chapter 4.

Our survey of Lagrangian results has focused entirely on deterministic flows, even though
Lagrangian fluid mechanics has traditionally emphasized statistical methods. This tradition
has beenmotivated by the complexity of turbulence,which continues to inspire stochastic flow
models and their statistical analysis (see, e.g., Dryden et al., 1941; Monin and Yaglom, 2007;
Sabelfeld and Simonov, 2012). In contrast, this book focuses on flows known as specific
velocity data sets, which in turn generate specific deterministic (albeit often complex),
finite-time, nonautonomous dynamical systems for fluid motion.19 For this reason, we have
collected here the most important tools that arise in the data-driven global analysis of
structurally stable invariant sets of nonautonomous dynamical systems. In Chapter 8, we will
also discuss barriers for stochastic transport, but will find that such barriers can still be fully
captured from the data-driven analysis of the deterministic component of the velocity field
under small stochasticity.

19 We will study structurally stable transport barriers in such a realization of a fluid flow, as those barriers are
guaranteed to persist in close enough realizations of the same flow.
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