BULL. AUSTRAL. MATH. SOC. VOL. 8 (1973), 241-245.

Rudin-Shapiro sequences on compact groups

Alessandro Figà-Talamanca and J.F. Price

The existence of a certain type of Rudin-Shapiro sequence of functions is shown for all infinite compact groups which are not Lie, thus extending a recent result of the authors to all infinite compact groups.

1. Introduction

The notation will follow exactly that of [1] and any notation or definition unexplained here can be found in [1]. Briefly, G will denote a (Hausdorff) compact group, Γ the set of equivalence classes of continuous irreducible unitary representations of G, and

$$f \sim \sum_{\mathbf{\gamma} \in \Gamma} d(\mathbf{\gamma}) \operatorname{tr} \left[\hat{f}(D_{\mathbf{\gamma}}) D_{\mathbf{\gamma}}(.) \right]$$

the Fourier series of $f \in L^1(G)$, where: D_{γ} is a representative (assumed fixed in the sequel) of the class $\gamma \in \Gamma$; $d(\gamma)$ is the dimension of γ ; tr denotes the usual trace; and

$$\hat{f}(D_{\gamma}) = \int_{G} f(x) D_{\gamma}(x^{-1}) d\lambda_{G}(x)$$
.

Denote $\sup\{\|\hat{f}(D_{\gamma})\| : \gamma \in \Gamma\}$ by $\|\hat{f}\|_{\infty}$. By a Rudin-Shapiro sequence of type t (a t-RS-sequence), where $2 < t \leq \infty$, we shall mean a sequence (h_n) of functions in $L^t(G)$ with the properties:

Received 15 November 1972.

Alessandro Figà-Talamanca and J.F. Price

(1)
$$\begin{cases} \inf_{n} \|h_{n}\|_{2} > 0 , \sup_{n} \|h_{n}\|_{t} < \infty , \\ \lim_{n} \|\hat{h}_{n}\|_{\infty} = 0 . \end{cases}$$

The purpose of this note is to prove the following result which has already been shown in [1] for infinite compact Lie groups. (An immediate consequence of this extension is that the inclusions of 4.2 and of Theorem 4.4 of [1] remain strict for all infinite compact groups.)

THEOREM. Let G be an infinite non-Lie compact group and let $t \in (2, \infty)$. Then there exist two t-RS-sequences $\binom{h}{n}$ and $\binom{h^*}{n}$ and a positive number ρ such that

(2)
$$h_n^* * h_n = h_n * h_n^*$$
 and $||h_n||_2 = ||h_n^*||_2 = 1$,

(3)
$$\rho^{1+1/p} \|\hat{h}_n\|_{\infty}^{2/p} \leq \|h_n^* * h_n\|_p \leq \|\hat{h}_n\|_{\infty}^{2/p} ,$$

for n = 1, 2, ...

242

2. Proof of the theorem

We begin with several observations on the harmonic analysis of functions on factor groups of G. Suppose that G_0 , with dual Γ_0 , is a closed normal subgroup of G. Corollary (28.10) of [2] shows that there exists a (hypergroup) isomorphism φ from $A_0 \equiv A(\Gamma, G_0)$, the annihilator of G_0 in Γ , onto Γ_0 . Moreover, a representative $D_{\varphi(\gamma)}$ of each $\varphi(\gamma) \in \Gamma_0$ can always be chosen so that

$$D_{\varphi(\gamma)}(\overline{x}) = D_{\gamma}(x)$$

for all $x \in G$, where $\overline{x} = \pi(x)$, π being the canonical projection of G onto G/G_0 . In the sequel we will always assume that $D_{\varphi(\gamma)}$ is so chosen and we will often identify γ and $\varphi(\gamma)$.

Given $f \in L^1(G/G_0)$ with Fourier series

$$f(\overline{x}) \sim \sum_{\varphi(\gamma) \in \Gamma_0} d(\varphi(\gamma)) \operatorname{tr} [\hat{f}(D_{\varphi(\gamma)}) D_{\varphi(\gamma)}(\overline{x})] ,$$

it follows that $h = f \circ \pi$ has the Fourier series

$$h(x) \sim \sum_{\gamma \in A_0} d(\gamma) \operatorname{tr} [\hat{f}[D_{\phi(\gamma)}] D_{\gamma}(x)]$$

and so, by the uniqueness theorem for Fourier series, $\hat{h}(D_{\gamma}) = \hat{f}(D_{\varphi(\gamma)})$ for $\gamma \in A_0$, and 0 otherwise. Thus

$$\|\hat{h}\|_{\infty} = \|\hat{f}\|_{\infty} ;$$

also it is routine that

(5)
$$||h||_{L^{p}(G)} = ||f||_{L^{p}(G/G_{0})}$$

The method of proof of the theorem will be determined by whether or not G is 0-dimensional. A topological space is said to be 0-dimensional if it has an open basis consisting of sets which are both open and closed; Theorem (7.7) of [2] shows that a compact group is 0-dimensional if and only if it has a basis of neighbourhoods of the identity consisting of compact open normal subgroups.

