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Exceptional Sets of Slices
for Functions From the Bergman Space
in the Ball
Piotr Jakóbczak

Abstract. Let BN be the unit ball in CN and let f be a function holomorphic and L2-integrable in BN .
Denote by E(BN , f ) the set of all slices of the form Π = L∩BN , where L is a complex one-dimensional
subspace of CN , for which f |Π is not L2-integrable (with respect to the Lebesgue measure on L). Call
this set the exceptional set for f . We give a characterization of exceptional sets which are closed in the
natural topology of slices.

1 Introduction

Let BN be the unit ball in CN . We have proved in [3] that there exists a function f
holomorphic in BN such that for every complex subspace L of CN , f |L∩BN /∈
L2(L ∩ BN ) (where the space L2(L ∩ BN ) is considered with respect to the Lebesgue
measure in L ∩ BN ). In this note we are interested in another problem: Let E be a
subset of the slices of the form Π = L ∩ BN , where L is a complex one-dimensional
subspace of CN . We are interested in determining those E for which there exists a
function f holomorphic in BN and L2-integrable with respect to the Lebesgue mea-
sure (we write f ∈ L2H(BN )) such that for every one-dimensional complex sub-
space L of CN , f |L∩BN /∈ L2(L ∩ BN )(with respect to the Lebesgue measure in L) iff
L ∩ BN ∈ E. Let Ẽ =

⋃{L ∩ ∂BN | L ∩ BN ∈ E}. Denote by ν the surface measure
on ∂BN . If a function f with the above described properties exists then, by Fubini’s
theorem, ν(Ẽ) = 0.

We can identify E with a subset Ê of the complex projective space CPN . Similarly
to [2] one can prove that Ê must be a Gδ-set in the natural topology of CPN : this is
equivalent to say that Ẽ is a Gδ-subset of ∂BN . Following [1] or [2] we will call the set
E the exceptional set of complex slices for f , and denote it by E(BN , f ).

We will prove the following theorem:

Theorem 1 Let E be a subset of one-dimensional complex slices such that ν(Ẽ) = 0,
and Ê is closed in CPN (this is equivalent to assume that Ẽ is closed in ∂BN ). Then there
exists a function f ∈ L2H(BN ) such that E(BN , f ) = E.

A weaker result would be the following: Given a set E of one-dimensional complex
slices with ν(Ẽ) = 0 and Ê closed in CPN , find a bounded domain of holomorphy C
with 0 ∈ C and a function f ∈ L2H(C) such that for every one-dimensional complex
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subspace L of CN , f is not L2-integrable on L ∩ C if and only if L ∩ BN ∈ E. (In this
case, we will write E = E(C, f )).

We begin with such a weaker result, i.e., we prove the following:

Theorem 2 Let E be as in Theorem 1. Then there exists a strictly convex and balanced
domain C in CN and a function f ∈ L2H(C) such that E(C, f ) = E.

(We recall that a domain C ⊂ CN is called balanced if for every z ∈ C and every
λ ∈ C with |λ| ≤ 1, λz ∈ C).

The reason to prove first Theorem 2, which is weaker than Theorem 1 is because of
the clarity of the construction. One of the main ingredients of the proof of Theorem 2
is the following result by Wojtaszczyk:

Theorem 3 ([4], Theorem 1) There exists an integer K = K(N) and a sequence {pn}
of homogeneous polynomials in CN of degree n (for n large enough, say n ≥ N0) such
that

|pn(z)| ≤ 2 for all z ∈ ∂BN ;(1)

for each s large enoungh, say s ≥ S0,

K(s+1)−1∑
n=Ks

|pn(z)| ≥ 0, 5 for all z ∈ ∂BN .(2)

In the proof of Theorem 2 we use this result exactly in the form stated in The-
orem 3; in order to prove Theorem 1 we need first to show that the assertion of
Theorem 3 holds also for strictly convex and balanced domains which are in some
sense not too far from the unit ball; this requires further explanations, which might
obscure the main proof.

In the sequel, we will denote by BN (z, r) the ball with center z ∈ CN and of radius
r, and D(w, r) will denote the disc in the complex plane, centered at w ∈ C, and of
radius r. Also, we set U to be the unit disc in C.

