Exceptional Sets of Slices for Functions From the Bergman Space in the Ball

Piotr Jakóbczak

Abstract. Let B_N be the unit ball in \mathbb{C}^N and let f be a function holomorphic and L^2 -integrable in B_N . Denote by $E(B_N, f)$ the set of all slices of the form $\Pi = L \cap B_N$, where L is a complex one-dimensional subspace of \mathbb{C}^N , for which $f|_{\Pi}$ is not L^2 -integrable (with respect to the Lebesgue measure on L). Call this set the exceptional set for f. We give a characterization of exceptional sets which are closed in the natural topology of slices.

1 Introduction

Let B_N be the unit ball in \mathbb{C}^N . We have proved in [3] that there exists a function f holomorphic in B_N such that for every complex subspace L of \mathbb{C}^N , $f|_{L\cap B_N} \notin L^2(L \cap B_N)$ (where the space $L^2(L \cap B_N)$ is considered with respect to the Lebesgue measure in $L \cap B_N$). In this note we are interested in another problem: Let E be a subset of the slices of the form $\Pi = L \cap B_N$, where L is a complex one-dimensional subspace of \mathbb{C}^N . We are interested in determining those E for which there exists a function f holomorphic in B_N and L^2 -integrable with respect to the Lebesgue measure (we write $f \in L^2H(B_N)$) such that for every one-dimensional complex subspace L of \mathbb{C}^N , $f|_{L\cap B_N} \notin L^2(L \cap B_N)$ (with respect to the Lebesgue measure on $\partial B_N \in E$. Let $\tilde{E} = \bigcup \{L \cap \partial B_N \mid L \cap B_N \in E\}$. Denote by ν the surface measure on ∂B_N . If a function f with the above described properties exists then, by Fubini's theorem, $\nu(\tilde{E}) = 0$.

We can identify E with a subset \hat{E} of the complex projective space \mathbb{CP}^N . Similarly to [2] one can prove that \hat{E} must be a G_{δ} -set in the natural topology of \mathbb{CP}^N : this is equivalent to say that \tilde{E} is a G_{δ} -subset of ∂B_N . Following [1] or [2] we will call the set E the exceptional set of complex slices for f, and denote it by $E(B_N, f)$.

We will prove the following theorem:

Theorem 1 Let E be a subset of one-dimensional complex slices such that $\nu(\tilde{E}) = 0$, and \hat{E} is closed in \mathbb{CP}^N (this is equivalent to assume that \tilde{E} is closed in ∂B_N). Then there exists a function $f \in L^2H(B_N)$ such that $E(B_N, f) = E$.

A weaker result would be the following: Given a set *E* of one-dimensional complex slices with $\nu(\tilde{E}) = 0$ and \hat{E} closed in \mathbb{CP}^N , find a bounded domain of holomorphy *C* with $0 \in C$ and a function $f \in L^2H(C)$ such that for every one-dimensional complex

Received by the editors April 30, 1999; revised March 14, 2000.

Partially supported by the KBN Grant 2 PO3A 017 14

AMS subject classification: 32A37, 32A22.

[©]Canadian Mathematical Society 2001.

subspace *L* of \mathbb{C}^N , *f* is not L^2 -integrable on $L \cap C$ if and only if $L \cap B_N \in E$. (In this case, we will write E = E(C, f)).

We begin with such a weaker result, *i.e.*, we prove the following:

Theorem 2 Let *E* be as in Theorem 1. Then there exists a strictly convex and balanced domain *C* in \mathbb{C}^N and a function $f \in L^2H(C)$ such that E(C, f) = E.

(We recall that a domain $C \subset \mathbb{C}^N$ is called *balanced* if for every $z \in C$ and every $\lambda \in \mathbb{C}$ with $|\lambda| \leq 1, \lambda z \in C$).

