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Abstract

We use concepts of continuous higher randomness, developed in Bienvenu et al. [‘Continuous
higher randomness’, J. Math. Log. 17(1) (2017).], to investigate Π 1

1 -randomness. We discuss
lowness for Π 1

1 -randomness, cupping with Π 1
1 -random sequences, and an analogue of the

Hirschfeldt–Miller characterization of weak 2-randomness. We also consider analogous questions
for Cohen forcing, concentrating on the class of Σ1

1 -generic reals.

2010 Mathematics Subject Classification: 16W10 (primary); 16D50 (secondary)

1. Background

Mathematical objects often have a general definition which has no regard for any
method or procedure that can describe it. For instance, a function is defined as an
arbitrary correspondence between objects, but nothing in the definition requires
that we are given a way to construct the correspondence. Nonetheless, when
the modern definition of functions (often credited to Dirichlet) appeared, it was
obvious that all the actual functions that were studied in practice were determined
by simple analytic expressions, such as explicit formulae or infinite series.

In the early days of logic, some mathematicians tried to delineate the functions
which could be defined by such accepted methods and they searched for their
characteristic properties, presumably nice properties not shared by all functions.
Baire was first to introduce in his thesis [Bai99] what we now call Baire functions,
the smallest set which contains all continuous functions and is closed under the
taking of (pointwise) limits. His work was then pursued by Lebesgue [Leb05],
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who initiated the first systematic study of definable functions. According to
Moschovakis [Mos87], Lebesgue’s paper truly started the subject of descriptive
set theory.

At the time, the modern notions of computability and definability were yet
to appear, but we can see, through the work of Borel, Baire and Lebesgue, the
necessity of giving a precise meaning to the intuition we have of objects we
can ‘describe’ or ‘understand’. A couple of years later, Gödel’s work around
his incompleteness theorems constituted a key step leading to the understanding
of what is a computable object and to the understanding of definability in
general. This work was then pursued in the thirties, by Church with Lambda
calculus, and by Turing with his eponymous machine. The modern notion
of computable function was made clear and researchers were soon convinced
of the rather philosophical following statement, known as the Turing–Church
thesis: ‘A function is computable (using any of the numerous possible equivalent
mathematical definitions) if and only if its values can be found by some purely
mechanical process’.

Let us now go back to the early days of descriptive set theory. The study of
the hierarchy of functions initiated by Baire and pursued by Lebesgue naturally
led to the notion of Borel sets. One goal here was again to refine the very general
definition of sets (say of reals) in order to work with objects we can understand
and describe. The notion of Borel sets takes care of one aspect of sets complexity,
their complexity with respect to their ‘shape’: The sets of reals with simplest
shape complexity are the open sets (Σ0

1 sets) and their complement, the closed
sets (Π 0

1 sets). The first ones are merely unions of interval and the second ones
complements of unions of interval. We then obtain sets of higher and higher
complexity by taking countable unions or countable intersections of sets of lower
complexity. We obtain a hierarchy of sets, each of them having nice properties,
such as for instance being measurable or having the Baire property. However, this
hierarchy of complexity is still unsatisfactory, because even a set of simple shape,
like an open set, can be very complex from the viewpoint of effectiveness: a set
may be open, but there may be no way to describe the intervals which compose it.
Kleene, a student of Church, reintroduced computability in the study of Borel sets.
We now want to work only with open sets that can be described in some effective
way. Then when we consider a countable intersection or a countable union, we
also want to be able to describe in some effective way which sets take part in this
union or intersection. This led to the very nice and beautiful theory of effectively
Borel sets, and of effectively analytic and coanalytic sets, which constitute one of
the main material of this paper.

Computability and definability could be used successfully in the study of sets of
reals. But they were primarily designed to study sets of integers. Interestingly, the
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effective sets of reals proved themselves useful to conduct a study of the sets of
integers which are far from being describable or understandable as single objects.
This is the purpose of, for instance, algorithmic randomness. This field tries to
resolve an apparent paradox that probability theory is helpless with: if one flip
a fair coin twenty times in a row, a result like this 01001011011010101110 will
seem rather ‘normal’, whereas a result like this one : 00000000000000000000
will appear as nonrandom and extraordinary, to the point that one would probably
check if the coin is valid. However, these two outcomes have the same probability
of occurrence. So why one of them seems more random than the other one? It is
simply because one is hard to describe whereas the other one is simple to describe.
This is an extreme case, and it is not always the case that strings which seem
nonrandom (with respect to a fair-coin flipping) are simple to describe. Consider
for instance a long string with twice more 0’s than 1’s, but chaotic enough with
regards to any other aspect you could think of. This string is not necessarily simple
to describe, but it belongs to a small set that is simple to describe : the set of strings
with twice more 0’s than 1’s, which has small measure by the concentration
inequalities, like the Chernoff bounds. The mathematical formalization of this
idea was a long process throughout the 20th century, started by Kolmorogov
and Solomonov [Sol64, Kol65]. Martin-Löf was the first, in 1966 [ML66], to
use the above paradigm to define randomness of infinite binary sequences: such
a sequence is random if it belongs to no set of measure 0, for a given class
of set which should be describable in some way. Whichever notion of ‘being
describable’ is used, the only requirement is that at most countably many sets
are describable for this notion. This way the set of randoms still has measure one,
by the countable additivity of measures.

There are other approaches to the study of sets of integers which are typical.
In 1966 Cohen showed that the continuum hypothesis was independent of the
standard axioms of set theory (ZFC). To do so he devised his famous forcing
method, which should latter have numerous various applications in mathematical
logic in general. The first example of forcing given by Cohen is forcing with the
dense open sets in a countable model of ZFC. With respect to that forcing, a set of
integers is called Cohen generic if it belongs to none of the meagre sets definable
in the model. Just as countable additivity of measures is used to ensure that the set
of random elements has measure 1, here we use the fact that in a Baire space, a
countable union of meagre sets is still a meagre set. Therefore, the sets of generic
elements is comeagre. The study of Cohen generics was latter pursued by several
authors [Joc80, Kur82, Kur83], by lowering the effective complexity of meagre
sets which are used: we do not consider all the meagre sets in a countable model
of ZFC, but only some of them. We can for instance keep only the closed sets
of empty interior whose complement can be enumerated by a Turing machines.
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There are a lot of similarities between Cohen generics and random sequences.
This is because Cohen generics are for category theory what randoms are for
measure theory: in both case we have a notion of ‘small set’, for randomness a set
is small if it has measure 0 and for categoricity a set is small if it is meagre. Also
in both case we declare an element ‘typical’ if it belongs to no small set among a
countable selection of them.

This paper deals with both randomness and genericity at certain various
levels of effectiveness or describability. We mainly deal with what is called Π 1

1 -
randomness andΣ1

1 -genericity. The notion ofΠ 1
1 -randomness goes back to Sacks

[Sac90] and Kechris [Kec75], and it started to be studied formally by Hjorth and
Nies [HN07]. It is a notion of interest because of some remarkable properties
shared with no other randomness notion. For instance there is a largest Π 1

1 set of
measure 0. This notion was so far not very well understood, and we unveil in this
paper most of its mysteries. Our work provides insight about its inner mechanisms:
Π 1

1 -randomness becomes with this paper a well understood notion.
As for Σ1

1 -genericity, the notion was at first built by the authors to mimic on
the categorical side the phenomena that occur on the measure theoretical side with
Π 1

1 -randomness. We conduct a study of various genericity notions lying next to
Σ1

1 -genericity, and we show that it has a lot of similarities with Π 1
1 -randomness.

2. Introduction

Interest in Π 1
1 -randomness comes from both above and below. From ‘above’,

effective descriptive set theory attempts to understand the computable content of
basic facts about definable sets of real numbers. Lightface investigations shed
new light on classical results; for an example we can take Spector’s proof of the
measurability of Π 1

1 sets, originally established by Lusin. The ordinal analysis
of Π 1

1 sets allows us to consider them as being in some sense enumerable. For
sets of natural numbers, this is made precise by using admissible computability
over Lωck

1
. Of course measure plays a central role in descriptive set theory, and so

null Π 1
1 sets are a natural object to study.

From ‘below’, investigation of higher notions of algorithmic randomness were
started by Martin-Löf [ML66], who considered ∆1

1-randomness, mostly because
it satisfies better closure properties than the computably enumerable notion. Sacks
(see [Sac90, IV2.5]) was the first to define the notion of Π 1

1 -randomness and
show it is distinct from ∆1

1-randomness. An important advance in the theory
of ‘higher randomness’ was made by Hjorth and Nies in [HN07]. They used the
analogy between computably enumerable andΠ 1

1 sets of numbers to define higher
analogues of notions of algorithmic randomness, the most central being Π 1

1 -ML-
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randomness. The theory was then further developed by Chong et al. [CNY08], by
Chong and Yu [CY] and by Bienvenu et al. [BGM].

These contributions enriched various aspects of the theory, but very little
was discovered about the key notion of Π 1

1 -randomness. This concept is very
natural. It is simply defined (avoiding all null Π 1

1 sets), and has a universal test
(a greatest null Π 1

1 set); and unlike ML-randomness, the universal test occurs
without having to encumber the definition with extra conditions (the speed of
convergence of the measure to 0). On the other hand it is a singularity among
higher randomness notions, in that it is not the higher analogue of any ‘lower’
notion of randomness: ∆1

1-randomness is higher Schnorr randomness, and other
notions are direct analogues: the main one isΠ 1

1 -ML-randomness, but also higher
weak 2-randomness (introduced by Nies [Nie09, 9.2.17], studied by Chong and
Yu [CY] and later in [BGM]), and higher Kurtz randomness. It was not clear how
to use computability-theoretic tools to tackle Π 1

1 -randomness.
A breakthrough was made by the second author in [Mon14], who showed that

the set of Π 1
1 -randoms is Π 0

3 , a Borel rank much lower than expected earlier. In
this paper we use his work to continue the effective study of Π 1

1 -randomness,
and in particular answer some questions that have been left open for more than
a decade. For example, we show that lowness for Π 1

1 -randomness coincides
with being hyperarithmetic, and prove a similar result about cupping with Π 1

1 -
random sequences. We also identify and investigate the category analogue of Π 1

1 -
randomness, which is Σ1

1 -genericity.

2.1. Π1
1 -randomness, lowness and cupping. As mentioned above, there is a

greatest null Π 1
1 set (Stern and independently Kechris [Ste75, Kec75], and later

rediscovered in [HN07]). In fact, this greatest set can be described succinctly.
Recall that a sequence is ∆1

1-random if it avoids all null ∆1
1 (hyperarithmetic)

sets. We say that a real X collapses ωck
1 if ωX

1 > ωck
1 ; otherwise it preserves

ωck
1 . The following characterization was first proved by Stern [Ste73, Ste75] and

rediscovered later by Chong et al. [CNY08]:

THEOREM 2.1. A sequence is Π 1
1 -random if and only if it is ∆1

1-random and
preserves ωck

1 .

In this paper we answer the question of lowness forΠ 1
1 -randomness, first stated

in [HN07]. The idea of lowness has been extensively studied in algorithmic
randomness: for a given randomness notion Γ , we say that a set X is low
for Γ if X cannot derandomize any Γ -random: every Γ -random is also Γ (X)-
random. In particular the class of reals low for ML-randomness has been central
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in algorithmic randomness, with many equivalent characterizations. The higher
analogue of this class was studied in [HN07, BGM].

Any ∆1
1 set is low for Π 1

1 -randomness. In this paper (Theorem 4.1) we prove
that these are the only ones.

We also consider the question of cupping with Π 1
1 -random sequences. A

fundamental result in the study of both the local and global Turing degrees
is the Posner–Robinson theorem, showing that any noncomputable real can
be joined above ∅′ with a 1-generic sequence. The cupping question for
incomplete randoms was settled by Day and Miller [DM14] using tools of
effective analysis. Their solution gives yet another characterization of lowness
for ML-randomness. Limits on cupping with random sequences were established
by Day and Dzhafarov [DD13].

In the higher setting, Kleene’s O , the complete Π 1
1 set of numbers, often plays

the role of ∅′. Here the problem of cupping can be rephrased, since a real X is
hyperarithmetically above O if and only if it collapses ωck

1 . Hence for cupping
partner for a real A we are searching for a real X which preserves ωck

1 but such
that A ⊕ X collapses ωck

1 . Kumabe–Slaman forcing can be used to show that
any nonhyperarithmetic real can be nontrivially cupped (for Kumabe–Slaman
forcing see [SS99]). Theorem 2.1 shows that for random sequences, the random
cupping partners desired are precisely the Π 1

1 -random sequences. We show that
any nonhyperarithmetic real can in fact be cupped by a Π 1

1 -random sequence
(Theorem 4.3).