If D is a domain in CN , and h ∈ L2(D), we will denote by ‖h‖D the L2-norm of h in
D. The Lebesgue measure (of arbitrary dimension) in a subset of CN or of a subspace
of CN will be denoted by m.

2 The Exceptional Sets of Complex Planes in CN

In this section we will prove Theorem 2. We will begin with the result which is rather
obvious, and can be proved by standard methods:

Lemma 4 Let E be a closed subset of CPN . Then there exists a strictly convex domain
C ⊂ CN such that C ⊂ BN , ∂C ∩ ∂BN = E, ∂C \ ∂BN ⊂ BN , and C is balanced.
Moreover, there exists a function σ, which is strictly convex and smooth in CN , is non-
negatively homogeneous (i.e., σ(λz) = |λ|σ(z) for z ∈ CN and λ ∈ C), and which is
a defining function for C (i.e., C = {z ∈ CN | σ(z) < 1} and grad σ(w) �= 0 for
w ∈ ∂C).

Let σ be a defining function for C , with the properties listed in Lemma 4. Given
w ∈ CN , w �= 0, denote by [w] the class of w in CPN . For [w] ∈ CPN , set σ̃([w]) =
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σ( w
‖w‖ ). Then σ̃ is well-defined and smooth in CPN (where CPN is considered as the

complex manifold), σ̃ ≥ 1, and σ̃([w]) = 1 precisely when [w] ∈ Ê. Moreover, let ν̃
be the measure in CPN induced in the natural way in CPN from ∂BN .

Let ψ : [0, 1) → R be a function such that:

(3) ψ > 0, ψ is increasing, and lim
t→1−

ψ(t) = +∞.

Suppose also that f ∈ O(BN ) (the space of functions holomorphic in BN ) is such that
for every z ∈ CN with ‖z‖ = 1, for every 0 < r < 1,

‖ f ‖2
{λz||λ|<r} =:

∫
D(0,r)

| f (λz)|2 dm(λ) ≤ ψ(r).

Then there exists a constant c > 0, independent of f , such that

∫
C
| f (z)|2 dm(z) ≤ c

∫
CPN

(∫
D(0, 1

σ̃([w]) )
| f (λw)|2 dm(λ)

)
dν̃([w])

≤ c

∫
CPN

ψ

(
1

σ̃([w])

)
dν̃([w]).(4)

Lemma 5 Suppose that E is as in Theorems 1 or 2. Let C be a strictly convex and
balanced domain in CN, constructed with respect to E according to Lemma 4. Then
there exists ψ satisfying (3), and such that

(5)

∫
CPN

ψ

(
1

σ̃([w])

)
dν̃([w]) < +∞.

Proof of Lemma 5 Since ν̃(CPN) < +∞, ν̃(Ê) = ν̃
({[w] ∈ CPN | σ̃([w]) =

1}) = 0, for every [w] ∈ CPN , σ̃([w]) ≥ 1, and σ̃ is continuous, there exists a
sequence {tn}∞n=1, 0 < t1 < t2 < · · · < 1, with limn→∞ tn = 1, and such that

ν̃
({

[w] ∈ CPN
∣∣∣ 1

tn+1
< σ̃([w]) ≤ 1

tn

})
<

1

n3
.

Define the function χ by χ(t) = n + 1 for t ∈ [tn, tn+1), n = 1, 2, . . . , and χ(t) = 1
for t ∈ [0, t1). Then

∫
CPN

χ

(
1

σ̃([w])

)
dν̃([w])

≤ ν̃(CPN) +
∞∑

n=1

(n + 1)ν̃
({

[w] ∈ CPN
∣∣∣ 1

tn+1
< σ̃([w]) ≤ 1

tn

})

≤ ν̃(CPN) +
∞∑

n=1

n + 1

n3
< +∞.
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Then it is sufficient to take ψ satisfying (3) and such that ψ ≤ χ on [0, 1).

Lemma 6 Given ψ satisfying (3), there exists a function f ∈ O(BN ) such that for every
one-dimensional complex subspace L of CN and every 0 < r < 1, f |L∩BN /∈ L2(L∩BN),
and

‖ f ‖2
{λz||λ|<r|} = ‖ f ‖2

L∩BN (0,r) ≤ ψ(r).