The reason to prove first Theorem 2, which is weaker than Theorem 1 is because of the clarity of the construction. One of the main ingredients of the proof of Theorem 2 is the following result by Wojtaszczyk:

Theorem 3 ([4], **Theorem 1**) There exists an integer K = K(N) and a sequence $\{p_n\}$ of homogeneous polynomials in \mathbb{C}^N of degree n (for n large enough, say $n \ge N_0$) such that

(1)
$$|p_n(z)| \leq 2 \quad \text{for all } z \in \partial B_N;$$

(2) for each s large enoungh, say $s \ge S_0$, $\sum_{n=Ks}^{K(s+1)-1} |p_n(z)| \ge 0, 5$ for all $z \in \partial B_N$.

In the proof of Theorem 2 we use this result exactly in the form stated in Theorem 3; in order to prove Theorem 1 we need first to show that the assertion of Theorem 3 holds also for strictly convex and balanced domains which are in some sense not too far from the unit ball; this requires further explanations, which might obscure the main proof.

In the sequel, we will denote by $B_N(z, r)$ the ball with center $z \in \mathbb{C}^N$ and of radius r, and D(w, r) will denote the disc in the complex plane, centered at $w \in \mathbb{C}$, and of radius r. Also, we set U to be the unit disc in \mathbb{C} .

If *D* is a domain in \mathbb{C}^N , and $h \in L^2(D)$, we will denote by $||h||_D$ the L^2 -norm of *h* in *D*. The Lebesgue measure (of arbitrary dimension) in a subset of \mathbb{C}^N or of a subspace of \mathbb{C}^N will be denoted by *m*.

2 The Exceptional Sets of Complex Planes in \mathbb{C}^N

In this section we will prove Theorem 2. We will begin with the result which is rather obvious, and can be proved by standard methods:

Lemma 4 Let *E* be a closed subset of \mathbb{CP}^N . Then there exists a strictly convex domain $C \subset \mathbb{C}^N$ such that $C \subset B_N$, $\partial C \cap \partial B_N = E$, $\partial C \setminus \partial B_N \subset B_N$, and *C* is balanced. Moreover, there exists a function σ , which is strictly convex and smooth in \mathbb{C}^N , is non-negatively homogeneous (i.e., $\sigma(\lambda z) = |\lambda| \sigma(z)$ for $z \in \mathbb{C}^N$ and $\lambda \in \mathbb{C}$), and which is a defining function for *C* (i.e., $C = \{z \in \mathbb{C}^N \mid \sigma(z) < 1\}$ and grad $\sigma(w) \neq 0$ for $w \in \partial C$).

Let σ be a defining function for *C*, with the properties listed in Lemma 4. Given $w \in \mathbb{C}^N$, $w \neq 0$, denote by [w] the class of w in \mathbb{CP}^N . For $[w] \in \mathbb{CP}^N$, set $\tilde{\sigma}([w]) =$

 $\sigma(\frac{w}{\|w\|})$. Then $\tilde{\sigma}$ is well-defined and smooth in \mathbb{CP}^N (where \mathbb{CP}^N is considered as the complex manifold), $\tilde{\sigma} \geq 1$, and $\tilde{\sigma}([w]) = 1$ precisely when $[w] \in \hat{E}$. Moreover, let $\tilde{\nu}$ be the measure in \mathbb{CP}^N induced in the natural way in \mathbb{CP}^N from ∂B_N .

Let $\psi \colon [0,1) \to \mathbb{R}$ be a function such that:

(3)
$$\psi > 0$$
, ψ is increasing, and $\lim_{t \to 1^{-}} \psi(t) = +\infty$.

Suppose also that $f \in \mathcal{O}(B_N)$ (the space of functions holomorphic in B_N) is such that for every $z \in \mathbb{C}^N$ with ||z|| = 1, for every 0 < r < 1,

$$||f||^2_{\{\lambda z \mid |\lambda| < r\}} =: \int_{D(0,r)} |f(\lambda z)|^2 dm(\lambda) \le \psi(r).$$