2.2. Continuous higher randomness, and an analogue of Hirschfeldt–Miller.
We use concepts, terminology and notation from [BGM]. The main theme of
the paper is the centrality of continuous reductions in algorithmic randomness.
Hyperarithmetic reducibility is too coarse for many arguments to go through. A
central concept introduced in [BGM] is a higher analogue of Turing reducibility
that allows us to lift many arguments to the higher setting. The idea is to take the
definition of Turing reducibility in terms of functionals and allow the functionals
to be Π 1

1 rather than c.e. We give the details in Section 3 below. Higher Turing
reducibility requires any output to be determined by only finitely many bits of
the oracle. If an oracle Y collapses ωck

1 , then hyperarithmetic reducibility gives Y
extra computational power simply because enumerations processes with oracle Y
are carried out over more than ωck

1 many steps; higher Turing reducibility does not
allow that.

Hirschfeldt and Miller gave the following characterization of weak 2-
randomness (see for example [Nie09, Theorem 5.3.15]).

https://doi.org/10.1017/fms.2017.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.27


Higher randomness and genericity 7

THEOREM 2.2. Let X be ML-random. The following are equivalent:

(1) X forms a minimal pair with ∅′.

(2) X does not compute any noncomputable c.e. set.

(3) X is weakly 2-random.

In the higher setting, a modified version (involving enumerating ∆2 sets) was
shown to characterize the class MLR[O], which is strictly smaller than the Π 1

1 -
randoms. For higher weak 2-randomness, or even Π 1

1 -randomness, (1) of the
theorem fails, since there is aΠ 1

1 -random which is computable from O . However,
we show here that using the continuous notion of higher computability, (2)
characterizes Π 1

1 -randomness (Theorem 4.6) and not higher weak 2-randomness.
The direction (3) → (2) does not work in the higher setting as it uses what we
call a ‘time trick’: the number of stages of computation is the same as the length
of the oracle. The fact that in the higher setting, (2) characterizesΠ 1

1 -randomness
instead shows that reliance on this trick is fundamental.

2.3. A higher arithmetical hierarchy. Yu showed [Nie14] that the set of Π 1
1 -

randoms is notΣ0
3. As mentioned above, the second author showed later [Mon14]

that the set of Π 1
1 -randoms is Π0

3, which is optimal by Yu’s result. One can ask
how effective this is. The strong analogy between c.e. and Π 1

1 allows us to define
a new hierarchy which is the higher analogue of the arithmetical hierarchy (for
sets of reals). Namely a subset of Cantor space is higher effectively open (higher
Σ0

1 ) if it is Π 1
1 open, and higher effectively closed (higher Π 0

1 ) if it is Σ1
1 closed.

To continue we take effective ω-unions. So for example, a set is higher Π 0
2 if it

is of the form
⋂

Un , where each Un is Π 1
1 open, uniformly in n; higher Σ0

3 if it
is of the form

⋃
Qn , where each Qn is higher Π 0

2 (uniformly in n); higher Σ0
2 if

it is of the form
⋃

Pn , where each Pn is Σ1
1 closed (uniformly); and so on. This

definition is motivated by Nies’s higher analogue of weak 2-randomness, defined
as avoiding all null higher Π 0

2 sets. For brevity, we use the notation Π ck
n and Σ ck

n
to denote the levels in this hierarchy.

An unusual feature of this hierarchy is that some higher Σ0
1 sets are not Σ0

2 .
Indeed, the sets in the classes Σ ck

1 , Π ck
2 , Σ ck

3 , Π ck
4 , . . . are all Π 1

1 , and some are
notΣ1

1 ; considering complements, sets in the classesΠ ck
1 ,Σ ck

2 ,Π ck
3 , . . . are allΣ1

1 ,
but some are not Π 1

1 . See Figure 1. (The same phenomenon happens classically
if one considers the Borel sets defined on some non-Polish topological space. For
example consider the Gandy-Harrington topology; or, let T(2ω) be the set of open
sets of 2ω and consider the topology on T(2ω) generated by the subbasis Jσ K =
{U ∈ T(2ω) : [σ ] ⊆ U} for any string σ . Consider the closed set F = {U ∈
T(2ω) : [σ ] − U 6= ∅} for a given string σ . As any open set in this topology
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contains the element [ε] = 2ω, also any intersection of open set contains [ε], which
is not an element of F .)

Σ ck
1 Σ ck

2 Σ ck
3 Σ ck

4 Σ ck
5 . . .

Π ck
1 Π ck

2 Π ck
3 Π ck

4 Π ck
5 . . .

Figure 1. The higher hierarchy of complexity of sets. The blue complexities
correspond to Π 1

1 sets. The green complexities correspond to Σ1
1 sets.

We can ask two questions:

(1) Which null sets in this hierarchy suffice to capture Π 1
1 -randomness?

(2) Does the set of Π 1
1 -randoms lie in this hierarchy?

For example, we could hope that Monin’s Borel rank result is completely effective,
meaning that the set of Π 1

1 -randoms is higher Π 0
3 . This is not so, by a result in

[BGM] (any conullΠ ck
3 set in fact contains a sequence which is not higher weak 2-

random). For question (1), in [BGM] it was shown thatΠ 1
1 -randomness is distinct

from higher weak 2-randomness, showing that the level Π ck
2 is insufficient. In

Section 5 we establish fairly low bounds for both questions :Π ck
4 as the answer to

question (1) and Π ck
5 as the answer for question (2).

2.4. Σ1
1 -genericity. What about category? Stern [Ste75] considered category

as well as measure, showing that the largest meagre Π 1
1 set is the set of ∆1

1-
generic sequences which preserve ωck

1 . This uses Feferman’s result [Fef64] that
comeagrely many reals preserve ωck

1 .
Recall that for any lightface pointclass Γ , we say that a sequence G ∈ 2ω is:

• Weakly Γ -generic if it meets all dense open sets with codes in Γ (by code we
mean code for sets of strings generating the open set);

• Γ -generic if it either meets or avoid all open sets with codes in Γ (does not lie
on the boundary of any such open set).

For example, Jockusch’s familiar notions of n-genericity are Σ0
n -genericity. The

closure properties of the hyperarithmetic sets show that ∆1
1-genericity and weak

∆1
1-genericity coincide.
Our first result here is to capture the precise level of genericity that suffices to

preserve ωck
1 ; this is the category analogue of Monin’s result on Π 1

1 -randomness.
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We show that the level is precisely Σ1
1 -genericity. This notion can be considered

as a higher analogue of Π 0
1 -genericity, a notion which Jockusch noticed is

equivalent to 2-genericity (see [Kur82] and [Kur83]). We also investigate the
intermediate notion of Π 1

1 -genericity (the higher analogue of 1-genericity), and
consider lowness and cupping questions. We also find a partial analogue of the
equivalence of Π 0

1 -genericity and 2-genericity (which is the same as 1-genericity
relative to ∅′) by considering a subclass of the Π 1

1 (O) dense open sets, the finite-
change dense open sets (see Definition 6.8). Along the way we also give a direct
proof of the equivalence of lowness for tests and lowness for weak genericity,
which applies to the lower setting as well.

3. Preliminaries

3.1. Higher prefix-free sets of strings, and a result of Kučera’s. In ‘lower’
randomness, many arguments use c.e. (or even computable) prefix-free sets of
strings when working with effectively open sets. However, there are higher
effectively open sets which are not generated by Π 1

1 prefix-free sets of strings
(this is implicit in [HN07] and formally shown in [BGHM]). In the higher setting
we focus on the weight of a set of strings (and see that in several ways it is the
more fundamental concept). Recall that for a set of strings W , the weight wt(W )

of W is
∑

σ∈W 2−|σ |. Instead of prefix-free generating sets we obtain sets of weight
as close as we like to the measure of the set in question. The technique used in the
proof of the following lemma was already used in [BGM, Lemmas 3.1 and 3.3].
It relies on the existence of a ‘projectum function’: a ωck

1 -computable (∆1(Lωck
1
)-

definable) injective function p : ωck
1 → ω. Recall that a set of strings W generates

(or describes, or codes, or defines) the open set

W = [W ]≺ =
⋃
σ∈W

[σ ] = {X ∈ 2ω : ∃σ ≺ X (σ ∈ W )} .

LEMMA 3.1. For any higher effectively open set U and ε > 0 there is aΠ 1
1 set of

strings W generating U such that wt(W ) 6 λ(U)+ ε.

Though we will not use it, we note that an index for W can be obtained
uniformly from ε and an index for U .

Proof. Let U be a Π 1
1 set of strings generating U ; let 〈Us〉s<ωck

1
be a higher

enumeration of U . We can assume that at most one string enters U at each stage:
this means that for all s < ωck

1 , Us+1 − Us contains at most one element, and for
all limit s < ωck

1 , Us = U<s =
⋃

t<s Ut .
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At a stage s < ωck
1 , if σ enters Us+1, we find a clopen set Cs ⊆ [σ ] such that:

• [σ ] ⊆Ws ∪ Cs ; and

• λ(Ws ∩ Cs) 6 ε · 2−p(s).

We then add a (finite) set of strings generating Cs (whose total weight will be
λ(Cs)) to Ws+1. At limit stages s we let Ws =

⋃
t<s Wt .

By construction, U = [W ]≺. To bound the weight of W , we observe that if
s < t < ωck

1 then the sets Ct −Wt and Cs −Ws are disjoint (as Cs ⊆Wt ); these
sets are subsets of U , and so∑

s<ωck
1

λ(Cs −Ws) 6 λ(U).

Also,

wt(Cs) = λ(Cs) = λ(Cs −Ws) ∪ λ(Cs ∩Ws),

and so

wt(W ) =
∑

s<ωck
1

wt(Cs) 6 λ(U)+
∑

s<ωck
1
λ(Ws ∩ Cs)

6 λ(U)+ ε
∑

s<ωck
1

2−p(s) 6 λ(U)+ ε.

As a result, we get a characterization of higher ML-randomness, an analogue
of a result of Kučera’s [Kuč85].

PROPOSITION 3.2. A sequence Z isΠ 1
1 -ML-random if and only if Z has a tail in

every non-null Π ck
1 set.

Proof. Suppose that Z is notΠ 1
1 -ML-random. Then every tail of Z is notΠ 1

1 -ML-
random, so Z and all of its tails miss every Π ck

1 set consisting only of Π 1
1 -ML-

random sequences (for example, complements of components of the universal
Π 1

1 -ML-test).
Suppose that Z is Π 1

1 -ML-random. Let P be Π ck
1 and non-null, and let V

be the complement of P . By Lemma 3.1, let V be a Π 1
1 set of strings which

generates V and has weight smaller than 1. We let Vm
= [V m

]
≺, where V m is the

set of concatenations of m strings, all from V . The weight of V m is bounded by
(wt(V ))m , and the measure of Vm is bounded by the weight of V m . The important
point is that λ(Vm) goes to 0 computably, so 〈Vm〉 is aΠ 1

1 -ML-test. Let m be least
such that X /∈ Vm ; as V0

= 2ω, m > 0. Let σ ∈ V m−1 which is a prefix of X ; let
Y = X − σ (so X = σ ˆY ). Then Y ∈ P .
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3.2. Consistency in higher functionals. Let us define higher Turing
reducibility. Below we use it to compute not only elements of 2ω (or ωω)
but also of (ωck

1 )
ω, so we give a general definition. A higher Turing functional

is a ωck
1 -c.e. set of triples (σ, n, α) ∈ 2<ω × ω × ωck

1 . Recall that ωck
1 -c.e. means

Σ1(Lωck
1
)-definable; if the functional is a subset of 2<ω × ω× ω (or 2<ω × ω× 2)

then this is the same as being Π 1
1 . The ‘axiom’ (σ, n, α) indicates that with an

oracle Y ∈ 2ω extending σ , on input n, we output α. For a higher functional Φ
and an oracle Y ∈ 2ω we let Φ(Y ) be the function that Φ computes with oracle Y ;
formally, identifying a function as a set of pairs,

Φ(Y ) = {(n, α) : ∃σ ≺ Y ((σ, n, α) ∈ Φ)} .

Here we must note something important. Unlike the usual definitions of ‘lower’
functionals, we do not require that a higher Turing functional is consistent. That
is, we do not require that if (σ0, n, α0) and (σ1, n, α1) are both inΦ, and σ0 and σ1

are compatible, then α0 = α1. We thus have to regard Φ(Y ) as a multi-valued
function. For f ∈ (ωck

1 )
ω and Y ∈ 2ω, we write f 6ωck

1 T Y if f = Φ(Y ) for
some higher functional Φ (and say that Y higher computes f ). That is, on the
oracle Y we require that Φ gives only consistent answers (and is total), but we
do not require that Φ(Z) be consistent on other oracles Z . Indeed, in [BGHM]
we show that there is a higher ML-random sequence (a Π 1

1 -ML-random) which
higher Turing computes O but does not compute it via a functional consistent on
all oracles. So the inconsistency cannot be completely removed. However, it can
be ‘reduced’ by as much as we want, in a measure theoretic way; and this will be
useful for some results of this paper.

