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Abstract

Let X1, X2, . . . be a sequence of independent and identically distributed random variables
with some continuous distribution function F . Let L(n) and X(n) denote the nth record
time and the nth record value, respectively. We refer to the variables Xi as near-nth-
record observations if Xi ∈ (X(n) − a, X(n)], with a > 0, and L(n) < i < L(n + 1).
In this work we study asymptotic properties of the number of near-record observations.
We also discuss sums of near-record observations.
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1. Introduction

Let X1, X2, . . . be independent and identically distributed (i.i.d.) random variables (RVs).
The sequences of record values X(n) and record times L(n) are defined as follows:

L(1) = 1,

L(n + 1) = min{j : j > L(n), Xj > XL(n)}, (1.1)

X(n) = XL(n) (n ≥ 1).

If in (1.1) the second condition on j is replaced by Xj ≥ XL(n), then the above definitions
become the definitions of weak record values Xw(n) and weak record times Lw(n). Note that
there is no difference between records and weak records when the initial distribution function
F(x) = P{X1 ≤ x} is continuous; see Arnold et al. (1998) and Nevzorov (2000).

The distribution function of Xw(n) in the discrete case was derived by Stepanov (1992) using
the auxiliary variables ξi , defined as follows. Suppose that F is concentrated on nonnegative
integers and F(m) < 1 for any m ≥ 0. Let the variable ξi , i ≥ 0, count the number of weak
record values that belong to the point i, i.e. ξi = k, k ≥ 0, if exactly k weak record values have
been registered at i. The following lemma was given in Stepanov (1992).
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Lemma 1.1. The variables ξ0, ξ1, . . . are independent and P{ξi = k} = piq
k
i , k ≥ 0, where

1 − pi = qi = P{X1 = i}
P{X1 ≥ i} .

In addition,

P{Xw(n) > m} = P{ξ0 + · · · + ξm < n}.
Recently, Stepanov et al. (2003) derived the distribution function of Xw(n) for the case in

which F is arbitrary.
The works of Eisenberg et al. (1993), Brands et al. (1994), Baryshnikov et al. (1995), Qi

(1997), and others have concentrated on the problem of ‘a tie for first place’. Let X1, X2, . . . be
i.i.d. integer-valued RVs, let Mn = max{X1, X2, . . . , Xn}, and let Kn = ∑n

i=1 1(Xi = Mn).
All the authors just mentioned have studied the behaviour of Kn, which is the number of sample
observations achieving the sample maximum in the discrete case. As a natural continuous
analogue of Kn, Pakes and Steutel (1997) considered the variable

Kn(a) = card{j : Xj ∈ (Mn − a, Mn]},

where a > 0 and X1, X2, . . . , Xn are i.i.d. from some continuous distribution. The variable
Kn(a) is then the number of near-maximum observations, i.e. the number of observations in
the sample that have been registered in the random interval (Mn − a, Mn]. Since Pakes and
Steutel (1997), the behaviour of Kn(a) has been studied in detail by many authors, including
Li (1999), Pakes (2000), Hu and Su (2003), and Balakrishnan and Stepanov (2005).

Acknowledging the similarity in approaches to studying maximum values and record values,
and following the lead of Pakes and Steutel (1997), who suggested Kn(a) as a continuous
analogue of Kn, here we study counting variables that comprise a continuous analogue of the
variables ξn defined above.

Let X1, X2, . . . be i.i.d. RVs with a continuous distribution function F(x). Fix a > 0 and
say that Xj is a near-nth-record if L(n) < j < L(n + 1) and Xj ∈ (X(n) − a, X(n)]. We
define the number of near-nth-records to be

ξn(a) = card{j : L(n) < j < L(n + 1), Xj ∈ (X(n) − a, X(n)]} (n ≥ 1).

Observe that

0 ≤ ξn(a) ≤ L(n + 1) − L(n) − 1 =: �(n + 1) − 1, (1.2)

and that ξn(0) = 0 and ξn(∞) = �(n + 1) − 1. The variable �(n) is referred to in the theory
of records as the interrecord time.

In this paper we study properties of the ξn(a) in the case of continuous F . Basic distributional
results for ξn(a) are given in Section 2. In Section 3, the number of near-record observations
is investigated in the case in which the right-extremity of F , rF = inf{x : F(x) = 1}, is finite.
Asymptotic results for ξn(a) in the case rF = ∞ are presented in Section 4, and results for
sums of near-record observations, in the same case, are presented in Section 5. We also mention
possible insurance applications of the results in Section 5. Finally, some examples are presented
in Section 6.
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2. Distributional results for the number of near-record observations

In the sequel, we denote the survivor function 1 − F(x) by F(x).

Theorem 2.1. The probability mass function of ξn(a), a > 0, n ≥ 1, is given by

P{ξn(a) = k} =
∫

R

β(x, a){1 − β(x, a)}k dFn(x) (k ≥ 0), (2.1)

where

Fn(x) = 1

(n − 1)!
∫ − log F(x)

0
e−uun−1 du

is the distribution function of X(n) and

0 ≤ β(x, a) = F(x)

F (x − a)
≤ 1.