Then there exists a constant c > 0, independent of f, such that

(4)
$$\int_{C} |f(z)|^{2} dm(z) \leq c \int_{\mathbb{CP}^{N}} \left(\int_{D(0, \frac{1}{\sigma([w])})} |f(\lambda w)|^{2} dm(\lambda) \right) d\tilde{\nu}([w])$$
$$\leq c \int_{\mathbb{CP}^{N}} \psi\left(\frac{1}{\tilde{\sigma}([w])}\right) d\tilde{\nu}([w]).$$

Lemma 5 Suppose that E is as in Theorems 1 or 2. Let C be a strictly convex and balanced domain in \mathbb{C}^N , constructed with respect to E according to Lemma 4. Then there exists ψ satisfying (3), and such that

(5)
$$\int_{\mathbb{C}P^N} \psi\left(\frac{1}{\tilde{\sigma}([w])}\right) d\tilde{\nu}([w]) < +\infty.$$

Proof of Lemma 5 Since $\tilde{\nu}(\mathbb{CP}^N) < +\infty$, $\tilde{\nu}(\hat{E}) = \tilde{\nu}(\{[w] \in \mathbb{CP}^N \mid \tilde{\sigma}([w]) = 1\}) = 0$, for every $[w] \in \mathbb{CP}^N$, $\tilde{\sigma}([w]) \ge 1$, and $\tilde{\sigma}$ is continuous, there exists a sequence $\{t_n\}_{n=1}^{\infty}, 0 < t_1 < t_2 < \cdots < 1$, with $\lim_{n\to\infty} t_n = 1$, and such that

$$\tilde{\nu}\left(\left\{\left[w\right]\in\mathbb{CP}^{N}\mid\frac{1}{t_{n+1}}<\tilde{\sigma}([w])\leq\frac{1}{t_{n}}\right\}\right)<\frac{1}{n^{3}}$$

Define the function χ by $\chi(t) = n + 1$ for $t \in [t_n, t_{n+1})$, n = 1, 2, ..., and $\chi(t) = 1$ for $t \in [0, t_1)$. Then

$$\begin{split} \int_{\mathbb{CP}^N} \chi \left(\frac{1}{\tilde{\sigma}([w])} \right) d\tilde{\nu}([w]) \\ &\leq \tilde{\nu}(\mathbb{CP}^N) + \sum_{n=1}^{\infty} (n+1)\tilde{\nu} \left(\left\{ [w] \in \mathbb{CP}^N \mid \frac{1}{t_{n+1}} < \tilde{\sigma}([w]) \leq \frac{1}{t_n} \right\} \right) \\ &\leq \tilde{\nu}(\mathbb{CP}^N) + \sum_{n=1}^{\infty} \frac{n+1}{n^3} < +\infty. \end{split}$$

Then it is sufficient to take ψ satisfying (3) and such that $\psi \leq \chi$ on [0, 1).

Lemma 6 Given ψ satisfying (3), there exists a function $f \in O(B_N)$ such that for every one-dimensional complex subspace L of \mathbb{C}^N and every 0 < r < 1, $f|_{L \cap B_N} \notin L^2(L \cap B_N)$, and

$$||f||^2_{\{\lambda z \mid |\lambda| < r|\}} = ||f||^2_{L \cap B_N(0,r)} \le \psi(r).$$

Suppose for a moment that Lemma 6 is proved. Let E, C, σ and $\tilde{\sigma}$ be as before, and choose ψ to $\tilde{\sigma}$ according to Lemma 5. Construct f with respect to ψ like in Lemma 6. Then by (4) and (5), $f \in L^2H(C)$. Moreover, by Lemmas 6 and 4, for every one-dimensional complex subspace L of \mathbb{C}^N ,

$$f|_{L\cap C} \notin L^2(L\cap C) \quad \text{iff } L\cap B_N \in E.$$

This gives the desired domain C and the function f, and ends the proof of Theorem 2.

Therefore in order to prove Theorem 2, it remains to prove Lemma 6.