Let us fix some notation. For a functionalΦ and an oracle Y we writeΦ(Y, n)↓
if n ∈ domΦ(Y ): that is, at least one value is given. If more than one value is
given then we anyway write Φ(Y, n) = α0 and Φ(Y, n) = α1. We say that Φ(Y )
is total if domΦ(Y ) = ω, that is, ifΦ(Y, n)↓ for all n. The totality set ofΦ isΠ ck

2 .
The inconsistency set of Φ (the set of Y for which for some n, Φ(Y, n) obtains
more than one value) is Σ ck

1 (higher effectively open).
The proof of the next lemma again uses the projectum function p : ωck

1 → ω.

LEMMA 3.3. For any higher Turing functional Φ and ε > 0 there is a higher
functional Ψ so that:

(1) Every Ψ -computation arises from a Φ-computation: for all n, α and Y , if
Ψ (Y, n) = α then Φ(Y, n) = α.

(2) For all Y , if Ψ (Y ) is consistent then domΨ (Y ) = domΦ(Y ).

(3) The measure of the inconsistency set of Ψ is smaller than ε.

Further, an index for Ψ can be obtained uniformly from an index forΦ and from ε.

https://doi.org/10.1017/fms.2017.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.27


N. Greenberg and B. Monin 12

Note that (1) and (2) imply that the correctΦ-computations are unchanged inΨ :
for all Y ∈ 2ω, ifΦ(Y ) is total and consistent then so is Ψ (Y ), and Ψ (Y ) = Φ(Y ).

Proof. Given Φ and ε we enumerate Ψ . We ensure that for all s, every Ψs-
computation arises from a Φs-computation. We can assume that at most one
‘axiom’ enters Φ at each stage. At stage s < ωck

1 suppose that an axiom (σ, n,
α) enters Φs+1. Let Es be the inconsistency set of the functional Ψs ∪ {(σ, n, α)}.
This set is ∆1

1 open (uniformly in s). We find a clopen set Cs ⊆ [σ ] such that
[σ ] ⊆ Cs ∪ Es and such that λ(Cs ∩ Es) 6 2−p(s)ε. We then enumerate into Ψs+1

axioms which ensure that Ψs+1(Y, n) = α for all Y ∈ Cs . Since Cs ⊆ [σ ], every
Ψs+1-computation arises from a Φs+1-computation; this establishes (1).

Let us see that (2) and (3) are satisfied. Suppose that Ψ (Y ) is consistent, and
that n ∈ domΦ(Y ); say an axiom (σ, n, α) enters Φs+1, where σ ≺ Y . If Y ∈ Cs

then n ∈ domΨ (Y ). Otherwise, the functional Ψs ∪ {(σ, n, α)} is inconsistent
on Y . Since Ψ (Y ) is consistent, this means that Ψs(Y, n)↓ (to some value other
than α). But this again implies that n ∈ domΨ (Y ).

For (3), suppose that Ψ (Y ) is inconsistent. Let s be the stage at which Y enters
the inconsistency set of Ψ : Ψs(Y ) is consistent but Ψs+1(Y ) is not. [There is such
a stage; if s is a limit stage and Ψt(Y ) is consistent for all t < s, then Ψs(Y ) is
consistent.] A new axiom applying to Y is enumerated into Ψs+1, so Y ∈ Cs . The
fact that this new axiom makes Ψs+1(Y ) inconsistent also implies that Y ∈ Es . So
the inconsistency set of Ψ is a subset of

⋃
s<ωck

1
(Cs ∩ Es); (2) follows as in the

previous proof, since λ(
⋃

s(Cs ∩ Es)) 6
∑

s<ωck
1

2−p(s)ε 6 ε.

3.3. Π1
1 -randomness and forcing. The heart of Monin’s proof that the Π 1

1 -
randoms form a Π0

3 set goes through an analysis of forcing with Π ck
1 sets of

positive measure. This is in analogy to forcing with Π 0
1 closed sets of positive

measure, which Monin shows yields computably dominated weakly 2-random
sequences. The precise level resembles genericity.

THEOREM 3.4 [Mon14]. Let X be ∆1
1-random. The following are equivalent:

(1) X is Π 1
1 -random.

(2) For any Σ ck
2 set H, either X ∈ H, or X is an element of some Π ck

1 set
(necessarily of positive measure) which is disjoint from H.

We present a proof of Monin’s theorem in a language and notation which is
aligned with the rest of this paper.
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Proof. For aΠ ck
2 set G, we let G∗ denote the union of allΠ ck

1 subsets of G. So we
need to show that if X is∆1

1-random, then X collapses ωck
1 (fails to beΠ 1

1 -random)
if and only if X ∈ G − G∗ for some Π ck

2 set G.
Recall that a Π 1

1 set A is the union
⋃

s<ω1
As , where each As is ∆1

1 in any
code for s; in particular, for s < ωck

1 , As is ∆1
1, uniformly in s. We let A<ωck

1
=⋃

s<ωck
1
As . If U is Π 1

1 open, then U = U<ωck
1

; but in general, λ(A) = λ(A<ωck
1
)

for any Π 1
1 set. If G =

⋂
n Un is Π ck

2 then G = Gωck
1

but may not equal G<ωck
1

; the
elements of Gωck

1
− G<ωck

1
are those which are enumerated into each Un at stages

sn < ωck
1 such that the sequence 〈sn〉 is unbounded in ωck

1 . Note that the sequence
〈sn〉 is ∆1(Lωck

1
(X))-definable, so such X collapses ωck

1 .
We show:

(a) For any G ∈ Π ck
2 , G∗ ⊆ G<ωck

1
.

(b) For any G ∈ Π ck
2 , G<ωck

1
− G∗ is null, indeed does not contain ∆1

1-random
sequences.

(c) If X is∆1
1-random and collapses ωck

1 , then X ∈ G−G<ωck
1

for someΠ ck
2 set G.

Then (a) + (c) establish the direction (2)H⇒ (1) of the theorem; and (a) + (b)
establish (1)H⇒ (2), as we already observed that any X ∈ G−G<ωck

1
collapses ωck

1 .
For (a), let F ⊆ G be higher effectively closed. Say G =

⋂
n Un . Just like in

the lower setting, by compactness, for each n, there is some s < ωck
1 such that

Fs ⊆ Un,s . Observing this fact is ∆1(Lωck
1
), so by admissibility, there is some s

such that for all n, Fs ⊆ Un,s , that is, Fs ⊆ Gs , yielding F ⊆ Fs ⊆ Gs ⊆ G<ωck
1
.

Both (b) and (c) rely on effective regularity of Lebesgue measure. Recall that
for any ∆1

1 set C we can find a ∆1
1, Gδ set G such that C ⊆ G and C =∗ G,

that is, λ(G − C) = 0. (In fact this can be done within the same level of the
hyperarithmetic hierarchy, yielding the equivalence of α-randomness with ML-
randomness relative to ∅(α) (As usual replace α by α− 1 for α < ω.).) Of course,
taking complements, we can find a ∆1

1, Fσ set F ⊆ C such that F =∗ C.
For (b), let X ∈ G<ωck

1
− G∗. Let s < ωck

1 such that X ∈ Gs . Since Gs is ∆1
1, find

a ∆1
1, Fσ set Q ⊆ Gs such that Q =∗ Gs . Since Q is a union of ∆1

1 closed sets
and X /∈ G∗, X /∈ Q. So X is an element of the ∆1

1 null set Gs −Q, and so is not
∆1

1-random.
Finally we prove (c). Let X be a ∆1

1-random which collapses ωck
1 . Let Ψ

be a computable operator taking reals to linear orderings such that Ψ X ∼= ωck
1 .

For any Y and n < ω let Ψ Y (6 n) denote the restriction of the ordering
Ψ Y to the numbers m <Ψ Y n. For n < ω let An consist of the reals Y such
that Ψ Y (6 n) is isomorphic to some computable ordinal. As expected we let
An,s =

{
Y : Ψ Y ∼= t for some t < s

}
. Then An is Π 1

1 and An = An,<ωck
1

, but of
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course is not necessarily open. Let B =
⋂

n An , and for s < ωck
1 , let Bs =

⋂
n An,s ;

let B<ωck
1
=
⋃

s<ωck
1
Bs . So X ∈ B = Bωck

1
−B<ωck

1
. We want the same thing except

to replace An by open sets. We do this by approximating.
For each n and s find Pn,s ⊇ An,s , ∆1

1 and Gδ, such that An,s =
∗ Pn,s . Further

write Pn,s =
⋂

k Un,k,s , with each Un,k,s being a ∆1
1 open set. These can be chosen

so that Un,k,s ⊆ Un,k,t if s < t . Let G =
⋂

n,k Un,k ; this set isΠ ck
2 and G<ωck

1
=
⋃

s Gs

where Gs =
⋂

n Pn,s =
⋂

n,k Un,k,s . Since B ⊆ G, X ∈ G. For each s < ωck
1 , X /∈ Bs

implies X /∈ Gs : otherwise for some n < ω, X is an element of the ∆1
1 null set

Pn,s −An,s . Hence X ∈ G − G<ωck
1

, as required.

Theorem 3.4 can be restated in the language of forcing. Let P be the partial
order consisting of the Π ck

1 sets of positive measure, ordered by inclusion.
Theorem 3.4 implies the following proposition. Recall that for K ⊆ 2ω we say
that a sufficiently P-generic real is in K if there is a countable collection of dense
subsets of P such that for any filter G ⊆ P meeting these dense sets, ZG (defined
by
⋂

G = {ZG}) is in K. That is, if
⋂

n

⋃
Dn ⊆ K, where each Dn is a dense

subset of P.

PROPOSITION 3.5 [Mon14]. A sufficiently P-generic real is Π 1
1 -random.

To prove Proposition 3.5 we observe the following (which we use later as well):

LEMMA 3.6. Let K be a countable union of elements of P, and suppose that every
element of P intersects K positively (the intersection has positive measure). Then
every sufficiently P-generic real is in K.

Note that the union is not required to be uniform.

Proof. If K =
⋃

n Fn , with Fn ∈ P, the dense set is the set of F ∈ P such that
F ⊆ Fn for some n.

In particular, Lemma 3.6 applies to all open sets (as all nonempty clopen
sets are elements of P). And Proposition 3.5 follows from Theorem 3.4, as the
complement of G − G∗ (where G is Π ck

2 ) is a union (nonuniform) of elements
of P, and it is conull.

4. Lowness, cupping, and computing c.e. sets

4.1. Lowness for Π1
1 -randomness. Theorem 3.4 helps us here to solve the

question of lowness for Π 1
1 -randomness [Nie09, question 9.4.11]: Is there some
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sequence A which is not∆1
1 and such that the largestΠ 1

1 (A) set equals the largest
Π 1

1 set? We answer the question by the negative, in a strong sense.

THEOREM 4.1. If A is not hyperarithmetic, then some Π 1
1 -random is not Π 1

1 (A)-
ML-random.

We then improve this result in Theorem 4.3 by solving the cupping question for
Π 1

1 -randomness, showing that a nonhyperarithmetic A can be cupped above O
by a Π 1

1 -random sequence. However, the direct proof of Theorem 4.1 is simpler
and we believe is interesting in its own right. Indeed the second proof elaborates
on the simpler one. Our proof can be transfered in a straightforward way to the
lower setting, simplifying the proof that a non-K -trivial is not low for weak 2-
randomness [DNWY06].

The proof is based on a result of Hjorth and Nies: only the ∆1
1 sets are low for

higher ML-randomness. Here they use full relativization. That is, they show that
if A is not hyperarithmetic then Π 1

1 (A)-ML-randomness is strictly stronger than
Π 1

1 -ML-randomness. This does not use the continuous relativization introduced
in [BGM] (for which the higher K -trivials are indeed low for randomness). Their
argument is a dichotomy: either A is not higher K -trivial, in which case the usual
arguments show that it is not low for higher ML-randomness; or it is, but in
that case it collapses ωck

1 , which gives it sufficient power to derandomize some
Π 1

1 -ML-random reals. One of the effects of the continuous relativization is to
prevent K -trivials from using this extra power. In this section we only use full
relativization.

Our first step is a higher version of Kjos-Hanssen’s characterization of lowness
for Martin-Löf randomness [KH07]. Given Proposition 3.2, the argument is
identical; we give a proof for completeness.

LEMMA 4.2. Suppose that A is not hyperarithmetic. Let U be a Π 1
1 (A) open

set which contains all reals which are not Π 1
1 (A)-ML-random. Then U positively

intersects every higher effectively closed set of positive measure.

Proof. As mentioned, we use the fact that A is not low for Π 1
1 -ML-randomness.