Proof. First, we have

P{ξn(a) = k} =
∫

R

P{ξn(a) = k | X(n) = x} dFn(x).

In order to estimate the conditional probability P{ξn(a) = k | X(n) = x}, we employ Nev-
zorov’s (1986) deletion argument. From the sequence of independent Xi , i > L(n), we delete
all those Xi for which Xi ≤ x − a, leaving the sequence Xi1 , Xi2 , . . . , L(n) < i1 < i2 < · · · ,
comprising only those Xi that are equal to at least x −a. This deletion procedure does not alter
the number of near-records in the interval (x − a, x]. Let Yj , j ≥ 1, denote random variables
that are conditionally independent given X(n) = x and such that

P{Yj ≤ y} = P{Xij ≤ y | Xij ≥ x − a} for y ≥ x − a.

Then
P{ξn(a) = k | X(n) = x} = P{Y1 ≤ x, . . . , Yk−1 ≤ x, Yk > x},

which readily yields (2.1).

Theorem 2.1 asserts that, conditionally on X(n) = x, the number of near-records has a
geometric distribution with parameter β(x, a). This is dual to the result, used by Pakes and Li
(1998), stating that, conditionally on the sample maximum, the number of near-maxima has a
shifted binomial distribution.

Theorem 2.2. The probability mass functions of

(ξn(a1), . . . , ξn+t−1(at )) and (ξn(a1), ξn+t−1(at )),

for a1 > 0, . . . , at > 0, k1 ≥ 0, . . . , kt ≥ 0, and t ≥ 2 are respectively

P{ξn(a1) = k1, . . . , ξn+t−1(at ) = kt }
=

∫
R

∫ ∞

xn

· · ·
∫ ∞

xn+t−2

β(xn, a1){1 − β(xn, a1)}k1 · · · β(xn+t−1, at )

× {1 − β(xn+t−1, at )}kt dH1(xn+t−1, xn+t−2) · · · dH1(xn+1, xn) dFn(xn)
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and
P{ξn(a1) = k1, ξn+t−1(at ) = kt }

=
∫

R

∫ ∞

xn

β(xn, a1){1 − β(xn, a1)}k1β(xn+t−1, at ){1 − β(xn+t−1, at )}kt

× dHt−1(xn+t−1, xn) dFn(xn),

where

Ht(y, x) = 1

(t − 1)!
∫ − log(F (y)/F (x))

0
e−uut−1 du (y ≥ x).

Proof. These results can be proved by means of the deletion argument used to prove
Theorem 2.1.

3. The case of finite right-extremity

Although it is obvious that the number of record values grows unboundedly, it is less
obvious that the number of near-record values occurring between successive record times grows
unboundedly. The following result shows that this is in fact the case if rF < ∞, and gives
some idea of the growth rate. We denote a nonnegative random variable having the standard
exponential density function e−x by E .

Theorem 3.1. Suppose that F is continuous and rF < ∞. Then,

(i) for every fixed a > 0,

ξn(a) → ∞ (almost surely (a.s.)) (n → ∞); (3.1)

(ii) F(X(n))ξn(a)
d−→ ωE , where ω = F(rF − a); and

(iii) n−1 log ξn(a)
p−→ 1.

Here, ‘
d−→’ and ‘

p−→’ denote convergence in distribution and in probability, respectively.

Proof. Formula (2.1) yields

P{ξn(a) ≤ k} =
∫

R

[1 − {1 − β(x, a)}k+1] dFn(x).

Expressing the integrand in terms of A = F(x) and B = F(x − a), and using the bound
Bk+1 − (B − A)k+1 ≤ (k + 1)ABk , yields the crude bound

P{ξn(a) ≤ k} ≤ (k + 1)

∫
R

F(x)

F (x − a)
dFn(x).

Since
∑

n≥1 dFn(x) = dF(x)/F (x), we obtain the inequality

∞∑
n=1

P{ξn(a) ≤ k} ≤ (k + 1)

∫
R

dF(x)

F (x − a)
.

The right-hand integral is bounded above by 1/F (rF − a) < ∞, and (3.1) follows from the
first Borel–Cantelli lemma.
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Theorem 2.1 implies that the probability generating function of ξn(a) is

E[sξn(a)] = E

[
β(X(n), a)

1 − s(1 − β(X(n), a))

]
. (3.2)

However, β(X(n), a) ∼ F(X(n))/ω almost surely as n → ∞, so, upon setting

s = e−θF (X(n)) = 1 − θF (X(n))(1 + o(1)) a.s., for θ > 0,

we see that the term in square brackets in (3.2) converges almost surely to (1 + ωθ)−1, the
Laplace–Stieltjes transform of ωE . Thus, part (ii) follows from the dominated convergence
theorem.

The known representation (Nevzorov (2000, pp. 66, 69))

− log F(X(n))
d= ζ1 + · · · + ζn,

where the summands are independent and have the standard exponential distribution, together
with the weak law of large numbers imply that (− log F(X(n)))/n

p−→ 1, and part (iii) follows
from part (i).