Proof of Lemma 6 We prove first an auxiliary lemma:

Lemma 7 Let ψ be a function satisfying (3). Then there exists a function h holomorphic in the unit disc U in \mathbb{C} such that for every 0 < r < 1,

$$||h||_{D(0,r)}^2 = \int_{D(0,r)} |h(w)|^2 \, dm(w) \le \psi(r)$$

and

$$\int_U |h(w)|^2 \, dm(w) = +\infty.$$

Proof of Lemma 7 Shrinking ψ if necessary we may assume that ψ is continuous. If

(6)
$$h(w) = \sum_{n=0}^{\infty} a_n w^n$$

is holomorphic in U, then

$$\int_{D(0,r)} |h(w)|^2 \, dm(w) = \pi \sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1} r^{2(n+1)},$$

and

$$\int_{U} |h(w)|^2 \, dm(w) = \pi \sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1}.$$

Therefore it is sufficient to choose non-negative numbers $\{a_n\}_{n=0}^{\infty}$ such that

(7)
$$\pi \sum_{n=0}^{\infty} \frac{a_n^2}{n+1} = +\infty,$$

153

Piotr Jakóbczak

and for every *r* with 0 < r < 1,

(8)
$$\pi \sum_{n=0}^{\infty} \frac{a_n^2}{n+1} r^{2(n+1)} \le \psi(r).$$

(Note that if the numbers $\{a_n\}$ satisfy (8), then the series $\sum_{n=0}^{\infty} a_n w^n$ is convergent uniformly on compact subsets of *U*, so it defines a holomorphic function in *U*).

Denote further

$$b_n = \frac{\pi a_n^2}{n+1},$$

n = 0, 1, 2, ... If we can choose $\{b_n\}_{n=0}^{\infty}$ such that $b_n \ge 0, n = 0, 1, ..., n \ge 0, n = 0, n =$

(10)
$$\sum_{n=0}^{\infty} b_n = +\infty,$$

and for every *r* with 0 < r < 1,

(11)
$$\sum_{n=0}^{\infty} b_n r^{2(n+1)} \le \psi(r),$$

and then we compute a_n by means of b_n according to (9), we get the desired coefficients $\{a_n\}_{n=0}^{\infty}$.

We claim that we can choose b_n satisfying (10) and (11), and it is sufficient to allow b_n to assume only the values 0 or 1 for convenient *n*. We do this inductively. Choose a positive integer k_1 so large that

$$r^{2(k_1+1)} < \psi(r)$$
 for $0 \le r < 1$

(this is possible because of the assumptions on ψ). Set $b_{k_1} = 1$. The function $\psi_1(r) =: \psi(r) - r^{2(k_1+1)}, 0 \le r < 1$, is positive, continuous, and $\lim_{r \to 1^-} \psi_1(r) = +\infty$. There exists k_2 so large that $k_2 > k_1$, and

$$r^{2(k_2+1)} < \psi_1(r)$$
 for $0 < r < 1$.

Set $b_{k_2} = 1$. Similarly, the function $\psi_2(r) =: \psi_1(r) - r^{2(k_2+1)}$ is positive, continuous, and $\lim_{r \to 1^-} \psi_2(r) = +\infty$. Then there exists k_3 so large that $k_3 > k_2$, and

$$r^{2(k_3+1)} < \psi_2(r)$$
 for $0 \le r < 1$.

We set $b_{k_3} = 1$, $\psi_3(r) =: \psi_2(r) - r^{2(k_3+1)}$, and choose the integer k_4 , and so on. In this way we have defined $b_k = 1$ for $k = k_i$, i = 1, 2, ... For other values of k we set $b_k = 0$.

Note that the condition (11) is satisfied by the construction. Moreover, since infinitely many b_k 's are equal to 1, the condition (10) is also satisfied.