Suppose for a moment that Lemma 6 is proved. Let E, C , σ and σ̃ be as before,
and choose ψ to σ̃ according to Lemma 5. Construct f with respect to ψ like in
Lemma 6. Then by (4) and (5), f ∈ L2H(C). Moreover, by Lemmas 6 and 4, for
every one-dimensional complex subspace L of CN ,

f |L∩C /∈ L2(L ∩C) iff L ∩ BN ∈ E.

This gives the desired domain C and the function f , and ends the proof of Theorem 2.

Therefore in order to prove Theorem 2, it remains to prove Lemma 6.

Proof of Lemma 6 We prove first an auxiliary lemma:

Lemma 7 Let ψ be a function satisfying (3). Then there exists a function h holomorphic
in the unit disc U in C such that for every 0 < r < 1,

‖h‖2
D(0,r) =

∫
D(0,r)

|h(w)|2 dm(w) ≤ ψ(r)

and ∫
U
|h(w)|2 dm(w) = +∞.

Proof of Lemma 7 Shrinking ψ if necessary we may assume that ψ is continuous. If

(6) h(w) =
∞∑

n=0

anwn

is holomorphic in U , then

∫
D(0,r)

|h(w)|2 dm(w) = π

∞∑
n=0

|an|2
n + 1

r2(n+1),

and ∫
U
|h(w)|2 dm(w) = π

∞∑
n=0

|an|2
n + 1

.

Therefore it is sufficient to choose non-negative numbers {an}∞n=0 such that

(7) π

∞∑
n=0

a2
n

n + 1
= +∞,
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and for every r with 0 < r < 1,

(8) π

∞∑
n=0

a2
n

n + 1
r2(n+1) ≤ ψ(r).

(Note that if the numbers {an} satisfy (8), then the series
∑∞

n=0 anwn is convergent
uniformly on compact subsets of U , so it defines a holomorphic function in U ).

Denote further

(9) bn =
πa2

n

n + 1
,

n = 0, 1, 2, . . . . If we can choose {bn}∞n=0 such that bn ≥ 0, n = 0, 1, . . . ,

(10)
∞∑

n=0

bn = +∞,

and for every r with 0 < r < 1,

(11)
∞∑

n=0

bnr2(n+1) ≤ ψ(r),

and then we compute an by means of bn according to (9), we get the desired coeffi-
cients {an}∞n=0.

We claim that we can choose bn satisfying (10) and (11), and it is sufficient to allow
bn to assume only the values 0 or 1 for convenient n. We do this inductively. Choose
a positive integer k1 so large that

r2(k1+1) < ψ(r) for 0 ≤ r < 1

(this is possible because of the assumptions onψ). Set bk1 = 1. The functionψ1(r) =:
ψ(r) − r2(k1+1), 0 ≤ r < 1, is positive, continuous, and limr→1− ψ1(r) = +∞. There
exists k2 so large that k2 > k1, and

r2(k2+1) < ψ1(r) for 0 ≤ r < 1.

Set bk2 = 1. Similarly, the function ψ2(r) =: ψ1(r) − r2(k2+1) is positive, continuous,
and limr→1− ψ2(r) = +∞. Then there exists k3 so large that k3 > k2, and

r2(k3+1) < ψ2(r) for 0 ≤ r < 1.

We set bk3 = 1, ψ3(r) =: ψ2(r) − r2(k3+1), and choose the integer k4, and so on. In
this way we have defined bk = 1 for k = ki , i = 1, 2, . . . . For other values of k we set
bk = 0.

Note that the condition (11) is satisfied by the construction. Moreover, since in-
finitely many bk’s are equal to 1, the condition (10) is also satisfied.
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Consider the constant K = K(N) from the assertion of Theorem 3. Note that we
can assume that the numbers k1, k2, . . . in the proof of Lemma 7 can be chosen so
that for all l = 1, 2, . . . ,

(12) kl+1 − kl > K = K(N),

and for each l there exists a positive integer sl such that

(13) kl = K(N)sl.

We need also further modification of the function h obtained in Lemma 7. For every
l = 1, 2, . . . , consider the number kl, where {kl}∞l=1 are chosen according to the
proof of Lemma 7, and satisfy (12) and (13). Then, because of (9), (12), and the
choice of the numbers bk, we have akl > 0 and akl+1 = · · · = akl+K(N)−1 = 0. Define
ckl , ckl+1, . . . , ckl+K(N)−1 by

(14)
c2

kl

kl + 1
=

c2
kl+1

kl + 2
= · · · =

c2
kl+K(N)−1

kl + K(N)
=

1

K(N)

a2
kl

kl + 1
, l = 1, 2, . . . .