Remark 3.1. Extending the proof of part (ii) using the central limit theorem implies that

log ξn(a) − n√
n

d−→ N(0, 1),

but part (iii) provides the best description of the asymptotic growth of ξn(a).

Let us compare the case in which F is continuous and rF < ∞ with the discrete analogue
of this situation, i.e. in which X1, X2, . . . are i.i.d. integer-valued variables concentrated on
0, 1, . . . , m. In this case, it is known that ξm = ∞ a.s.; see Arnold et al. (1998) or Stepanov
(1992).

It is also interesting to look at the asymptotic behaviour of �(n) in the context of inequality
(1.2) and Theorem 3.1. The theory of records states that �(n) ∼ en a.s. (as n → ∞) for any
continuous distribution function F ; see, for example, Galambos (1987).

4. Limiting results with infinite extremity

For the remainder of this paper, we take rF = ∞ and we assume the existence of the limit

lim
x→∞ β(x, a) = lim

x→∞ β(x + a, a) = β(a). (4.1)

Clearly 0 ≤ β(a) ≤ 1. Assuming that this limit exists for all positive a, Pakes and Steutel
(1997) used it to classify distribution tails as ‘thin’ if β(a) = 0, ‘medium’ if 0 < β(a) < 1,
and ‘thick’ if β(a) = 1.

Remark 4.1. At first sight, it appears that the existence of (4.1) for one value of a > 0 entails
its existence for all a > 0. Balakrishnan and Stepanov (2005) gave an example showing that
this is not the case. A result of Karamata (Bingham et al. (1987, p. 54)) implies that (4.1) holds
for all a > 0 if and only if it holds for an arbitrary pair a1, a2 > 0 such that a1/a2 is irrational.

In the sequel, G(p) denotes a random variable having the geometric distribution with mass
p(1 − p)k at k = 0, 1, . . . .
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Theorem 4.1. Assume that F is continuous, that rF = ∞, and that (4.1) holds for some a > 0.
Then, as n → ∞,

(i) ξn(a)
p−→ ∞ if β(a) = 0,

(ii) ξn(a)
d−→ G(β(a)) if 0 < β(a) < 1, and

(iii) ξn(a)
p−→ 0 if β(a) = 1.

Proof. We first prove part (ii). If F(x) > 0 then

Fn(x) ≤ − log F(x)

n! → 0 (n → ∞). (4.2)

It follows from (4.1) that if k ≥ 0 and x0 is sufficiently large, (2.1) can be expressed as

P{ξn(a) = k} =
∫ x0

−∞
β(x, a){1 − β(x, a)}k dFn(x) +

∫ ∞

x0

β(a){1 − β(a)}k dFn(x) + o(1).

The first integral on the right-hand side is bounded above by Fn(x0), whence part (ii) follows
from (4.2). Trivial alterations give parts (i) and (iii).

By applying (4.2) for E[ξn(a)] = ∫
R
{(1−β(x, a))/β(x, a)} dFn(x), we obtain the following

result.

Theorem 4.2. Assume that F is continuous, that rF = ∞, and that (4.1) holds for some
a > 0.

(i) If β(a) = 0 then Eξn(a) → ∞.

(ii) If 0 < β(a) < 1 then Eξn(a) → (1 − β(a))/β(a).

(iii) If β(a) = 1 then Eξn(a) → 0.

These statements can be explained in the following manner. For a thin-tailed distribu-
tion (β(a) ≡ 0), the record value X(n) jumps at the ‘beginning’ of the tail of the distri-
bution, i.e. the value of X(n) is comparatively small. Consequently, the random interval
(X(n) − a, X(n)] contains an almost constant portion of the growing number of observations
XL(n)+1, . . . , XL(n+1)−1, whose number, �(n)−1, tends to ∞ as n → ∞. Consequently, ξn(a)

also tends to ∞. On the other hand, for a thick-tailed distribution the gaps X(n) − X(n − 1)

become increasingly large. Consequently, (X(n) − a, X(n)] tends to be empty with high
probability.

Our next principal results are strong law versions of parts (i) and (iii) of Theorem 4.1.

Theorem 4.3. Assume that F is continuous, that rF = ∞, and, for some fixed b > 0, that

I (b) =
∫

R

F(x − b) − F(x)

F
2
(x)

dF(x) < ∞. (4.3)

Then

(a) β(a) = 1 and ξn(a)
p−→ 0 for any a > 0, and

(b) ξn(a) → 0 a.s. if 0 < a ≤ b.
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Proof. (a) Li (1999) has shown that (4.3) implies that the number of near-maximaKn(b) → 1
a.s. It follows that β(b) = 1, since Pakes and Steutel (1997) showed this to be necessary and
sufficient for convergence in probability. Hence, β(a) = 1 if a ∈ [0, b] and, if b < a ≤ 2b,
then β(x, a) = β(x, b)β(x−b, a−b) → 1. The first assertion of part (a) follows by induction,
and the second from Theorem 4.1(iii).