Consider the constant K = K(N) from the assertion of Theorem 3. Note that we can assume that the numbers $k_1, k_2, ...$ in the proof of Lemma 7 can be chosen so that for all l = 1, 2, ...,

(12)
$$k_{l+1} - k_l > K = K(N),$$

and for each l there exists a positive integer s_l such that

(13)
$$k_l = K(N)s_l$$

We need also further modification of the function *h* obtained in Lemma 7. For every l = 1, 2, ..., consider the number k_l , where $\{k_l\}_{l=1}^{\infty}$ are chosen according to the proof of Lemma 7, and satisfy (12) and (13). Then, because of (9), (12), and the choice of the numbers b_k , we have $a_{k_l} > 0$ and $a_{k_l+1} = \cdots = a_{k_l+K(N)-1} = 0$. Define $c_{k_l}, c_{k_l+1}, \ldots, c_{k_l+K(N)-1}$ by

(14)
$$\frac{c_{k_l}^2}{k_l+1} = \frac{c_{k_l+1}^2}{k_l+2} = \dots = \frac{c_{k_l+K(N)-1}^2}{k_l+K(N)} = \frac{1}{K(N)} \frac{a_{k_l}^2}{k_l+1}, \quad l = 1, 2, \dots$$

This gives the numbers c_n for some values of n. For other n, set $c_n = 0$. Note that because of (12), the definition of c_n is correct. Set

$$g(w)=\sum_{n=0}^{\infty}c_nw^n.$$

Then g is holomorphic in U, and by (14),

$$\sum_{n=0}^{\infty} \frac{c_n^2}{n+1} = \sum_{n=0}^{\infty} \frac{a_n^2}{n+1} = +\infty.$$

Moreover, for every *r* with 0 < r < 1, and every l = 1, 2, ..., we have by (14)

$$\begin{aligned} \frac{\pi a_{k_l}^2}{k_l+1} r^{2(k_l+1)} &= \left(\frac{\pi c_{k_l}^2}{k_l+1} + \dots + \frac{\pi c_{k_l+K(N)-1}^2}{k_l+K(N)}\right) r^{2(k_l+1)} \\ &\geq \frac{\pi c_{k_l}^2}{k_l+1} r^{2(k_l+1)} + \frac{\pi c_{k_l+1}^2}{k_l+2} r^{2(k_l+2)} + \dots + \frac{\pi c_{k_l+K(N)-1}^2}{k_l+K(N)} r^{2(k_l+K(N))}, \end{aligned}$$

and so, for every 0 < r < 1,

(15)
$$\sum_{n=0}^{\infty} \frac{\pi c_n^2}{n+1} r^{2(n+1)} \le \sum_{n=0}^{\infty} \frac{\pi a_n^2}{n+1} r^{2(n+1)} \le \psi(r).$$

Hence the function g(w) also satisfies the assertions of Lemma 7, but the coefficients c_n satisfy further properties, which we need later.

Define now for $z \in B_N$,

(16)
$$F(z) = \sum_{n=N_0}^{\infty} c_n p_n(z),$$

where $\{p_n\}$ are polynomials from Theorem 3. Since $|p_n(z)| \le 2$ for $z \in \partial B_N$, and c_n grow to infinity at most like Cn for some C > 0, it is not difficult to show that the series on the right-hand side of (16) converges in all of B_N to a function holomorphic in B_N .

Now fix $z \in \partial B_N$. Consider the function

(17)
$$F_z \colon U \ni w \to F(wz).$$

(We recall that *U* denotes the unit disc in \mathbb{C}). Then for 0 < r < 1 we have by (1) and (15)

$$||F_z||_{D(0,r)} = \int_{D(0,r)} |F(wz)|^2 dm(w)$$
(18)
$$= \sum_{n=N_0}^{\infty} c_n^2 \int_{D(0,r)} |p_n(wz)|^2 dm(w) = \sum_{n=N_0}^{\infty} c_n^2 \int_{D(0,r)} |p_n(z)|^2 |w|^{2n} dm(w)$$

$$= \pi \sum_{n=N_0}^{\infty} \frac{c_n^2}{n+1} |p_n(z)|^2 r^{2(n+1)} \le 4\pi \sum_{n=N_0}^{\infty} \frac{c_n^2}{n+1} r^{2(n+1)} \le 4\psi(r).$$