Let X be Π 1
1 -ML-random which is not Π 1

1 (A)-ML-random. Let P be a non-null
Π ck

1 set. By Kučera’s Proposition 3.2, there is a tail Y of X in P . Since Y is
not Π 1

1 (A)-ML-random, Y ∈ U , so U ∩ P 6= ∅. Indeed this intersection must
have positive measure; say σ ≺ Y and [σ ] ⊆ U ; then [σ ] ∩ P is non-null, as it
contains Y .
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Proof of Theorem 4.1. Let A /∈ ∆1
1; let 〈Un〉 be the universal Π 1

1 (A)-ML-test. By
Lemmas 4.2, 3.6 and Proposition 3.5, a sufficiently P-generic real is both Π 1

1 -
random and an element of

⋂
n Un , that is, not Π 1

1 (A)-ML-random.

4.2. Cupping with a Π1
1 -random. Recall that a real X is higher random-

cuppable (or Π 1
1 -random-cuppable) if there is a Π 1

1 -random sequence Z such
that X⊕ Z >h O , equivalently X⊕ Z collapses ωck

1 . No∆1
1 real is higher random-

cuppable. We show here that every other real is higher random-cuppable. Note
that if A 6>h O , then aΠ 1

1 -random cupping partner of A cannot beΠ 1
1 (A)-random;

so this result implies that only hyperarithmetics are low for Π 1
1 -randomness

(Theorem 4.1 gives a slightly stronger form of that). In particular the following is
an improvement of the lowness result:

THEOREM 4.3. If A is not hyperarithmetic then for all Y ∈ 2ω there is some
Π 1

1 -random Z such that Y 6h A ⊕ Z.

Chong et al. (Together with Slaman and Harrington) [CNY08] proved the
following relation between cuppability and lowness: A real is low for Π 1

1 -
randomness if and only if it is low for ∆1

1-randomness and is not higher random-
cuppable. Unfortunately, the equivalence of lowness for Π 1

1 -randomness, and
of Π 1

1 -random noncuppability, with being hyperarithmetic, make this result less
interesting. We, however, have some hope that an analogous characterization
(with possibly a similar proof) will find its use withΣ1

1 -genericity; see Proposition
7.9 below.

The cupping result is very similar to another cupping result of Greenberg
et al. [GMMTar]; they show that if A 
LR B then A can be cupped (in the Turing
degrees) with B-ML-randoms arbitrarily high.

As usual in the higher setting, we need to deal with the fact that a Π 1
1 open set

does not necessarily have aΠ 1
1 prefix-free representation, but we need something

different from Lemma 3.1.
Let us consider the general plan. We are given A which is not hyperarithmetic

and some Y ∈ 2ω. We construct Z as a sequence Y (0)σ0Y (1)σ1 · · · with each
[σn] ⊆ U , where U is a Π 1

1 (A) open set of small measure (say less than 0.1)
which contains all reals which are not Π 1

1 (A)-ML-random, say a component of
the universal Π 1

1 (A)-ML-test. To make Z Π 1
1 -random we use Theorem 3.4. We

construct a sequence P0 ⊇ P1 ⊇ · · · of Π ck
1 sets of positive measure and ensure

that Z ∈
⋂

n Pn . The sequence 〈Pn〉 will generate a filter in P (the partial ordering
of all Π ck

1 sets of positive measure), sufficiently generic as to ensure that Z is
Π 1

1 -random.

https://doi.org/10.1017/fms.2017.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.27


Higher randomness and genericity 17

Let τn = Y (0)σ0Y (1)σ1 · · · Y (n − 1)σn−1Y (n) (so τ0 = Y (0)). The inductive
hypothesis is:

λ(Pn | τn) > 0.1 (?)

(where recall that λ(R | τ) is the conditional probability of R given τ , namely
λ(R∩ [τ ])/2−|τ |). We start with P0 = 2ω so equation (?) holds for n = 0. Given τn ,
to define σn we use the following claim, which is identical to one proved in
[GMMTar]:

CLAIM 4.4. Let U be a Π 1
1 set of strings generating U . For any string τ and

any Π ck
1 set P such that λ(P | τ) > 0.1 there is some σ such that σ ∈ U and

λ(P | τσ ) > 0.8.

Proof. First we find an extension ρ of τ such that [ρ] * τU (the latter is of course
{τ X : X ∈ U}), and such that λ(P | ρ) > 0.9. This is done with the Lebesgue
density theorem. Letting G = 2ω− τU , as λ(G | τ) > 0.9 and λ(P | τ) > 0.1, we
must have λ(G∩P | τ) > 0 and by Lebesgue density theorem there is an extension
ρ of τ such that λ(G ∩ P | ρ) > 0.9. In particular we must have λ(P | ρ) > 0.9
and G ∩ [ρ] is nonempty.

Next we find an extension ν of ρ such that [ν] ⊆ τU and λ(P | ν) > 0.8 as
required. We let Q be the Π ck

1 subset obtained from P ∩ [ρ] by removing all
cylinders in which the measure of P drops below 0.8. Formally

Q = {X ∈ P ∩ [ρ] : ∀n > |ρ| (λ(P | X�n) > 0.8)}.

By considering the antichain of minimal strings removed we see that λ(P−Q | ρ)
6 0.8. Since λ(P | ρ) > 0.9 we see that λ(Q | ρ) > 0.1. In particular, Q is a
positive measure Π ck

1 subset of [τ ], and so by the choice of U and Lemma 4.2,
τU intersects Q. Choose ν ⊇ ρ such that ν = τσ for some σ ∈ U and such that
[ν] ∩Q 6= ∅. By the definition of Q, λ(P | ν) > 0.8.

Now the idea would be to take two steps. First, given τn , by equation (?) and
Claim 4.4 we find some σn such that σn ∈ U and λ(Pn | τnσn) > 0.8. This
determines τn+1. Then to define Pn+1 we consider the next set in a list S1,S2,

. . . of Σ0
2 sets which are each the union of Π ck

1 sets, conull, and such that
⋂

k Sk

contains only Π 1
1 -random sequences; this is given by Theorem 3.4. We then let

Pn+1 = Pn ∩R, where R ⊆ Sn is a Π ck
1 set of sufficiently large measure so that

λ(Pn+1 | τnσn) > 0.7 equation (?) for n + 1 follows.
So far the construction is the same as in [GMMTar] (except that instead of

Σ ck
2 sets we use nonuniform unions of Π ck

1 sets. This improvement, and Monin’s
analysis of forcing with Π 0

1 sets of positive measure, shows that the cupping
partner built in that argument can be made not only weakly 2-random but also
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of hyperimmune-free degree.) However, we also need to show that Y 6h A ⊕ Z .
In [GMMTar] this is done by using a c.e. antichain which generates U ; then
at each step the string σn is made to be an element of that antichain, and is so
determined by Z (and using A as an oracle to enumerate this antichain). Here we
need a new ingredient.

LEMMA 4.5. Let U be a Π 1
1 open set. Then for every ε > 0 there is a Π 1

1 set of
strings W (and a higher effective enumeration 〈Ws〉 of W ) such that:

• W =∗ U ; and

• For every s < ωck
1 , if σ ∈ Ws+1 −Ws then λ(Ws | [σ ]) < ε.

(As usual, W (and its enumeration) can be obtained uniformly, but we do not
use this.) To complete the proof of Theorem 4.3, we relativize Lemma 4.5 to A,
apply it to U and ε = 0.1, and apply Claim 4.4 to W instead of U ; since W =∗ U it
is still the case that W intersects allΠ ck

1 sets of positive measure. We further note
that applying the lemma we can take σ ∈ W : examining the proof of the lemma,
we can take ν to be any extension of ρ such that [ν] ⊆W and [ν] ∩Q 6= ∅. The
plan then would be to throw τnWsn out of Pn+1 (where σn ∈ Wsn+1 − Wsn ); this
will determine σn given Z .

Proof of Lemma 4.5. Let U be a Π 1
1 set of strings generating U . As above we

assume that at most one string enters U at each stage. We enumerate W : say
σ ∈ Us+1 −Us . Let

Gs = {τ < σ : λ(Us | τ) < ε}.

This is ∆1
1. We let Ws+1 − Ws consist of a ∆1

1 prefix-free set of strings which
generates Gs (for example the minimal strings in Gs). Note that Ws ⊆ Us (and so
W ⊆ U ).

By induction on s we show that λ(Us −Ws) = 0. It suffices to show that for
σ ∈ Us+1 − Us ,

[σ ] =∗ Gs ∪ (Ws ∩ [σ ]) .

Suppose not. Then by the Lebesgue density theorem there is some τ < σ such
that λ(Gs ∪Ws | τ) < ε. Since Ws ⊆ Us , we see that τ ∈ Gs , which is impossible.

It remains to show that λ(Ws | τ) < ε for any τ ∈ Ws+1−Ws . But such τ is an
element of Gs , so λ(Us | τ) < ε; and Us =

∗ Ws .

Proof of Theorem 4.3. We briefly give the rest of the details. Let W and S1,

S2, . . . as discussed above. We define the sequence σ0, σ1, . . . as above, which
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determines τn . We also let sn be the stage s such that σn ∈ Ws+1−Ws . In addition
to equation (?) we ensure that for all n,

Pn+1 ∩ τnWsn = ∅. (??)

The only modification to the construction discussed above is the definition ofPn+1.
Given σn , because λ(Wsn | σn) < 0.1, we know that λ(Pn − τnWsn | τnσn) > 0.7,
and we let Pn+1 = (Pn − τnWsn ) ∩Q, where Q ⊆ Sn is sufficiently large so that
λ(Pn+1 | τnσn) > 0.69; then equation (?) still holds, and equation (??) as well.

Now to recover Y from A ⊕ Z in a hyperarithmetic way, we observe that no
initial segment of Z − τn is enumerated into W prior to stage sn + 1, and so σn is
the first initial segment of Z − τn enumerated into W .

4.3. Hirschfeldt–Miller for Π1
1 -randomness. Here we prove the following

analogue of the Hirschfeldt–Miller characterization of weak 2-randomness.

THEOREM 4.6. Let Z be higher Martin-Löf random. The following are
equivalent:

(1) Z is Π 1
1 -random.

(2) Z does not higher Turing compute a Π 1
1 set which is not ∆1

1.

Proof. (1)H⇒ (2): This is the easy direction. It is well-known (Spector; see
[Sac90, II.7.1]) that if A is any Π 1

1 set which is not ∆1
1 then A collapses ωck

1 .
If Z >ωck

1 T A then Z >h A and so Z too collapses ωck
1 , so is not Π 1

1 -random.
(2)H⇒ (1): The idea follows the standard Hirschfeldt–Miller construction,

which can be described using cost functions. Recall that construction. We are
given a ML-random set Z which is captured by some weak 2-test 〈Un〉. This gives
an X -computable function t X (n): the stage at which X enters Un . We want to
enumerate a c.e. set A whose settling-time function is bounded by t X . That is,
we want A(n) = At X (n)(n). Hence, enumerating n into As+1 incurs a cost: in this
case, the measure of Un,s . Any c.e. set obeying this cost will be Z -computable.
For example, we can allow the eth Friedberg–Muchnik requirement to spend 2−e.
So the algorithm for enumerating A is: for each e, if the eth requirement is not met
already, and we see some n ∈ We,s whose cost is at most 2−e, then we enumerate
such n into As+1 (we insist that n > 2e so that A is coinfinite). The collection
of oracles which are wrong on some input forms a Solovay test, and so Z will
correctly compute A. The fact that the measure of Un approaches 0 shows that
if We is infinite, then it will get to act, as the cost of large n is always small.

To prove our theorem, we use Theorem 3.4: there is aΠ ck
2 set G such that Z ∈ G,

but Z is not an element of any Π ck
1 subset of G. Say G =

⋂
n Un . The measure of
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Un may not go to 0, but we know (in the notation of the proof of Theorem 3.4)
that G − G∗ is null. So we let, for n < ω and s < ωck

1 ,

c(n, s) = λ(Un,s − G∗s )

where recall that Gs =
⋂

n Un,s ; from the proof of Theorem 3.4, G∗s is the union of
all ∆1

1 closed subsets of Gs . The construction is the same: let 〈We〉 be an effective
list of allΠ 1

1 subsets of ω. At stage s < ωck
1 , the eth requirement is already satisfied

if As ∩ We,s 6= ∅. If it is not already satisfied and there is some n > 2e such that
c(n, s) 6 2−e then we enumerate such n into As+1.