(b) Next, it is clear that I (a) < ∞ if a ≤ b, and it follows from (2.1) that

∞∑
n=1

P{ξn(a) > 0} =
∫

R

F(x − a) − F(x)

F (x)F (x − a)
dF(x).

Since β(a) = 1, it follows that this integral converges if and only if (4.3) holds. Assertion (b)
follows from the first Borel–Cantelli lemma.

Suppose that (4.3) holds. The question of whether I (a) < ∞ for all b > a appears to be
related to O-versions of de Haan theory (Bingham et al. (1987, Chapter 3)). To explore this, we
introduce some notation for regular variation. Denote by Rd the set of (measurable) functions
R(x) that are regularly varying (at infinity) with index d (a real number), i.e. for all λ > 0, we
have limx→∞ R(λx)/R(x) = λd . This implies the representation R(x) = xdL(x) (for x > 0),
where L(x) is slowly varying, i.e. L(x) ∈ R0. A slowly varying function has the canonical
form

L(x) = C(x) exp

[∫ x

1

ε(y)

y
dy

]
,

where C(x) → C > 0 and ε(x) is an index function such that ε(x) → 0 as x → ∞. We
say that L(x) is normalized slowly varying if C(x) ≡ C, and we denote this subclass by R0.
Finally, we say that R(x) is extended regularly varying, R(x) ∈ ER, if there exist real constants
c and d, c ≥ d , such that

λ−c ≤ lim inf
x→∞ R(λx)/R(x) ≤ lim sup

x→∞
R(λx)/R(x) ≤ λ−d (0 < λ ≤ 1).

This is an adaptation of the definition given by Bingham et al. (1987, p. 65) and is better suited
to our needs.

With reference to Theorem 4.3(a), observe that β(a) ≡ 1 if and only if F(x) = 1/L(ex),
where L(y) ∈ R0. Observe that

∫ ∞
1 (ε(y)/y) dy = ∞ since F(∞) = 0; thus, if ε(x) ∈ R−d

then 0 ≤ d ≤ 1. We can now state the following addendum to Theorem 4.3.

Lemma 4.1. Suppose that F(x) = 1/L(ex), where L ∈ R0 has index function ε(x) ∈ ER.
Then either I (a) < ∞ for all a > 0 or for no a > 0. In the first case, ξn(a) → 0 (a.s.) for all
a > 0.

Proof. The condition L(y) ∈ R0 implies that, for any a > 0,

F(x − a)

F (x)
− 1 ∼

∫ exp[x]

exp[x−a]
ε(y)

y
dy.

The uniform convergence theorem for extended regular variation (Bingham et al. (1987, p. 66),
altered for λ ≤ 1) can be used to show that, for all sufficiently large x, the integral is bounded
between aε(ex)(1 + o(1)) and aε(ex)ead(1 + o(1)). It follows that

a

b
e−bc ≤ lim inf

x→∞
F(x − a) − F(x)

F (x − b) − F(x)
≤ lim sup

x→∞
F(x − a) − F(x)

F (x − b) − F(x)
≤ a

b
ead
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and, hence, I (a) < ∞ if and only if I (b) < ∞. This proves the first assertion, and the second
follows from Theorem 4.3.

We conclude that if (4.3) holds for all b > 0 then, for any a > 0, there is a random variable
Na such that ξn(a) ≡ 0 if n ≥ Na , i.e. all observations occurring between L(n) and L(n + 1)

are smaller than X(n) − a, and, hence, that attaining the record value X(n + 1) implies that
X(n + 1) − Xj > a if L(n) < j < L(n + 1) and n ≥ Na .

Pakes (2005) gave conditions ensuring that (4.3) holds for all b > 0. One is that F(x) ∈ R−α

for α ≥ 0. Also, if F(x) = exp[−R(x)], where R(x) ∈ Rα , then (4.3) holds if 0 ≤ α < 1
2 ,

and does not hold if α > 1
2 .

Our next result gives a condition allowing us to assert almost-sure convergence in Theo-
rem 4.1(i).

Theorem 4.4. Assume that F is continuous, that rF = ∞, and, for some fixed b > 0, that

J (b) =
∫

R

dF(x)

F (x − b)
< ∞. (4.4)

Then

(a) β(a) = 0 for all a > 0, and

(b) if a ≥ b then ξn(a) → ∞ a.s.

Proof. (a) The integrand in (4.4) is nondecreasing and, hence, F(x)/F (x − b) → 0,
i.e. β(a) = 0 if a ≥ b. If a < b then

β(x, a) = β(x − b, a + b)
F (x)

F (x − b)
≤ β(x − b, a + b) → 0.

(b) Observe that (2.1) yields

∞∑
n=1

P{ξn(b) ≤ k} =
∫

R

[1 − (1 − β(x, b))k]dF(x)

F (x)
,

and the assertion follows from (4.4) because the integrand ∼ k/F (x − b).