Moreover, similarly as above, and by the choice of coefficients c_n , in particular by (13) and (14), we conclude that there exist positive integers L_0 and M_0 , depending only on N_0 and S_0 from Theorem 3, and a number c > 0 which depends only on K = K(N) from Theorem 3 (in particular, L_0 , M_0 and c do not depend on $z \in \partial B_N$) such that the following estimate holds:

$$\begin{split} \int_{U} |F(wz)|^{2} dm_{2}(w) &= \pi \sum_{n=N_{0}}^{\infty} \frac{c_{n}^{2}}{n+1} |p_{n}(z)|^{2} \\ &\geq \pi \sum_{l=L_{0}}^{\infty} (\frac{c_{k_{l}}^{2}}{k_{l}+1} |p_{k_{l}}(z)|^{2} + \dots + \frac{c_{k_{l}+K(N)-1}^{2}}{k_{l}+K(N)} |p_{k_{l}+K(N)-1}(z)|^{2}) \\ &= \pi \sum_{l=L_{0}}^{\infty} \frac{a_{k_{l}}^{2}}{K(N)(k_{l}+1)} (|p_{k_{l}}(z)|^{2} + \dots + |p_{k_{l}+K(N)-1}(z)|^{2}) \\ &= \frac{\pi}{K(N)} \sum_{l=L_{0}}^{\infty} \frac{a_{K(N)s_{l}}^{2}}{K(N)s_{l}+1} \Big(\sum_{n=K(N)s_{l}}^{K(N)(s_{l}+1)-1} |p_{n}(z)|^{2} \Big) \end{split}$$

(19)

$$\geq \frac{c\pi}{K(N)} \sum_{l=L_0}^{\infty} \frac{a_{K(N)s_l}^2}{K(N)s_l+1} \left(\sum_{n=K(N)s_l}^{K(N)(s_l+1)-1} |p_n(z)| \right)^2$$

$$\geq \frac{1}{4} \frac{c\pi}{K(N)} \sum_{l=L_0}^{\infty} \frac{a_{K(N)s_l}^2}{K(N)s_l+1} = \frac{1}{4} \frac{c\pi}{K(N)} \sum_{n=M_0}^{\infty} \frac{a_n^2}{n+1} = +\infty$$

(the last inequality follows from (2)). In virtue of (18) and (19), it is sufficient to set $f = \frac{1}{4}F$ in order to obtain the function f satisfying the assertion of Lemma 6.

We give now the outline of the proof of Theorem 1. Take any strictly convex and balanced domain C in \mathbb{C}^N such that $B_N \subset C$, $\partial B_N \cap \partial C = E$, $\partial B_N \setminus \partial C \subset C$. As in Lemma 1 there exists a strictly convex, smooth and non-negatively homogeneous defining function σ for C. Since C is balanced, the homogeneous polynomials of different orders are mutually orthogonal in C with respect to the standard Lebesgue measure in \mathbb{C}^N . Looking at the proof of Theorem 2 we see that the main ingredient of the proof of the present theorem would be the following generalization of Wojtaszczyk's result:

Lemma 8 Suppose that C is not far away from B_N (in the sense that the strictly convex, smooth, and non-negatively homogeneous definig function σ for C does not differ too much from the defining function for B_N , together with derivatives up to order three, in the uniform norm on some open set $W \supset \partial B_N \cup \partial C$). Then there exists an integer K = K(N) and a sequence $\{p_n\}$ of homogeneous polynomials in \mathbb{C}^N of degree n (for n large enough, say $n \ge N_0$) such that

$$(20) |p_n(z)| \le 2 for all z \in \partial C$$

(21) for each s large enough, say $s \ge S_0$, $\sum_{n=Ks}^{K(s+1)-1} |p_n(z)| \ge 0, 5$ for all $z \in \partial C$.

Note We do not know whether the assertion of Lemma 8 is true for *all* strictly convex and balanced domains in \mathbb{C}^N .