Define Φ(σ, n) = As(n) if [σ ] ⊆ Un,s − Un,<s . This defines a higher Turing
reduction. Certainly Φ(Z , n)↓ for all n. To show that it is wrong only finitely
often we enumerate a higher Solovay test 〈Vn〉: if n enters As+1 then we let Vn =

Un,s −F where F ⊆ G∗s is a ∆1
1 closed set, chosen so that λ(Vn) 6 c(n, s)+ 2−n

(that is, we choose F such that λ(G∗s −F) 6 2−n). Note that we cannot take Vn =

Un,s−G∗s , as this may not be open. The total weight of the test 〈Vn〉 is bounded by
the sum of

∑
e 2−e (the total costs paid by the requirements enumerating A) and∑

n 2−n (the excess to the cost that we added to make Vn open). If Z /∈ Vn then as
Z /∈ G∗, it must be that Φ(Z , n) = A(n).

It only remains to show that each requirement is met. Again this is a measure
calculation: since λ(G−G∗) = 0, for sufficiently large n, λ(Un−G∗) is small, and
for sufficiently large s, λ(G∗ − G∗s ) is small as well.

As mentioned above, in [BGM] it is shown that Π 1
1 -randomness differs from

higher weak 2-randomness. It follows that there is a higher weakly 2-random
sequence which higher Turing computes a Π 1

1 set which is not ∆1
1.

5. Randomness and the higher arithmetic hierarchy

In this section we investigate randomness notions arising from the higher
arithmetical hierarchy. For a lightface pointclass Γ , say that a real is Γ -random if
it avoids all null sets in Γ . We consider the notions of Π ck

n - and Σ ck
n -randomness.

We see that we get exactly four randomness notions, linearly ordered by strength:

(1) Higher Kurtz randomness;

(2) ∆1
1-randomness;

(3) higher weak 2-randomness;

(4) Π 1
1 -randomness.
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First, observe that we can dispense withΣ ck
n -randomness. For n = 1, the notion

is trivial, as no nonempty open sets are null. Otherwise, we easily see that Σ ck
n+1-

randomness is Π ck
n -randomness.

Next, recall that the higher arithmetic hierarchy is separated into two strands:
the classesΠ ck

1 ,Π ck
3 ,Π ck

5 , . . . consisting ofΣ1
1 sets, and the classesΠ ck

2 ,Π ck
4 , . . .

consisting of Π 1
1 sets (see Figure 1).

Sacks noted that Σ1
1 -randomness is the same as ∆1

1-randomness. Chong, Nies
and Yu [CNY08] showed:

• Π ck
1 -randomness (higher Kurtz randomness) is strictly weaker than ∆1

1-
randomness; and

• Π ck
3 -randomness is ∆1

1-randomness.

It follows that Π ck
3 , Π ck

5 , . . . -randomness are all the same, namely ∆1
1-

randomness.
On the Π 1

1 side, higher weak 2-randomness is defined as Π ck
2 -randomness; as

mentioned above, this is distinct from Π 1
1 -randomness. The classification of Π ck

n -
randomness is completed by the following theorem:

THEOREM 5.1. Π ck
4 -randomness is Π 1

1 -randomness.

Again, it follows that Π ck
4 ,Π

ck
6 ,Π

ck
8 , . . . -randomness are all the same, namely

Π 1
1 -randomness.

5.1. The proof of Theorem 5.1. As discussed in Section 3, we use higher
functionals which induce functions from 2ω to (ωck

1 )
ω. We cannot guarantee that

such functionals are consistent everywhere.
We need to cover the set of non-Π 1

1 -random sequences by topologically simple
sets, namely null Π ck

4 sets. The first step is obtaining cofinal ω-sequences in ωck
1

in a continuous fashion.

LEMMA 5.2. If Z is Π 1
1 -ML-random but not Π 1

1 -random then there is an ω-
sequence cofinal in ωck

1 which is higher Turing reducible to Z.

Proof. For a quick proof we use Theorem 4.6. Let A be Π 1
1 and not ∆1

1, and
let Ψ be a higher Turing functional such that Ψ (Z) = A. Define Φ(X, n) = s if
Ψ (X)�n↓ and s is the least such that Ψ (X)�n= As�n . Since A is not∆1

1, 〈Φ(X, n)〉
is unbounded in ωck

1 (this is proved in [BGM]).
If we would like a more direct proof we can appeal to Theorem 3.4 (and its

proof). Let G =
⋂

n Un be aΠ ck
2 set such that Z ∈ G−G<ωck

1
. We letΦ(X, n)= s if
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X ∈ Un,s−Un,<s . This may be inconsistent because we might see an initial segment
of X enter Un , and then a shorter initial segment enter Un later. By Lemma 3.3
and its proof, uniformly in ε > 0 we can modify Φ to a functional Φε whose
inconsistency set has measure at most ε, but preserving the totality of Φ(Z). The
sequence of inconsistency sets of the functionals Φε forms a higher ML-test, and
so Φε(Z) is consistent for some ε, and since Z /∈ G<ωck

1
, is unbounded in ωck

1 .

For a functional Φ mapping from 2ω to (ωck
1 )

ω, let U(Φ), the unboundedness
set of Φ, be the set of X such that Φ(X) is total, consistent and unbounded in ωck

1 .
Note that this set is null. Also let E(Φ) be the inconsistency set of Φ.

PROPOSITION 5.3. LetΦ be a higher functional mapping from 2ω to (ωck
1 )

ω. Then
U(Φ) ∪ E(Φ) is Π ck

4 . This is uniform in the indices.

Proof of Theorem 5.1, given Proposition 5.3. Since every Π ck
4 set is Π 1

1 , it
suffices to show that every sequence which is not Π 1

1 -random is an element of
some null Π ck

4 set. Let Z ∈ 2ω be not Π 1
1 -random. If Z is not Π 1

1 -ML-random
then Z is contained in a null Π ck

2 set (determined by the universal Π 1
1 -ML-test).

Otherwise, by Lemma 5.2 we obtain a functional Φ such that Φ(Z) is total,
consistent and cofinal in ωck

1 .
For each ε > 0, using Lemma 3.3 we modify Φ to a functional Φε preserving

the total and consistent Φ-computations but restricting the inconsistency set to
have measure at most ε. By Proposition 5.3,

H =
⋂
ε>0

(
U(Φε) ∪ E(Φε)

)
is Π ck

4 . It is null, and contains Z .

Proof of Proposition 5.3. Suppose that Φ(X) is total, but not necessarily
consistent. We let Φ[X ] be the closed subset of (ωck

1 )
ω consisting of all possible

sequences 〈αn〉 such that for each n, αn is a possible value for Φ(X, n). We let

α(X) = min
{

sup
n
αn : 〈αn〉 ∈ Φ[X ]

}
= sup

n
min {α : Φ(X, n) = α} ;

and

α(X) = sup
{

sup
n
αn : 〈αn〉 ∈ Φ[X ]

}
= sup {α : ∃n (Φ(X, n) = α)} .

Of course if Φ(X) is total and consistent then α(X) = α(X) = supΦ(X). What
we want to do is to describe the set of X such that α(X) is greater than every
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computable ordinal. But universal quantification over computable ordinals gives
aΣ1

1 , rather thanΠ 1
1 , set. The main idea is to use overspill: allow pseudo-ordinals

as well.
Namely, let R be a Harrison linear ordering, and let 〈Rk〉k<ω be the list of

all principal initial segments of R (initial segments determined by a least upper
bound). The list 〈Rk〉 is a list of uniformly computable linear orderings, containing
one copy of each computable ordinal, and otherwise also Harrison linear orderings
(whose well-founded initial segment has order type ωck

1 ).
For a Harrison linear ordering R let otp(R) = ∞ and stipulate that α <∞ for

every ordinal α. For each k, we let

Sk = {X : Φ(X) is total and otp(Rk) < α(X)}

and

Lk = {X : Φ(X) is total and otp(Rk) > α(X)}.

The set Sk is Π ck
2 : beyond totality, to find that X ∈ Sk , working in Lωck

1
, we first

find an ordinal β isomorphic to Rk , and then observe that for some n,Φ(X, n) > β
(for some possible value of Φ(X, n)); so beyond totality, this is in fact a Σ ck

1
condition.

The set Lk isΣ ck
3 : X ∈ Lk if and only if there is some m < ω such that for all n,

for some possible value αn of Φ(X, n), αn is embeddable into the initial segment
Rk(6 m) (the initial segment of Rk determined by m); note that this embedding
can be found in Lωck

1
.

Hence, the set Sk ∪Lk is Σ ck
3 . If Rk is a Harrison linear ordering then Lk is the

totality set of Φ. Hence⋂
k

(Lk ∪ Sk) =
{

X : Φ(X) is total, and either α(X) < α(X) or α(X) = ωck
1

}
.

The intersection
⋂

k(Lk ∪ Sk) is Π ck
4 . If α(X) < α(X) then Φ(X) is inconsistent.

It follows that

U(Φ) ∪ E(Φ) = E(Φ) ∪
⋂

k

(Lk ∪ Sk)

is the union of a Σ ck
1 set and a Π ck

4 set, and so is Π ck
4 .

5.2. The complexity of the set of Π1
1 -randoms. We now consider the

complexity of the largest null Π 1
1 set. The following theorem says it is Σ ck

5 .
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THEOREM 5.4. The set of Π 1
1 -randoms is Π ck

5 .

Proof. The proof of Theorem 5.1 is uniform. Using the projetum function p, we
can give a ωck

1 -effective ω-list Φ0, Φ1, Φ2, . . . of all functionals mapping from
2ω to (ωck

1 )
ω. We then define, for each i < ω and ε > 0, Φi,ε as in the proof of

Theorem 5.1: restricting the inconsistency set to have measure bounded by ε. We
then let Hi =

⋂
ε>0

(
U(Φi,ε) ∪ E(Φi,ε)

)
. Also let R be theΠ ck

2 null set of non-Π 1
1 -

ML-randoms. Then H =R∪
⋃

i Hi isΣ ck
5 , null, and contains all non-Π 1

1 -random
sequences; as it is Π 1

1 , it equals the set of non-Π 1
1 -randoms.

As mentioned above, the set of Π 1
1 -randoms is not Π ck

3 [BGM]: every conull
Π ck

3 set contains an element which collapses ωck
1 . This leaves the question of

whether it is Σ ck
4 or not. At present we do not know how to resolve this question.

It is related to whether we can improve the Π ck
3 result to sets of positive measure.

(In fact, every conull Π ck
3 set contains a real with a finite-change approximation;

such a real is not even higher weak 2-random. We do not know whether there
is a Σ ck

3 set of measure less than 1, containing all sequences with finite-change
approximations.)

PROPOSITION 5.5. The set ofΠ 1
1 -randoms isΣ ck

4 if and only if there is someΠ ck
3

set of positive measure containing only reals which preserve ωck
1 .

Proof. One direction is easy; a conull Σ ck
4 set is the union of Π ck

3 sets of positive
measure.

Suppose that H is Π ck
3 of positive measure, and contains only reals which

preserve ωck
1 . Let K =

⋃
σ∈2<ω σH. Then K is Σ ck

4 , and by the Lebesgue density
theorem has measure 1; and it contains only reals which preserve ωck

1 . Intersecting
with theΣ ck

2 set ofΠ 1
1 -ML-randoms, we can assume that K contains onlyΠ 1

1 -ML-
randoms. It thus contains only Π 1

1 -randoms, and is Σ1
1 . The set of Π 1

1 -randoms is
the smallest conull Σ1

1 set, and so must equal K.

5.3. The complexity of the set of higher weak 2-randoms. What about the
set of higher weakly 2-random sequences? It is not even immediately clear that
this set isΣ1

1 . We know it is notΠ 1
1 ; this follows from the fact thatΣ1

1 -randomness
is the same as ∆1

1-randomness, which is strictly weaker than higher weak 2-
randomness. As mentioned, every conull Π ck

3 set must contain a sequence which
is not higher weakly 2-random [BGM], so the set of higher weakly 2-randoms is
not Π ck

3 .
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THEOREM 5.6 (With Dan Turetsky). The set of higher weakly 2-random
sequences is Π ck

5 .

In particular, it is indeed Σ1
1 . As with Π 1

1 -randoms, we do not know if the set
of higher weakly 2-random sequences is Σ ck

4 or not.

Proof. We modify the proof of Theorem 5.4. We start with a modification of the
direct proof of Lemma 5.2. With every Π ck

2 set G =
⋂

n Un we associate a higher
functional Φ, defined as follows: (σ, n, s) ∈ Φ if [σ ] ⊆ Un,s and λ(Gs) = 0. Now
from an effective list G0,G1, . . . of all Π ck

2 sets we obtain a list of the associated
functionals Φ0, Φ1, . . . . To each functional Φe and each ε > 0 we apply Lemma
3.3 to obtain a functional Φe,ε. We then again let He =

⋂
ε>0

(
U(Φe,ε) ∪ E(Φe,ε)

)
and K = R ∪

⋃
e He, where R is the set of non-Π 1

1 -ML-randoms. As in the
previous proof, this is Σ ck

5 . We want to show that K is the set of sequences which
are not higher weakly 2-random.