The condition (4.4) should not be difficult to check in specific cases. However, the necessary
condition (a) in the theorem is equivalent to having the representation F(x) = 1/r(ex), where
r(y) is rapidly varying, i.e. limy→∞ r(λy)/r(y) = ∞ if λ > 1 or limy→∞ r(λy)/r(y) = 0
if 0 < λ < 1; see Bingham et al. (1987, p. 83). We denote this by writing r(y) ∈ R∞.
A representation theorem asserts that r(y) = C(y) exp[∫ y

1 (δ(z)/z) dz], where δ(y) → ∞ and
C(y) → C > 0 as y → ∞. The subclass R∞ of normalized rapidly varying functions satisfies
C(y) ≡ C. For later reference, we collectively denote reciprocals of these functions by R−∞
and R−∞, respectively. The following theorem gives some sufficient conditions for (4.4) to
hold.

Theorem 4.5. (a) Suppose that F(x) = 1/r(ex), where r(y) ∈ R∞ with index function
δ(y) ∈ ER such that

∫ ∞
1 [y(δ(y))ν]−1 dy < ∞ for some ν > 0. Then (4.4) holds for all

b > 0.
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(b) In particular, these conditions are satisfied if F(x) = exp[−R(x)], where R(x) ∈ R� and
ν� > 1.

Proof. The integral representation of r(y) implies that dF(x)/dx = δ(ex)/r(ex) and, hence,
J (b) < ∞ if

Ĵ (b) :=
∫ ∞

1

r(ye−b)

yr(y)
δ(y) dy < ∞.

Our definition of extended regular variation implies that if 0 < ε < 1 then y′ can be chosen so
large that

r(ye−b)/r(y) ≤ exp[−ηδ(y)] (y ≥ y′),

where η = (1 − ε)bebc. Assertion (a) follows because, for any ν > 0, the last bound is
dominated by (ηδ(y))−ν−1. To prove part (b), observe that r(y) = exp[R(log y)] and that
R(λz)−R(z) → ∞ (as z → ∞) if λ > 1, whence r(y) ∈ R∞. The index function δ(y) of r(y)

satisfies δ(y)/y = (d/dy)R(log y), from which we find that δ(y) ∼ �R(log y)/ log y ∈ R0.
Also, δ(y) ≥ �(log y)γ , where 0 < γ < � − 1, and

∫ ∞
1 y−1(log y)−νγ dy < ∞ if νγ > 1.

In Example 6.6, we will show that a thin-tailed distribution function need not satisfy (4.4),
or that it may do for some values of b and not for others.

5. Sums of near-record observations

We assume, in this section, that Xi , i ≥ 1, take on only positive values and that rF = ∞.
Let sn(a) be the sum of near-nth-record observations, i.e.

sn(a) =
L(n+1)−1∑
i=L(n)+1

Xi 1(Xi ∈ (X(n) − a, X(n)]).

This sum is a quantity of interest because it can be interpreted as the sum of insurance claims
close in value to, and following the occurrence of, an unusually large claim, X(n). The
registration of these claims is stopped at the next record time L(n + 1). Pakes (2000), Li and
Pakes (2001), and Hashorva (2003) discussed similar aspects for near-maximum observations.
Arnold and Villasenor (1998) have studied sums of record values.

The limiting behaviour of sn(a) can easily be found from the results presented in the last
section and the inequality

(X(n) − a)ξn(a) < sn(a) ≤ X(n)ξn(a),

which holds on almost all sample paths. Recalling that rF = ∞, we have X(n) → ∞ (a.s.)
and, hence,

sn(a)

X(n)
∼ ξn(a) a.s.

The following theorem is a simple consequence of Theorem 4.1.

Theorem 5.1. (i) If β(a) = 0 then sn(a)/X(n)
p−→ ∞.

(ii) If 0 < β(a) < 1 then sn(a)/X(n)
d−→ G(β(a)).

(iii) If β(a) = 1 then sn(a)/X(n)
p−→ 0.
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It should be noted that Theorems 4.3 and 4.4 can be restated as assertions about sn(a)/X(n).
For example, if (4.3) holds for some b > 0 and if 0 < a ≤ b, then sn(a)/X(n) → 0 a.s.

The near-record sum sn(a) can be generalized as follows. Let m be a natural number and
let a = (a1, . . . , am) be a vector with all components positive. Let

Sn,m(a) = sn(a1) + · · · + sn+m−1(am)

be the total of near-record observations associated with the record values

X(n), . . . , X(n + m − 1),

i.e. between L(n) and L(n+m). Let ξn,m(a) = ∑m
j=1 ξn+j−1(aj ). For a1 = · · · = am = a >

0, we have
(X(n) − a)ξn,m(a) ≤ Sn,m(a) ≤ X(n + m)ξn,m(a). (5.1)

Therefore, if X(n + m)/X(n)
p−→ 1, the asymptotic behaviour of Sn,m(a) can be obtained from

ξn,m(a).
We now consider some results about quotients of record values, which are of interest in their

own right.

Theorem 5.2. (a) If F(x) ∈ R−∞ then, for each m = 1, 2, . . . , X(n + m)/X(n)
p−→ 1.