Sketch of the proof of Lemma 8 Consider the proof of [4], Proposition 1. Let $\{\zeta_1, \ldots, \zeta_s\}$ be a d/\sqrt{N} -separated subset of the unit sphere S (for definition, see [4]). Set

$$p(z) =: \sum_{j=1}^{s} \frac{1}{\|\zeta_j\|^{2k}} \langle z, \zeta_j \rangle^k,$$

where $\| \|$ and \langle , \rangle denote the usual Euclidean norm and scalar product in \mathbb{C}^N . Fix j_0 with $1 \leq j_0 \leq s$. For $z \in \partial C$, let α denote the angle between z and ζ_{j_0} (treated as the vectors in $\mathbb{C}^N = \mathbb{R}^{2N}$). Then, for $z \in \partial C$ near ζ_{j_0} , we have

$$\|z-\zeta_{j_0}\|\approx\alpha,$$

Piotr Jakóbczak

and

$$\left|\frac{1}{\|\zeta_{j_0}\|^{2k}}\langle z,\zeta_{j_0}\rangle^k\right| = \left(\frac{\|z\|}{\|\zeta_{j_0}\|}\right)^k \left|\left\langle\frac{z}{\|z\|},\frac{\zeta_{j_0}}{\|\zeta_{j_0}\|}\right\rangle\right|^k$$

Moreover,

$$\left\langle rac{z}{\|z\|}, rac{\zeta_{j_0}}{\|\zeta_{j_0}\|}
ight
angle
ight| = \cos lpha \leq 1 - rac{lpha^2}{4}$$

for α small, and if ∂C is sufficiently near to ∂B_N , we have

$$\frac{\|z\|}{\|\zeta_{j_0}\|} \approx 1 + c\alpha^2$$

for some c > 0 independent of ζ_{j_0} and z, and this number c can be chosen arbitrarily close to zero. (This is the estimate to which we use the fact that ∂C is near to ∂B_N). Hence

(22)
$$\left|\frac{1}{\|\zeta_{j_0}\|^{2k}}\langle z,\zeta_{j_0}\rangle^k\right| \le \left(1-\frac{1}{4}\alpha^2\right)^k (1+c\alpha^2)^k \le \left(1-\frac{1}{8}\alpha^2\right)^k$$

for α small (*i.e.*, for *z* near ζ_{j_0}). Moreover, assume that $C \subset B(0, \frac{e}{2})$. Then, for other values of *j*, and $z \in \partial C$ still near to ζ_{j_0} , the following estimate holds for $N \leq k \leq 2N$:

(23)
$$\frac{1}{\|\zeta_j\|^{2k}} |\langle z, \zeta_j \rangle|^k = \frac{1}{\|\zeta_j\|^k} \|z\|^k \left| \left\langle \frac{z}{\|z\|}, \frac{\zeta_j}{\|\zeta_j\|} \right\rangle \right|^k \le \left(\frac{e}{2}\right)^k e^{-\frac{c^2k}{N}}.$$

This estimate is similar to [4], formula (5). Then, like in the proof of the estimates following [4], formula (5), we have by (22) and (23),

$$|p(z)| \leq 1 + \sum_{k=1}^{\infty} \left(\frac{e}{2}\right)^k e^{-(\frac{kd}{2})^2} 2^{N-1} (k+2)^{2N-2}.$$

The last sum can be chosen to be $\leq 0, 1$ if d > 0, 5 was chosen sufficiently large; this would give the convenient modification of [4], Proposition 1. The rest of the proof of Lemma 8 follows the proof of [4], Theorem 1.

Having proved Lemma 8, we can repeat the proof of Theorem 2, beginning with the formula (12), in order to end the proof of Theorem 1.

References

- P. Jakóbczak, *The exceptional sets for functions from the Bergman space*. Portugal. Math. (1) 50(1993), 115–128.
- [2] _____, *The exceptional sets for holomorphic functions in Hartogs domains*. Complex Variables (Aachen) **32**(1997), 89–97.

- , Highly nonintegrable functions in the unit ball. Israel J. Math. 97(1997), 175–181.
- [3] [4] P. Wojtaszczyk, On highly nonintegrable functions and homogeneous polynomials. Ann. Polon. Math. **65**(1997), 245–251.

Politechnika Krakowska Instytut Matematyki ul. Warszawska 24 31-155 Kraków Poland