In one direction, suppose that X is not higher weakly 2-random. Find some e
such that λ(Ge) = 0 and X ∈ Ge. Since R ⊆ K, to show that X ∈ K we may
assume that X is ∆1

1-random. This implies that for all s < ωck
1 , X /∈ Ge,s ; so

X ∈ Ge − Ge,<ωck
1

.
Since X ∈ Ge and Ge is null, Φe(X) is total; it will be inconsistent. Let ε > 0.

If Φe,ε(X) is consistent, then by (2) of Lemma 3.3, Φe,ε(X) is total. Since X /∈

Ge,<ωck
1

, Φe,ε(X) is unbounded in ωck
1 . So X ∈ U(Φe,ε) ∪ E(Φe,ε). It follows that

X ∈ He, so X ∈ K.
In the other direction, let X ∈ K; we show it is not higher weakly 2-random.

If X ∈ R then we are done. Suppose that X ∈ He for some e. Since we are
assuming that X is Π 1

1 -ML-random, there is some ε > 0 such that X /∈ E(Φe,ε);
so X ∈ U(Φe,ε). The fact that Φe,ε(X) is unbounded in ωck

1 implies that for all
s < ωck

1 , λ(Ge,s) = 0—so λ(Ge) = 0; the fact that Φe,ε(X) is total implies that
X ∈ Ge.

6. Higher generic sequences

In the introduction we recalled the concepts of Γ -genericity (for Cohen forcing)
and weak Γ -genericity for lightface pointclasses Γ . In this section we investigate
these notions for the classes Γ = ∆1

1,Π
1
1 ,Σ

1
1 .

We see that we get three distinct genericity notions, linearly ordered by
strength: Σ1

1 -genericity implies Π 1
1 -genericity which implies ∆1

1-genericity. We
further characterize Σ1

1 -generic sequences as those which are ∆1
1-generic and

preserve ωck
1 —the category analogue of Theorem 2.1. We summarize our results

in Figure 2.
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weakly Σ1
1 -generic

Σ1
1 -generic

∆1
1-generic ∧ ωX

1 = ω
ck
1

Π 1
1 -generic

weakly Π 1
1 -generic

∆1
1-generic

weakly ∆1
1-generic

Figure 2. Higher genericity

We start by proving implications and equivalences; then we prove the analogue
of Theorem 2.1; and then separate between the three genericity notions. We
end the section by giving a characterization of Σ1

1 -genericity using finite-change
dense sets.

6.1. Implications.

6.1.1. ∆1
1-genericity. The closure of the class ∆1

1 under arithmetic operations
shows the equivalence of ∆1

1- and weak ∆1
1-genericity; and so the implication

from weak Π 1
1 -genericity to ∆1

1-genericity. The equivalence of ∆1
1-genericity

with weak Π 1
1 -genericity is similar to the equivalence of ∆1

1-randomness and Σ1
1 -

randomness. Suppose that D ⊆ 2<ω is Π 1
1 and dense; let 〈Ds〉s<ωck

1
be a higher

effective enumeration of D. For each σ ∈ 2<ω, the appearance of some extension
of σ into D is a ωck

1 -c.e. event; by admissibility of ωck
1 , we see that there is some

s < ωck
1 such that Ds is dense; of course Ds is ∆1

1.

6.1.2. Weak Σ1
1 -genericity. First we prove:

PROPOSITION 6.1. Weak Σ1
1 -genericity implies Π 1

1 -genericity.

Let us consider the lower analogue of Proposition 6.1, which is true: weak Π 0
1 -

genericity implies 1-genericity. The argument is simple: given a c.e. open set U ,
we find a computable set U generating U . Then the set of strings which are either
in U or have no extension in U generates the union of U with the complement of
its interior, and is Π 0

1 . In the higher setting we need to overcome the absence of
nice generating sets for Π 1

1 open sets.
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Proof of Proposition 6.1. Let U be Π 1
1 open; let 〈Us〉s<ωck

1
be a higher effective

enumeration of a Π 1
1 set of strings U generating U . By restraining some strings

from entering U , we can modify the set U and its enumeration to ensure that for
all s < ωck

1 ,

for all σ ∈ Us , no proper extension of σ is enumerated into Us+1. (?)

As usual we also assume that at most one string is enumerated at each stage.
Let F be the set of strings, no extension of which is ever enumerated into U .
The set F is Σ1

1 . It is dense: suppose that σ /∈ F . Let s be the least stage at
which some extension of σ is enumerated into U ; say that extension is τ . Then no
proper extension of τ is ever enumerated into U , so for example τ0 ∈ F . Finally,
suppose that σ ∈ F . If some predecessor ρ of σ is in U then [σ ] ⊂ U . Otherwise,
by definition of F , [σ ] is a subset of the complement of U . Hence every sequence
meeting F , also meets or avoids U .

We next use Proposition 6.1 to show the following:

PROPOSITION 6.2. Weak Σ1
1 -genericity is equivalent to Σ1

1 -genericity.

Proof. What we really prove is that the conjunction of weak Σ1
1 -genericity and

Π 1
1 -genericity impliesΣ1

1 -genericity, and then appeal to Proposition 6.1. Suppose
that G is weakly Σ1

1 -generic; let F be a Σ1
1 open set (an open set generated

by a Σ1
1 set of strings F). An admissibility argument shows that the set W of

strings which have no extension in F is Π 1
1 : if every extension of σ is eventually

extracted from F , we see this at a computable stage. If G meets W then it
avoids F . Otherwise it avoids W : there is some σ ≺ G with no extension in W ;
this means that F is dense in [σ ]. Since G is weakly Σ1

1 -generic and σ ≺ G, it
must meet F .

6.2. Preserving ωck
1 . Feferman [Fef64] proved that if G is sufficiently Cohen

generic, then ωG
1 = ω

ck
1 . We give here the exact genericity notion that is required

for G to preserves ωck
1 .

THEOREM 6.3. A ∆1
1-generic sequence preserves ωck

1 if and only if it is Σ1
1 -

generic.

A weaker version of one direction of Theorem 6.3 was first observed by
Slaman and the first author (unpublished), namely that if G is ∆1

1-generic and
preserves ωck

1 then it is Π 1
1 -generic. For if W is dense along G, then the fact that
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ωG
1 = ω

ck
1 implies that some Ws is dense along G. A similar argument yields Σ1

1 -
genericity as well. Again let G be ∆1

1-generic and suppose that it preserves ωck
1 .

Let F be aΣ1
1 set of strings, and suppose that G does not meet F . Let 〈Fs〉s<ωck

1
be

a coenumeration of F . For each n we consider the stage at which G�n leaves F ;
since G preserves ωck

1 , there is some s < ωck
1 such that Fs contains G �n for

no n. Since G is ∆1
1-generic and does not meet Fs , it avoids Fs ; since F ⊆ Fs ,

G avoids F as well.
The other direction of Theorem 6.3 is an effectivization of Feferman’s proof.

We first give the proof in modern set-theoretic terminology.

Proof of the other direction of Theorem 6.3. We consider the standard, set-
theoretic forcing language and forcing relation for Cohen forcing, as interpreted
in Lωck

1
. We use the fact that Cohen forcing is a set forcing in this model (unlike

for example forcing with ∆1
1 sets of positive measure, or hyperarithmetic Sacks

forcing). By induction on the complexity of formulae we see that for the classes
Γ = ∆0,Π1,Σ1, for any formula ϕ ∈ Γ in the forcing language, the relation
p  ϕ (as interpreted in Lωck

1
) is Γ -definable in Lωck

1
. Further, the proof of the

forcing theorem holds for these levels; if G is Σ1
1 -generic (and so also Π 1

1 -
generic), any Σ1 or Π1 formula holds in Lωck

1
[G] if and only if it is forced by

some initial segment of G.
Let G be Σ1

1 -generic. We need to show that the structure Lωck
1
[G] is Σ1-

admissible. It suffices to show that it is ∆0-admissible. Let ϕ be a ∆0 formula;
suppose that in Lωck

1
[G], ϕ defines a function from ω into ωck

1 ; we need to show
that this function is bounded below ωck

1 . For all n let Fn be the set of conditions
p ∈ 2<ω which force (in Lωck

1
) that there is no α < ωck

1 such that ϕ(n, α) holds.
This is Π1-definable in Lωck

1
(in other words, is Σ1

1 ); and so
⋃

n Fn is Σ1
1 as

well. (Note that before we know that G preserves ωck
1 , we cannot claim that the

formula ∃n∀α (¬ϕ(n, α)) is equivalent to aΠ1 formula; this uses admissibility in
Lωck

1
[G].) By assumption, G does not meet

⋃
n Fn , and so it avoids it; say p ≺ G

has no extension in
⋃

n Fn . This means that for all n, densely below p we can
find conditions which force some value α < ωck

1 such that ϕ(n, α) holds. By
admissibility (ranging over the extensions of p and of n), there is some γ < ωck

1
such that for each n, densely below p we can find conditions which force that
ϕ(n, α) holds for some α < γ . That is, p forces that for all n < ω there is
some α < γ such that ϕ(n, α) holds. But this is a ∆0 statement, and so holds
in Lωck

1
[G].

For the benefit of computability-oriented readers who may be uncomfortable
with forcing over models of KP, we translate the proof to the language of
computability. The proof resembles the proof of Theorem 3.4.
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Proof of the other direction of Theorem 6.3. Let G be Σ1
1 -generic. Let Ψ be a

Turing functional (not a higher functional!), which maps oracles to linear
orderings. It suffices to show that if for all n, Ψ G(6 n) is isomorphic to a
computable ordinal, then these ordinals are bounded below ωck

1 . Here we use the
notation of the proof of Theorem 3.4. As in that proof, we let An,α be the set of
oracles X such that Ψ X (6 n) is isomorphic to an ordinal shorter than α; we let
An = An,ωck

1
=
⋃

α<ωck
1
An,α and A =

⋂
n An . The sets An are Π 1

1 , and the sets
An,α (for α < ωck

1 ) are ∆1
1, uniformly in α.

The computability-theoretic translation of the forcing theorem is an
effectivization of Baire’s category theorem. For any ∆1

1 set K we can effectively
find a ∆1

1 open set U which is equivalent to K in category; that is, K M U is
meagre. As G is ∆1

1-generic, G ∈ K iff G ∈ U . We apply this to the sets An,α to
get open sets Un,α. For each n, Un =

⋃
α<ωck

1
Un,α is Π 1

1 open. We assume that for
all n, G ∈ An , and so G ∈ Un .

Let F be the interior of the complement of
⋂

n Un . This is aΣ1
1 open set, and G

does not meet it; so G avoids it. This means that there is some σ ≺ G such that⋂
n Un is dense in [σ ]. By admissibility of ωck

1 , there is some α < ωck
1 such that⋂

n Un,α is dense in [σ ]; in other words each Un,α is dense in [σ ]. Again as G is
∆1

1-generic, we see that G ∈
⋂

n Un,α, so G ∈
⋂

n An,α, as required.

6.3. Separations. We now turn to the separations between the three notions
of genericity we have analysed so far. These separations in fact are not difficult.

6.3.1. Π 1
1 - and weak Π 1

1 -genericity. Π 1
1 -genericity behaves very much as the

higher analogue of 1-genericity. In particular, a familiar proof translates perfectly
to give the following. Recall the notion of higher relative computability (6ωck

1 T)
which was defined in Section 3.

LEMMA 6.4. A Π 1
1 -generic sequence does not higher compute any Π 1

1 set which
is not ∆1

1.

On the other hand, some weakly Π 1
1 -generic sequences do higher compute

Π 1
1 sets. A standard construction (see for example [Nie09, 1.8.49]) shows the

existence of a left-Π 1
1 , weakly Π 1

1 -generic sequence. By Lemma 6.4, such a
sequence cannot be Π 1

1 -generic.

6.3.2. Σ1
1 - and Π 1

1 -genericity. To separate between Σ1
1 - and Π 1

1 -genericity we
use Theorem 6.3. In [BGM] a higher analogue of the class of ω-computably
approximable (also known as ω-c.e.) functions is introduced. The higher version
of Shoenfield’s limit lemma states that a function is O-computable if and only
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if it is the pointwise limit of a ωck
1 -computable approximation 〈 fs〉s<ωck

1
. Such a

function is higher ω-c.a. if the number of mind changes of the approximation is
finite and furthermore hyperarithmetically bounded. An important fact proved in
[BGM] is that any higher ω-c.a. function collapses ωck

1 . Thus the separation we
are after follows from:

LEMMA 6.5. There is an ω-c.a., Π 1
1 -generic sequence.

The proof again is obtained by inserting the word ‘higher’ in appropriate places
in the standard construction of an ω-c.a. 1-generic sequence; see for example
[Nie09, 1.8.52].