(b) Suppose, for all b > 1, that

K(b) =
∫

R

F(bx)

F
2
(x)

dF(x) < ∞. (5.2)

Then, for each m = 1, 2, . . . ,

X(n + m)/X(n) → 1 a.s. (5.3)

Proof. Observe that the sequence of record values comprises a Markov chain with a transition
kernel given by (Nevzorov (2000, p. 68))

P{X(n + 1) > y | X(n) = x} = F(y)/F (x) (y ≥ x).

Letting y = bx, where b > 1, and integrating with respect to Fn(x) gives

P

{
X(n + 1)

X(n)
> b

}
=

(∫ x′

−∞
+

∫ ∞

x′

)
F(bx)

F (x)
dFn(x).

For a given ε > 0, we can choose an x′ so large that the integrand in the second integral is
smaller than ε and, hence, the right-hand side is bounded above by Fn(x

′)+ ε. Letting n → ∞
yields assertion (a) for m = 1. If m ≥ 2 then

X(n + m)

X(n)
= X(n + 1)

X(n)

X(n + 2)

X(n + 1)
· · · X(n + m)

X(n + m − 1)

p−→ 1.

Next, summing over n gives

∞∑
n=1

P

{
X(n + m)

X(n)
> b

}
= K(b);

(5.3) follows for m = 1 from the Borel–Cantelli lemma, and the other cases follow as above.
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We now ask: under which conditions are the hypotheses of Theorem 5.2 satisfied? The rapid
variation condition covers tail sizes ranging from thick tails of Weibull type through to medium
and thin tails. That this condition is fundamental is suggested by the fact that if the integrand
in (5.2) is nondecreasing, then F(bx)/F (x) → 0 if K(b) < ∞. So, if (5.2) holds for all b > 1
then F(x) ∈ R−∞. Another matter arises from the fact that the proof of part (b) shows (5.2)
to be equivalent to complete convergence in (5.3), in the case of m = 1. The m-step transition
kernel of {X(n)} can be used, as above, to show that sure convergence holds in (5.3) if and only
if

Km(b) =
∫

R

F(bx)

F
2
(x)

[
− log

F(bx)

F (x)

]m−1

dF(x) < ∞ (b > 1).

Are these conditions equivalent? Given some technical conditions, the answer is ‘yes’! The
following result provides some answers to our questions by adding further structure to the rapid
variation hypothesis. Our specific assumption for F(x) ∈ R−∞ is that

F(x) = (C(x) exp[ρ(x)])−1,

where C(x) → C > 0, ρ(x) = ∫ x

1 (δ(y)/y) dy and the index function δ(y) is such that δ(y) →
∞.

Theorem 5.3. (a) Suppose that β(a) exists for all a. If 0 ≤ β(a) < 1 then F(x) ∈ R−∞. If
F(x) = (C(x) exp[ρ(x)])−1, where ρ(x) ∈ R�, and 0 < � < 1 and C(x) → C > 0, then
β(a) ≡ 1 and F(x) ∈ R−∞.

Suppose that F(x) ∈ R−∞, where the index function δ(x) is eventually nondecreasing.

(b) If
∫ ∞

1 (δ(x))−γ dx < ∞ for some γ > 0, then (5.2) holds for all b > 1.

(c) If, in addition,
∫ bx

x
(δ(y)/y) dy = O(δ(x)) for all b > 1, then Km(b) < ∞ holds for all

b, m > 1.

Proof. If b > 1 and a > 0, then bx > x + a if x ≥ a/(b − 1), and (4.1) implies that
lim supx→∞ F(bx)/F (x) ≤ β(a). However, if β(a) < 1 then β(a) → 0 as a → ∞, implying
that F(x) ∈ R−∞. The second part of assertion (a) follows by straightforward calculation.

The normalization assumption implies that F ′(x) = (δ(x)/x)F (x) and, since

ρ(bx) − ρ(x) ≥ δ(x) log b

for sufficiently large x, we find that (5.2) holds if
∫ ∞

1 δ(x)e−Aδ(x) dx < ∞. However, the
exponential term is dominated by k! (Aδ(x))−k for any integer k ≥ γ + 1, and assertion (b)
follows.

The additional hypothesis of assertion (c) implies that ρ(bx) − ρ(x) = O(δ(x)), which,
together with estimates in the proof of assertion (b), implies that Km(b) < ∞ if

∫ ∞

1
(δ(x))me−Aδ(x) dx < ∞.

Assertion (c) now follows similarly to assertion (b), if we choose k > γ + m.

Assertions (b) and (c) hold if there exist positive constants c, d, and x′, with c < d, such that
xc < δ(x) < xd if x ≥ x′ or if δ(x) has faster than polynomial growth. The assumptions of
assertion (b) are sharp in that examples will show that (5.2) may or may not hold if δ(x) ∈ R0.

Our next result shows that record value gaps increase unboundedly under a suitable condition.
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Theorem 5.4. (a) If F(x) ∈ R0 then, for m = 1, 2, . . . , X(n + m)/X(n)
p−→ ∞.

(b) Suppose, for all b > 1, that

I (b) =
∫

R

F(x) − F(bx)

F
2
(x)

dF(x) < ∞. (5.4)

Then, for each m = 1, 2, . . . , X(n + m)/X(n) → ∞ a.s.