This gives the numbers cn for some values of n. For other n, set cn = 0. Note that
because of (12), the definition of cn is correct. Set

g(w) =
∞∑

n=0

cnwn.

Then g is holomorphic in U , and by (14),

∞∑
n=0

c2
n

n + 1
=

∞∑
n=0

a2
n

n + 1
= +∞.

Moreover, for every r with 0 < r < 1, and every l = 1, 2, . . . , we have by (14)

πa2
kl

kl + 1
r2(kl+1) =

(
πc2

kl

kl + 1
+ · · · +

πc2
kl+K(N)−1

kl + K(N)

)
r2(kl+1)

≥ πc2
kl

kl + 1
r2(kl+1) +

πc2
kl+1

kl + 2
r2(kl+2) + · · · +

πc2
kl+K(N)−1

kl + K(N)
r2(kl+K(N)),

and so, for every 0 < r < 1,

(15)
∞∑

n=0

πc2
n

n + 1
r2(n+1) ≤

∞∑
n=0

πa2
n

n + 1
r2(n+1) ≤ ψ(r).

Hence the function g(w) also satisfies the assertions of Lemma 7, but the coefficients
cn satisfy further properties, which we need later.
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Define now for z ∈ BN ,

(16) F(z) =
∞∑

n=N0

cn pn(z),

where {pn} are polynomials from Theorem 3. Since |pn(z)| ≤ 2 for z ∈ ∂BN , and
cn grow to infinity at most like Cn for some C > 0, it is not difficult to show that the
series on the right-hand side of (16) converges in all of BN to a function holomorphic
in BN .

Now fix z ∈ ∂BN . Consider the function

(17) Fz : U � w → F(wz).

(We recall that U denotes the unit disc in C). Then for 0 < r < 1 we have by (1) and
(15)

‖Fz‖D(0,r) =
∫

D(0,r)
|F(wz)|2 dm(w)

=
∞∑

n=N0

c2
n

∫
D(0,r)

|pn(wz)|2 dm(w) =
∞∑

n=N0

c2
n

∫
D(0,r)

|pn(z)|2|w|2n dm(w)(18)

= π

∞∑
n=N0

c2
n

n + 1
|pn(z)|2r2(n+1) ≤ 4π

∞∑
n=N0

c2
n

n + 1
r2(n+1) ≤ 4ψ(r).

Moreover, similarly as above, and by the choice of coefficients cn, in particular by (13)
and (14), we conclude that there exist positive integers L0 and M0, depending only on
N0 and S0 from Theorem 3, and a number c > 0 which depends only on K = K(N)
from Theorem 3 (in particular, L0, M0 and c do not depend on z ∈ ∂BN ) such that
the following estimate holds:

∫
U
|F(wz)|2 dm2(w) = π

∞∑
n=N0

c2
n

n + 1
|pn(z)|2

≥ π

∞∑
l=L0

(
c2

kl

kl + 1
|pkl (z)|2 + · · · +

c2
kl+K(N)−1

kl + K(N)
|pkl+K(N)−1(z)|2)

= π

∞∑
l=L0

a2
kl

K(N)(kl + 1)
(|pkl (z)|2 + · · · + |pkl+K(N)−1(z)|2)

=
π

K(N)

∞∑
l=L0

a2
K(N)sl

K(N)sl + 1

(K(N)(sl+1)−1∑
n=K(N)sl

|pn(z)|2
)
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≥ cπ

K(N)

∞∑
l=L0

a2
K(N)sl

K(N)sl + 1

(K(N)(sl+1)−1∑
n=K(N)sl

|pn(z)|
) 2

(19)

≥ 1

4

cπ

K(N)

∞∑
l=L0

a2
K(N)sl

K(N)sl + 1
=

1

4

cπ

K(N)

∞∑
n=M0

a2
n

n + 1
= +∞

(the last inequality follows from (2)). In virtue of (18) and (19), it is sufficient to set
f = 1