We note a difference between randomness and genericity here. Above we
showed that a∆1

1-random sequence collapses ωck
1 if and only if it higher computes

a nonhyperarithmeticΠ 1
1 set. Lemmas 6.4 and 6.5 show that this equivalence fails

for ∆1
1-generic sequences.

On the other hand, another characterization of the randoms collapsing ωck
1

(Lemma 5.2) does hold for generics:

PROPOSITION 6.6. A ∆1
1-generic sequence collapses ωck

1 if and only if it higher
computes an ω-sequence cofinal in ωck

1 .

Proof. Using Theorem 6.3, the proof is essentially the proof of the first direction
of that theorem. Let G be a ∆1

1-generic sequence which collapses ωck
1 . By

Theorem 6.3, G is not Σ1
1 -generic. Let F be a Σ1

1 set of strings such that
G ∈ F − F . Define a higher Turing functional: Ψ (σ, n) = s if |σ | = n and
σ ∈ Fs − Fs+1. The functional Ψ is consistent everywhere; Ψ (G) is total since
G /∈ F ; and as G is ∆1

1-generic, 〈Ψ (G, n)〉 must be unbounded in ωck
1 .

COROLLARY 6.7. There is a sequence which higher computes a cofinal ω-
sequence in ωck

1 , but does not higher compute a nonhyperarithmetic Π 1
1 set.

6.4. Finite-change dense sets. As discussed in the introduction, some of the
analogy between higher and lower genericity breaks down when considering
relativization. As in the higher setting,Π 0

1 - and weakΠ 0
1 -genericity coincide, and

are strictly stronger than 1-genericity. However, Π 0
1 -genericity is also equivalent

to 2-genericity, whereas Π 1
1 (O)-genericity is much stronger than Σ1

1 -genericity.
We can, however, find a special subclass of the dense Π 1

1 (O) open sets which
does characterize Σ1

1 -genericity. Again from [BGM], recall the notion of finite-
change approximable functions. This is a class wider than the class of higher
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ω-c.a. functions; we drop the requirement for a ∆1
1 bound on the number of mind

changes.

DEFINITION 6.8. An open set U is dense finite-change if it is generated by the
range of a finite-change approximable function f : 2<ω → 2<ω satisfying σ 4
f (σ ) for all σ ∈ 2<ω.

THEOREM 6.9. A sequence is Σ1
1 -generic if and only if it is and element of every

dense finite-change open set.

Proof. In one direction, we observe that all dense Σ1
1 open sets are dense finite-

change sets. Namely, if F is a dense Σ1
1 set of strings, let f (σ ) be the length-

lexicographic least element of F extending σ . Of course for this direction we use
the equivalence of weak and nonweak Σ1

1 -genericity.
In the other direction, let f be a finite-change function defining a dense finite-

change open set; let 〈 fs〉 be a finite-change approximation of f . We may assume
that for all σ and s, fs(σ ) < σ . For each s < ωck

1 let Fs be the set of strings which
extend some string in the range of fs . So each Fs is dense and upward-closed
(closed under taking extensions of strings). Let F =

⋂
s<ωck

1
Fs . Then F is Σ1

1 .
We show that F is dense and that F is a subset of the open set determined by the
range of f .

For the latter, we show that every string in F extends some string in the range
of f . For let τ ∈ F . Let s be a stage such that fs(σ ) = f (σ ) for all σ 4 τ . The
fact that τ ∈ Fs implies that τ extends some string in the range of f .

It remains to show that F is dense. By induction on s 6 ωck
1 we show that⋂

t<s Ft is dense. Let s 6 ωck
1 and suppose, by induction, that for all r < s,

⋂
t<r Ft

is dense.
Let σ ∈ 2<ω. There is some r < s such that τ = ft(σ ) is constant for all t ∈ [r,

s). This is immediate if s is a successor ordinal (let r = s−1); if s is a limit ordinal,
we use the fact that the approximation 〈 ft〉 is finite-change. This means that τ
and all of its extensions are elements of

⋂
t∈[r,s) Ft . Now by induction,

⋂
t<r Ft is

dense; let ρ be an extension of τ in
⋂

t<r Ft . Then ρ ∈
⋂

t<s Ft and extends σ .

Actually, the proof above directly gives the equivalence of weak Σ1
1 -genericity

and genericity for dense finite-change sets. This in turn implies Proposition 6.1;
it is not too difficult to see that if W is Π 1

1 , then the union of W and the interior
of its complement is dense finite-change (let f (σ ) = σ until we see an extension
in W ; so we change f (σ ) at most once). We can thus use this characterization to
give an alternative proof of Proposition 6.2.

https://doi.org/10.1017/fms.2017.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.27


N. Greenberg and B. Monin 32

7. Lowness for higher genericity

We consider lowness and cupping for the genericity notions investigated above.
The definition of lowness is the same as for randomness: an oracle A is low for Γ -
genericity if every Γ -generic sequence is also Γ (A)-generic. As for randomness
here we use full relativizations.

7.1. Lowness for Π1
1 -genericity. Lowness is related to cupping. The Posner–

Robinson theorem [PR81] states that for any noncomputable A and any X there
is a 1-generic G such that X 6T A⊕G. This implies that lowness for 1-genericity
coincides with being computable (see [Yu06]). The analogy between 1-genericity
andΠ 1

1 -genericity holds in this respect as well. The Posner–Robinson proof gives
the higher analogue of their theorem:

PROPOSITION 7.1. If A is not hyperarithmetic then for all X there is some Π 1
1 -

generic sequences G such that X 6ωck
1 T A ⊕ G.

Relativizing Lemma 6.4 to an oracle shows that for any A, for any sequence G
which is Π 1

1 (A)-generic, O A 
ωck
1 T A ⊕ G (in fact we get this with the

relativization of 6ωck
1 T to A, which is weaker). Hence lowness for Π 1

1 -genericity
coincides with being hyperarithmetic.

7.2. Lowness for ∆1
1-genericity. Recall that weak 1-genericity is the lower

analogue of weak Π 1
1 -genericity, which coincides with ∆1

1-genericity. Lowness
for weak 1-genericity was characterized by Stephan and Yu [SY06] as being
computably dominated and not diagonally noncomputable.

What is the higher analogue of this characterization? Computable domination
has an obvious analogue:

DEFINITION 7.2. An oracle X is ∆1
1-dominated if every ∆1

1(X) function is
bounded by a ∆1

1 function.

It is less clear what the higher analogue of DNC is. We use a different
characterization. If X is not high (in particular, if it is computably dominated),
then X is not DNC if and only if it is semitraceable: every X -computable
function is infinitely often equal to some computable function (Kjos-Hanssen
et al. [KHMS11]).

DEFINITION 7.3. An oracle X is∆1
1-semitraceable if for every∆1

1(X) function f
there is a ∆1

1 function g such that f (n) = g(n) for infinitely many n.
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Greenberg and Miller [GM09] showed that lowness for weak 1-genericity and
lowness for Kurtz randomness coincided. In the higher setting, lowness for higher
Kurtz randomness (Π ck

1 -randomness, also equivalent to ∆1
1-Kurtz-randomness)

has been settled by Kjos-Hanssen et al. [KHNSY10], who showed it coincided
with being both ∆1

1-dominated and ∆1
1-semitraceable.

All of this would lead us to expect that lowness for ∆1
1-genericity has the same

characterization. This is indeed the case, as we show here. This fact was also
known to Kihara (unpublished).

THEOREM 7.4. An oracle is low for ∆1
1-genericity if and only if it is both ∆1

1-
dominated and ∆1

1-semitraceable.

The characterization of lowness for various notions of randomness and
genericity usually passes through an intermediate notion, that of lowness for tests,
or dense open sets. For example, Stephan and Yu prove the equivalence of:

(1) X is low for dense c.e. open sets: every dense open set which is c.e. in X is a
superset of a dense, c.e. open set.

(2) X is low for weak 1-genericity.

(3) X is computably dominated and semitraceable.

Their argument is (1) → (2) → (3) → (1). For (2) → (3), they use the fact
that every Turing degree which is not computably dominated computes a weakly
1-generic sequence. The higher analogue of this fact fails, as was shown by
Kihara [Kih]: he constructs a function f dominated by no ∆1

1 function such that
there is no ∆1

1-generic G 6h f .
Thus we need a new argument. What we do is independently prove the

equivalence of the higher analogues of (1) and (3) (Proposition 7.5) and then
the equivalence of the higher analogues of (1) and (2) (Theorem 7.6). The latter
is a general argument which holds in the lower setting as well, giving directly
the equivalence of lowness for weak 1-genericity and lowness for dense c.e. open
sets. The higher analogue of (1) is being low for∆1

1 dense open sets: every∆1
1(X)

dense open set is a superset of a ∆1
1 dense open set.

PROPOSITION 7.5. An oracle is low for ∆1
1 dense open sets if and only if it is

∆1
1-dominated and ∆1

1-semitraceable.

Proof. The direction from right to left is identical to the proof of (3) → (1) in
[SY06], so we omit it.

For the converse, suppose that X is low for ∆1
1 dense open set. Let f 6h X .
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We first want to show that f is dominated by a ∆1
1 function g. For this we may

assume that f is nondecreasing and that f (n) > 0 for all n. Let

W =
{
σ0 f (|σ |)

: σ ∈ 2<ω
}
.

Let V be a ∆1
1 set of string such that V ⊆ W . Since ∆1

1(X) is closed under
arithmetic operations, we may assume that every string in V extends a string in W .
Define g : ω→ ω by letting g(n) = |τ |, where τ is the shortest extension of the
string 1n in V ; g is ∆1

1. For every n, as 1m0 ⊥ 1n for m < n it must be the case
that τ extends a string σ0 f (|σ |) for some σ < 1n . This shows that for every n we
have g(n) > f (n).

Next, we show that f is infinitely often equal to some ∆1
1 function h. Again,

for simplicity, we may assume that f (n) > 1 for all n.
Define a function b : ω<ω → 2<ω by letting

b(k0, k1, . . . , kn−1) = 0k0 10k1 1 · · · 0kn−1 1.

The function b is injective. As 00 is the empty string, the range of b is the
collection of finite binary strings ending with a 1 (together with the empty
sequence). Now define

W =
{
b(σ ˆ〈 f (n)〉) : n < ω and σ ∈ ωn

}
.

Let V be a ∆1
1 set of strings such that every string in V extends a string in W .

Effectively from V , given any lower bound m, we can obtain some n > m and
a function ρ : n → ω such that ρ(k) = f (k) for some k > m. Given this, the
construction of the function h is done by recursion; if h is defined up to some m,
then we find ρ with lower bound m, and extend by copying the values (beyond m)
given by ρ.

Given m, we find some τ ∈ V which extends the string 1m . Let ρ = b−1(τ1).
The string τ extends b((ρ�k)ˆ f (k)) for some k; so ρ(k) = f (k). And k > m, as
we assumed that f > 1, and ρ�m= 0m .

THEOREM 7.6. An oracle is low for ∆1
1-genericity if and only if it is low for ∆1

1
dense open sets.

As mentioned above, the proof translates easily to directly show the equivalence
of weak 1-genericity and lowness for c.e. dense open sets.

Proof. Let X ∈ 2ω. Suppose that some dense ∆1
1(X) open set U contains no ∆1

1
open set. Our goal is to build a ∆1

1-generic sequence which is not an element of
some other dense ∆1

1(X) open set V , built from U . The main step is building the
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∆1
1(X) dense open set V with the property that for every σ ∈ 2<ω, the set V ∩ [σ ]

contains no ∆1
1 open set dense inside [σ ].

Let V0 = {τ } for some τ ∈ U . Let k0 = |τ |. At stage n + 1, for every string
σ of length kn we do the following. Let σ0 ≺ σ1 ≺ · · · ≺ σn = σ be all the
prefixes of σ of length ki for i 6 n. Put in Vn+1 a string τ < σ such that [τ ] ⊆
U ∩ σ0U ∩ · · · ∩ σnU (here recall that σU = {σ ˆY : Y ∈ U}). Finally let kn+1 be
the longest length among the lengths of the strings in Vn+1. Let V =

⋃
n Vn .

By construction, V is dense. Let us prove that for every string σ the set V ∩ [σ ]
contains no ∆1

1 open set dense in [σ ]. Let n be the smallest such that kn is bigger
than |σ |. It is enough to prove that for any extension τ of σ of length kn , the
set V ∩ [τ ] contains no ∆1

1 open set dense in [τ ]. But by construction we have
V ∩ [τ ] ⊆ τU ; if τW ⊆ V then W ⊆ U , and so cannot be dense and ∆1

1 open.
We can now use V to build a∆1

1-generic sequence not in V . Let W1,W2, . . . be
an ω-enumeration of the∆1

1 dense open sets. We define a sequence of strings σ0 ≺

σ1 ≺ σ2 · · · and let G =
⋃
σi . We ensure that [σn] ⊆Wn; this will ensure that G

is ∆1
1-generic. We start with σ0 being the empty sequence. Given σn , because

Un+1 ∩ [σ ] * V , we let σn+1 be an extension of σn such that [σn+1] ⊆ Un+1 but
[σn+1] * V . The fact that [σn] * V for all n implies that G /∈ V .