Proof. The assertions for m = 1 follow as in the proof of Theorem 5.2, upon observing that

P{X(n + 1) ≤ bX(n)} =
∫

R

1 − F(bx)

F (x)
dFn(x) → 0

and ∞∑
n=1

P{X(n + 1) ≤ bX(n)} = I (b),

and invoking the Borel–Cantelli lemma. For m ≥ 2, observe that

{X(n + m) ≤ bX(n + 1)} ⊂ {X(n + 1) ≤ bX(n + 1)},
from which the remainder of the proof follows.

If b > 1 then x + a < bx for any a and large enough x. It follows that if (5.4) holds for
fixed b > 1, then I (a) < ∞ (see (4.3)) holds for all a > 0; whence β(a) ≡ 1. Thus, (5.4)
determines a subset of thick-tailed distributions. In fact, if (5.4) holds for all b > 1 and the
integrand is eventually nondecreasing, then (F (x) − F(bx))/F (x) → 0, i.e. F(x) ∈ R0. As
a partial converse, suppose that F(x) ∈ R0 with index function −ε(x) (which must satisfy∫ ∞

1 (ε(x)/x) dx = ∞): then F(x) has density function ε(x)F (x)/x. If we further assume that
ε(x) is eventually nonincreasing, or that ε(x) ∈ R0, then 1 − F(bx)/F (x) = O(ε(x)) and it
follows that (5.4) holds if

∫ ∞
1 (ε2(x)/x) dx < ∞.

Our next result extends Theorem 4.1 and will be used to obtain the asymptotic behaviour of
Sn,m(a).

Theorem 5.5. Suppose that ai > 0 and β(ai) exist for i = 1, . . . , m, where m is a natural
number. Then

(ξn(a1), . . . , ξn+m−1(am))
d−→ (G(β(a1)), . . . , G(β(am))),

where G(γ ) is a geometrically distributed random variable with parameter γ and the compo-
nents of the limit random vector are independent. In particular, ξn,m(a)

d−→ Gm(a), where

E[tGm(a)] =
m∏

i=1

β(ai)

1 − (1 − β(ai))t
(0 ≤ t < 1). (5.5)

Proof. Theorem 2.2 implies that, given X(n), . . . , X(n + m − 1), the counts ξn+i−1(ai),
i = 1, . . . , m, are conditionally independent with a geometric distribution, and that their joint
probability-generating function is

E

[ m∏
i=1

t
ξn+i−1(ai )

i

]
= E

[ m∏
i=1

β(ai, X(n + i − 1))

1 − (1 − β(ai, X(n + i − 1)))ti

]
(0 ≤ ti < 1).

The assertion follows from the dominated convergence theorem, since β(ai, X(n + i − 1)) →
β(ai) a.s.
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The distribution of the weak limit Gm(a) is a convolution of geometric laws that can be
expressed as a weighted sum of geometric and negative binomial distributions via the partial
fraction expansion of the right-hand side of (5.5). In particular, if the components of a are all
different then

P{Gm(a) = k} =
m∑

i=1

αi(m)β(ai)(1 − β(ai))
k (k = 0, 1, . . . ), (5.6)

where

αi(m) = (1 − β(ai))
m−1

∏
j=1, j �=i

β(aj )

β(aj ) − β(ai)
. (5.7)

This is a trivial consequence of (5.5), but see Sen and Balakrishnan (1999) for a different
approach. Note that

∑m
i=1 αi(m) = 1, but that both signs occur among the αi(m). If � of

the ai have the same value a�, � ≥ 2, then (5.6) must be augmented with negative binomial
probabilities

(
ν−1+k

k

)
(β(a�))

ν(1 − β(a�))
k for ν = 1, . . . , �. This is also a direct consequence

of the partial fraction expansion of (5.5).
Combining Theorems 5.2(a) and 5.5 with (5.1) yields the following result.

Theorem 5.6. Suppose that F(x) ∈ R−∞ and that ai > 0 and β(ai) exist for i = 1, . . . , m,
where m is a natural number. Then Sn,m(a)/X(n)

d−→ Gm(a), which has probability-generating
function (5.5).

(a) In particular, if 0 < β(ai) < 1 and

(i) if the components of a all differ, then the limit distribution is given explicitly by (5.6) and
(5.7);

(ii) if a1 = · · · = am, then

P{Gm = k} =
(

m − 1 + k

k

)
(β(a))m(1 − β(a))k (k = 0, 1, . . . ).

(b) If β(a) ≡ 0 with a > 0 then, for any vector a with positive components, we have

P{Gm(a) = ∞} = 1.

(c) If β(a) ≡ 1 with a > 0 then, for any vector a with positive components, we have

P{Gm(a) = 0} = 1.