.

(a) Suppose that G is not 0-dimensional (and not a Lie group). Then there exists a representation $\gamma_0 \in \Gamma$ such that $\Gamma_0 = [\{\gamma_0\}]$, the smallest subset of Γ closed under conjugation and tensor products followed by decomposition, is infinite [2, (28.19)]. Define G_0 to be the annihilator of Γ_0 in G. Then the dual of G/G_0 is (isomorphic to) Γ_0 , so that G/G_0 is an infinite closed subgroup of a finite dimensional unitary group (use [2, (44.55)], noting that Γ_0 is finitely generated); hence G/G_0 is a compact Lie group.

By Lemma 3.1 (b) of [1] there exist *t-RS*-sequences (f_n) , (f_n^{\star}) on G/G_0 which have the properties described in the statement of the theorem. Define

 $h_n=f_n\circ\pi\ ,\ h_n^*=f_n^*\circ\pi\ ;$

then $h_n^* * h_n = f_n^* * f_n \circ \pi$ and so formulae (4) and (5) above can be used to show immediately that the sequences (h_n) and (h_n^*) satisfy the theorem. (b) Suppose that G is infinite 0-dimensional (and consequently is not Lie). There exists a basis of neighbourhoods $\{G_{\alpha} : \alpha \in A\}$ of the identity in G consisting of open compact normal subgroups. For each $n = 1, 2, \ldots$ choose G_{α} from this basis such that

$$\lambda_G \left(G_{\alpha_n} \right) \leq 1/n$$

Write $G_n = G_{\alpha_n}$ and define χ_n to be the characteristic function of G_n . The Fourier series of χ_n^* may be seen to have the form

$$\chi_n = \lambda_G(G_n) \sum_{\mathbf{\gamma} \in A_n} d(\mathbf{\gamma}) \operatorname{tr} [D_{\mathbf{\gamma}}(.)]$$

where $A_n \equiv A(\Gamma, G_n)$ is finite. As in the proof of Theorem 3.1 of [1], we can choose a family $W_n = \{W_n(\gamma) : \gamma \in \Gamma\}$ of unitary operators such that

$$\lambda(G_n)^{-1/2} \chi_n^{W_n} \text{ and } \lambda(G_n)^{-1/2} \chi_n^{W_n^*} \text{ are } t\text{-}RS\text{-sequences}, \text{ where}$$
$$\chi_n^{W_n} = \lambda_G(G_n) \sum_{A_n} d(\gamma) \operatorname{tr}[W_n(\gamma)D_{\gamma}(.)]$$

and

$$\chi_n^{W_n^*} = \lambda_G(G_n) \sum_{A_n} d(\gamma) \operatorname{tr} [W_n(\gamma)^* D_{\gamma}(.)]$$

Let us denote these two *t-RS*-sequences by $\binom{h_n}{n}$ and $\binom{h_n^*}{n}$ respectively.

First note that $\|h_n\|_2 = \|h_n^*\|_2 = 1$ and that $h_n^* * h_n$ and $h_n^* * h_n^*$ are both equal to χ_n . Thus (2) is satisfied, and moreover

(6)
$$\|h_n^* \star h_n\|_p = \lambda_G(G_n)^{1/p}$$

On the other hand,

(7)
$$\|\hat{h}_n\|_{\infty} = \lambda_G(G_n)^{-1/2} \left\| \left(\chi_n^{W_n}\right)^{\wedge} \right\|_{\infty} = \lambda_G(G_n)^{1/2}$$

Equations (6) and (7) together show the validity of (3) with $\rho = 1$, thus completing the proof.

References

- [1] Alessandro Figà-Talamanca and J.F. Price, "Applications of random Fourier series over compact groups to Fourier multipliers", *Pacific J. Math.* 43 (1972), 431-441.
- [2] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volumes
 I and II (Grundlehren der mathematischen Wissenschaften, Bände
 115, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1963,
 1970).

Istituto di Matematica, Università di Genova, Genova, Italy; Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.