7.3. Lowness for Σ1
1 -genericity. We do not know what lowness for Σ1

1 -
genericity is.

QUESTION 7.7. Is lowness for Σ1
1 -genericity different from being

hyperarithmetic?

Using the technique proving Theorem 7.6, we can prove that lowness for Σ1
1 -

genericity coincides with lowness for finite-change dense open sets. Here again
we take full relativizations. A function f : ω→ ω is X-finite-change if there is an
approximation 〈 fs〉s<ωX

1
,∆1-definable over LωX

1
[X ], with only finitely many mind

changes on each input.

THEOREM 7.8. An oracle is low for Σ1
1 -genericity if and only if it is low for

finite-change dense open sets.

Proof. The idea is the same as in Theorem 7.6: given a X -finite-change dense
open set U containing no finite-change dense open set, we define a X -finite-
change dense open set V such that for every σ , the set V ∩ [σ ] contains no
finite-change open set dense in σ . The second step is identical. All we have
to do is to make sure is that the same construction works in this context. Let
〈 fs〉s<ωX

1
be a finite-change approximation of a function f : 2<ω → 2<ω whose
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range generates U . (If X >h O then certainly X is not low forΣ1
1 -genericity (there

is an O-computable Σ1
1 -generic sequence), so we may assume that ωX

1 = ω
ck
1 .)

At every stage s 6 ωX
1 we apply the previous construction to the range of fs .

That is, we let Us be the dense open set generated by the range of fs ; we build
Vs as above. We can find a function gs which generates Vs : we let gs(ε) = fs(ε)

(here ε is the empty string). Given σ of length kn,s and its initial segments σ0 ≺

σ1 ≺ · · · ≺ σn = σ , each σi of length ki,s , we define gs(σ ) in n + 1 many steps.
Namely, for i 6 n let f i

= f i
s (σ ) be the function whose range generates σiUs :

f i(σiτ) = fs(τ ). We let gs(σ ) = f 0( f 1(· · · f n(σ ) · · · )).
What we need to argue is that everything stabilizes with only finitely many

mind changes. But this follows from 〈 fs〉 being finite-change. Suppose that on an
interval I of stages, the values ki,s are stable for i 6 n and the values gs(σ ) are
stable for every σ of length at most kn−1,s . Then on this interval I , for each string σ
of length kn,s , each value gs(σ ) can change at most finitely often (by induction,
f n(σ ) changes finitely often; then f n−1( f n(σ )) changes finitely often, and so on).
Since there are only finitely many strings of length kn,s , we see that kn+1,s changes
only finitely often.

As every Σ1
1 -generic sequence preserves ωck

1 , we can also ask the question of
cuppability, defined analogously here, as it was defined for Π 1

1 -randomness in
Section 4.2. We can prove an analogue of the characterization of Π 1

1 -random
cuppability in [CNY08].

PROPOSITION 7.9. An oracle is low forΣ1
1 -genericity if and only if it is both low

for ∆1
1-genericity and is not Σ1

1 -generic-cuppable.

Proof. Suppose that X is low for ∆1
1-genericity and that ωX⊕G

1 = ωck
1 for every

Σ1
1 -generic G. Let G be Σ1

1 -generic. Then G is ∆1
1(X)-generic and ωX⊕G

1 = ωX
1 .

Relativizing Theorem 6.3 to X , we see that G is Σ1
1 (X)-generic.

In the other direction, suppose that X is low forΣ1
1 -genericity. Then ωX

1 = ω
ck
1 ,

and again by Theorem 6.3, ωX⊕G
1 = ωX

1 for every Σ1
1 (X)-generic G, and so for

every Σ1
1 -generic G. That is, X is not Σ1

1 -generic-cuppable.
We show that X is low for ∆1

1-genericity. Suppose, for a contradiction, that
some ∆1

1-generic G fails to be ∆1
1(X)-generic. Let F be a ∆1

1(X)-meagre
containing G; let Q be the set of ∆1

1-generic sequences. This set is Σ1
1 . The set

F ∩ Q is nonempty (it contains G) and Σ1
1 (X). By the Gandy basis theorem

(relativized to X ), F ∩Q contains an element H such that ωH
1 = ω

X
1 = ω

ck
1 . By

Theorem 6.3, H is Σ1
1 -generic which fails to be even ∆1

1(X)-generic.

As for lowness, Σ1
1 -cuppability remains unresolved:
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QUESTION 7.10. If A is not hyperarithmetic, is there a Σ1
1 -generic sequence G

such that A ⊕ G >h O?

By Theorem 6.3, the set of Σ1
1 -generic sequences is Σ1

1 . Question 7.10 is
related to a more general question raised by Yu:

QUESTION 7.11. Let Q be an uncountable Σ1
1 set. If A is not hyperarithmetic,

must there be some Y ∈ Q such that A ⊕ Y >h O?

The closest result to date is by Chong and Yu [CY]: if Q and P are uncountable
Σ1

1 sets, then there are X ∈ Q and Y ∈ P such that O 6h X ⊕ Y .

8. Equivalent test notions for Π1
1 -randomness

We saw how to capture Π 1
1 -random sequence with Π ck

4 sets of measure 0. We
end this paper by giving two more test notions for Π 1

1 -randomness.

8.1. Difference random style tests. Franklin and Ng [FN11] found a test
notion which characterizes the incomplete Martin-Löf randoms. Informally they
are exactly the sequences which are captured by sets which are Martin-Löf
tests inside a Π 0

1 set. Following the same idea, Bienvenu, Greenberg and Monin
[BGM] argue the following:

THEOREM 8.1. For a Π 1
1 -ML-random sequence Z, the following are equivalent:

(1) Z is captured by a set F ∩
⋂

n Un with λ(F ∩ Un) 6 2−n , where F is Π ck
1

and each Un is Σ ck
1 (uniformly in n).

(2) Z higher Turing computes Kleene’s O.

We shall see an analogous characterization for Π 1
1 -randomness, in the same

spirit as (1) in Theorem 8.1.

THEOREM 8.2. For a sequence X, the following are equivalent:

(1) There are a Π ck
1 set F and a Π ck

2 set G such that X ∈ F ∩G and λ(F ∩G)
= 0.

(2) There are a Σ1
1 set F and a Π ck

2 set G such that X ∈ F ∩G and λ(F ∩G)
= 0.

(3) X is not Π 1
1 -random.
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Proof. (2)H⇒ (3): Suppose that X is captured by a null set F ∩G as in (1). Then
either ωX

1 > ω
ck
1 , in which case X is notΠ 1

1 -random, or there exists some s < ωck
1

such that X ∈ Gs ; so X ∈ F ∩ Gs . The latter is a Σ1
1 set of measure 0, implying

that X is not ∆1
1-random.

(3)H⇒ (1): This is similar to the Franklin–Ng argument. Suppose that X is not
Π 1

1 -random. If X is notΠ 1
1 -ML-random then (1) holds with F = 2ω and G the set

of non-Π 1
1 -ML-randoms. Otherwise, by Theorem 4.6, X higher Turing computes

aΠ 1
1 set A which is not hyperarithmetic, say via a higher functionalΦ. By Lemma

3.3, uniformly in ε > 0 we find a higher functional Φε such that Φε(X) = A and
the measure of the inconsistency set of Φε is at most ε.

Let 〈Ys〉 be a higher effective enumeration of A. For ε > 0 and n < ω we let

Un,ε =
⋃

s

Φ−1
ε (As�n) = {Z ∈ 2ω : ∃s [Ys�n4 Φε(Z)]}

and let G =
⋂

n,ε Un,ε. We also let F be the set of oracles Z such that Φ(Z) does
not lie to the left of A:

F = {Z ∈ 2ω : ¬∃ n (Φ(Z , n) = 0 and A(n) = 1)} .

The set F ∩ G contains X , and is null. To see the latter, let Z ∈ F ∩ G. Either
Φε(Z) is inconsistent for all ε. There are only null many such oracles. Otherwise,
for some ε > 0, Φε(Z) = A. Since A is not hyperarithmetic, there are only null
many oracles which higher compute A (the usual majority-vote argument holds,
but we can also appeal to Sacks’ theorem [Sac90, IV.2.4], which says that upper
cones in the hyperdegrees are null).

(1)H⇒ (2) is immediate.

8.2. Demuth style tests. Bienvenu et al. give in [BGM] give a Demuth-style
characterization of higher weak 2-randomness. Let 〈Ue〉e<ω be an effective list of
all Σ ck

1 sets.

PROPOSITION 8.3. The nested tests of the form
〈
U f (n)

〉
where λ(U f (n)) 6 2−n

and f has a finite-change approximation, precisely capture nonhigher weak 2-
randoms.

We now give a notion of test for Π 1
1 -randomness, which has the same flavour

as Proposition 8.3. Whereas Proposition 8.3 can be seen as a generalization that
no sequence with a closed approximation is higher weak 2-random, the following
characterization ofΠ 1

1 -randomness can be seen as a generalization of the fact that
no sequence with a collapsing approximation is Π 1

1 -random.
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THEOREM 8.4. For a sequence X, the following is equivalent:

(1) X is not Π 1
1 -random.

(2) X is captured by a set
⋂

n U f (n) with λ(U f (n)) 6 2−n , where f has a ωck
1 -

computable approximation 〈 fs〉s<ωck
1

such that for every n, the sequence
〈 fs(n)〉s<ωck

1
restricted to the stages s such that X ∈ U fs (n), changes finitely

often.

Proof. (2)H⇒ (1): This is the easy direction. Let
⋂

n U f (n) be a test which
captures some X following the hypothesis of (2). Note that we can always suppose
that the approximation of f is partially continuous, that is for s limit, if the limit
of 〈 ft〉t<s exists, then it is also equal to fs . We can also always suppose that
λ(U fs (n)) 6 2−n for any s and n, as it is harmless to trim U fs (n) if its measure
becomes too big. Define g : ω→ ωck

1 by g(0) = 0, and

g(n + 1) = min

{
s > g(n) : X ∈

⋂
m6n

U fs (m),s

}
.

The function g is ∆1-definable over Lωck
1
[X ]. If supn g(n) = ωck

1 then X
collapses ωck

1 and we have (1). Otherwise s = supn g(n) < ωck
1 . Also for each

m, there exists some n such that fg(n)(m) = fg(k)(m) for any k > n, as otherwise
X would be in infinitely many versions of U fs (m). Therefore, limn fg(n) exists and
as the approximation is partially continuous, this limit is equal to fs . But then
X ∈

⋂
m U fs (m) and therefore it is not Π 1

1 -ML-random.
(1)H⇒ (2): Suppose that X is notΠ 1

1 -random. If X is notΠ 1
1 -ML-random then

(2) holds easily. Otherwise we use Theorem 4.6 again. The sequence X higher
Turing computes some nonhyperarithmetic, Π 1

1 set A, say via some functional
Φ; we define the functionals Φε as above; we assume that the measure of the
inconsistency set of Φε is strictly smaller than ε. Let, for ε > 0 and σ ∈ 2<ω,

W(ε, σ ) = Φ−1
ε [σ ].

For n < ω and s < ωck
1 we let ms(n) be the least m such that

λ
(
W(2−n, As�m)s

)
6 2−n

and then let U fs (n) = W(2−n, As�ms (n)). (Since A is not hyperarithmetic,
limn→∞ λ(Φ

−1
ε (A �n)) < ε; by speeding up the enumeration of A, we may

assume that such m exists for each n and s.)
The sequence 〈 fs(n)〉 stabilizes at a limit f = fωck

1
, λ(U f (n)) 6 2−n for all n,

and X ∈
⋂

n U f (n). It remains to show that for all n, there are only finitely many
values of fs(n) such that X ∈ U fs (n).
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Suppose that this is not the case. Let s0 < s1 < · · · be an ω-sequence of stages
such that the values fsi (n) are distinct and X ∈ U fsi (n)

for all i . Note that since
〈 fs(n)〉 reaches a limit, sω = supi si < ω

ck
1 . We observe that the set {msi (n) : i < ω}

is unbounded in ω: for each m, the value of As �m stabilizes below sω. For
notational simplicity, we may assume that Asω = limi→ω Asi .

Let m < ω. There is some i < ω such that Asi�m= Asω�m and msi (n) > m. So
X ∈ U fsi (n)

implies that Asω�m4 Φ(X). So Φ(X) = Asω . But Φ(X) = A and Asω
is hyperarithmetic, a contradiction.
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