6. Examples

Example 6.1. The standard Cauchy distribution has density function f (x) = [π(1 + x2)]−1

and, hence, F(x) ∈ R−1, a thick tail. Consequently, Theorems 4.1(iii), 4.2(iii), and 5.1(iii)
hold. In addition,

F(x − b) − F(x) = π−1
∫ x

x−b

dy

1 + y2 ∼ b

πx2 = O(F
2
(x))

and, hence, the integrand in (4.3) is O(1). Thus, the assertions of Theorem 4.3 hold for Cauchy
distributions. On the other hand, Theorem 5.4 does not apply for Cauchy tails.

https://doi.org/10.1239/aap/1127483746 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483746


778 N. BALAKRISHNAN ET AL.

Example 6.2. Similar considerations show that any distribution with a Pareto tail, F(x) ∼
const. x−α with α > 0, satisfies the conditions of Theorems 4.1(iii), 4.2(iii), and 5.1(iii), but
not those of Theorem 5.4. Li (1999) showed that (4.3) holds for any b > 0 in the Pareto tail
case, and Pakes showed this for F(x) ∈ R−α .

Example 6.3. Let F(x) = 1 − log 2/ log x ∈ R0, x > log 2. It follows by direct calculation
that Theorem 5.4 holds. Alternatively, observe that the index function ε(x) ∝ 1/ log x satisfies
the conditions following the proof of Theorem 5.4. Thus, we have the following almost-sure
convergences:

ξn(a) → 0, sn(a)/X(n) → 0, X(n + 1)/X(n) → ∞.

Example 6.4. The Weibull-type survivor function Fα(x) = 1 − e−xα
, x > 0, α > 0, covers

the range of thin to thick tails. The index function is δ(x) = αxα , so F(x) ∈ R−∞ and it is
obvious that the conditions of parts (b) and (c) of Theorem 5.3 hold. Hence, Theorem 5.3 holds
with sure convergence for all α > 0 and m. Next, since

aα(x − a)α−1 < xα − (x − a)α < aαxα−1,

the following classification is evident.

(I) If α > 1 then F is thin tailed and, since F ′(x) = αxα−1F(x), it is clear that

J (b) = O

(∫ ∞

1
xα−1[exp(−bα(x − b)α−1)] dx

)
< ∞

in (4.4). Hence, Theorems 4.1(i), 4.2(i), 4.4, 5.1(i), and 5.6(c) hold.

(II) If α = 1 then F(x) is the standard exponential distribution function, which is medium
tailed. Hence, Theorems 4.1(ii), 4.2(ii), 5.1(ii), and 5.6(a) hold.

(III) If 0 < α < 1 then F(x) is thick tailed and Theorem 5.6(c) holds. In addition, (4.3) is
satisfied for all b if 0 < α < 1

2 , and is never satisfied if 1
2 ≤ α < 1.

Example 6.5. The standard normal distribution function �(x) satisfies �(x) ∼ φ(x)/x,
x → ∞, where φ(x) = �′(x). Referring to Theorem 5.3, we see that δ(x) = 1

2x2(1+o(1))

and clearly β(a) ≡ 1. Consequently, the conditions of Theorem 5.3(c) are satisfied. In
addition, Theorems 5.1(i) and 5.6(c) hold. Finally, − log �(x) = 1

2x2 + log x + O(1), whence
the conditions of Theorem 4.5(b) are satisfied with � = 2. It follows that Theorems 4.1(i), 4.2(i),
and 4.4 hold.

Example 6.6. Here we prove the claim made in the remarks following Theorem 4.4. Suppose
that F(x) = exp[−xL(x)], where L(x) ∈ R0 and L(x) → ∞ as x → ∞. If a is real then

xL(x) − (x − a)L(x − a) = aL(x) − (x − a)(L(x) − L(x − a))

= aL(x)(1 + o(1))

→ ∞
as x → ∞. Hence, β(a) ≡ 0 and Theorems 4.1(i), 4.2(i), and 5.1(i) hold. Since

F ′(x) = F(x)L(x)(1 + o(1)),
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we infer that (4.4) holds if

Ĵ (b) =
∫ ∞

e
L(x)e−bL(x) dx < ∞. (6.1)

If we further assume that xL′(x) = O(1), then (4.4) holds if and only if (6.1) does.
For the specific case L(x) = (log x)c, c > 0, x ≥ e, some calculation yields

Ĵ (b) = c−1
∫ ∞

1
y1/c exp[−by + y1/c] dy

⎧⎪⎨
⎪⎩

= ∞ for all b > 0 if c < 1,

< ∞ if c = 1 and then if and only if b > 1,

< ∞ for all b > 0 if c > 1.

Example 6.7. Referring to the remarks following the proof of Theorem 5.3, suppose that
F(x) ∈ R−∞ with index function δ(x) = 1 + log(log x) for x ≥ e. With � := log b > 0, we
find that

ρ(bx) − ρ(x) = � +
∫ �+log x

log x

log y dy = �(1 + log(log x)) + o(1) → ∞

and, hence, β(b) ≡ 0. Since F ′(x) = (δ(x)/x)F (x), we have

K(b) = b

∫ ∞

e
x−1(1 + log(log x))(log x)−� dx + O(1) = b

∫ ∞

1
(1 + log y)y−� dy + O(1).

Hence, K(b) < ∞ if and only if b > e. On the other hand, the slowly varying index function
δ(x) = log x yields K(b) < ∞ for all b > 1.
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