4 F in order to obtain the function f satisfying the assertion of Lemma 6. This
ends the proof of Lemma 6.

We give now the outline of the proof of Theorem 1. Take any strictly convex and
balanced domain C in CN such that BN ⊂ C , ∂BN ∩ ∂C = E, ∂BN \ ∂C ⊂ C . As
in Lemma 1 there exists a strictly convex, smooth and non-negatively homogeneous
defining function σ for C . Since C is balanced, the homogeneous polynomials of
different orders are mutually orthogonal in C with respect to the standard Lebesgue
measure in CN . Looking at the proof of Theorem 2 we see that the main ingredient
of the proof of the present theorem would be the following generalization of Woj-
taszczyk’s result:

Lemma 8 Suppose that C is not far away from BN (in the sense that the strictly convex,
smooth, and non-negatively homogeneous definig function σ for C does not differ too
much from the defining function for BN , together with derivatives up to order three, in
the uniform norm on some open set W ⊃ ∂BN ∪ ∂C). Then there exists an integer
K = K(N) and a sequence {pn} of homogeneous polynomials in CN of degree n (for n
large enough, say n ≥ N0) such that

|pn(z)| ≤ 2 for all z ∈ ∂C ;(20)

for each s large enough, say s ≥ S0,

K(s+1)−1∑
n=Ks

|pn(z)| ≥ 0, 5 for all z ∈ ∂C.(21)

Note We do not know whether the assertion of Lemma 8 is true for all strictly convex
and balanced domains in CN .

Sketch of the proof of Lemma 8 Consider the proof of [4], Proposition 1. Let
{ζ1, . . . , ζs} be a d/

√
N-separated subset of the unit sphere S (for definition, see

[4]). Set

p(z) =:
s∑

j=1

1

‖ζ j‖2k
〈z, ζ j〉k,

where ‖ ‖ and 〈 , 〉 denote the usual Euclidean norm and scalar product in CN . Fix j0

with 1 ≤ j0 ≤ s. For z ∈ ∂C , let α denote the angle between z and ζ j0 (treated as the
vectors in CN = R2N ). Then, for z ∈ ∂C near ζ j0 , we have

‖z − ζ j0‖ ≈ α,
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and ∣∣∣∣ 1

‖ζ j0‖2k
〈z, ζ j0〉k

∣∣∣∣ =
( ‖z‖
‖ζ j0‖

) k

|
〈

z

‖z‖ ,
ζ j0

‖ζ j0‖
〉
|k.

Moreover, ∣∣∣∣
〈

z

‖z‖ ,
ζ j0

‖ζ j0‖
〉∣∣∣∣ = cosα ≤ 1 − α2

4

for α small, and if ∂C is sufficiently near to ∂BN , we have

‖z‖
‖ζ j0‖

≈ 1 + cα2

for some c > 0 independent of ζ j0 and z, and this number c can be chosen arbitrarily
close to zero. (This is the estimate to which we use the fact that ∂C is near to ∂BN ).
Hence

(22)

∣∣∣∣ 1

‖ζ j0‖2k
〈z, ζ j0〉k

∣∣∣∣ ≤
(

1 − 1

4
α2

) k
(1 + cα2)k ≤

(
1 − 1

8
α2

) k

for α small (i.e., for z near ζ j0 ). Moreover, assume that C ⊂ B(0, e
2 ). Then, for other

values of j, and z ∈ ∂C still near to ζ j0 , the following estimate holds for N ≤ k ≤ 2N :

(23)
1

‖ζ j‖2k
|〈z, ζ j〉|k =

1

‖ζ j‖k
‖z‖k

∣∣∣∣
〈

z

‖z‖ ,
ζ j

‖ζ j‖
〉∣∣∣∣

k

≤
( e

2

) k
e−

c2k
N .

This estimate is similar to [4], formula (5). Then, like in the proof of the estimates
following [4], formula (5), we have by (22) and (23),

|p(z)| ≤ 1 +
∞∑

k=1

( e

2

) k
e−( kd

2 )2

2N−1(k + 2)2N−2.

The last sum can be chosen to be ≤ 0, 1 if d > 0, 5 was chosen sufficiently large; this
would give the convenient modification of [4], Proposition 1. The rest of the proof
of Lemma 8 follows the proof of [4], Theorem 1.

Having proved Lemma 8, we can repeat the proof of Theorem 2, beginning with
the formula (12), in order to end the proof of Theorem 1.
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