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Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum
groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We
introduce a property for quantum Markov semigroups of central multipliers on a compact quantum
group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this
property is stable under free products, monoidal equivalence, free wreath products and dual quantum
subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum
groups.

We then show that a compact quantum group with a quantum Markov semigroup that is approximately
linear with almost commuting intertwiners satisfies the immediately gradient-S2 condition from [10] and
derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show
that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity
results follow again (now following [27]).
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In their fundamental papers, Voiculescu [48] and Ozawa and Popa [35] prove that the free

group factors L(Fn),n ≥ 2, do not contain a Cartan subalgebra. This means that L(Fn)
does not contain a maximal abelian von Neumann subalgebra whose normaliser generates

L(Fn). Consequently, L(Fn) does not admit a natural crossed product decomposition and

is therefore distinguishable from the class of group measure space von Neumann algebras.
The proof of Ozawa and Popa in fact shows a stronger property: that the normaliser of any

diffuse amenable von Neumann subalgebra of L(Fn) generates a von Neumann algebra

that is amenable again. This property has become known as strong solidity. After [35],

many von Neumann algebras were proven to be strongly solid.
These strong solidity results required several techniques that come from approximation

properties and the geometry of groups. The proof of Ozawa and Popa [35] essentially splits

into two parts. First, they show that weak amenablity of a group (or the weak∗ completely
contractive approximation property [W∗CCAP] of its von Neumann algebra) can be used

to prove a so-called weak compactness property. Second, using weak compactness and
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Popa’s deformation and spectral gap techniques, they obtain the results. For the second
part, a number of alternative approaches have been presented. Essentially they split

into three methods, using (1) malleable deformations [35], (2) closable derivations in 1-

cohomology and HH+-type properties [35] or (3) the Akemann–Ostrand property [38] or
quasicohomological methods [15]. The second and third methods are closely related (see

also [12] and Section 6). Each of these approaches provides new classes of von Neumann

algebras that are strongly solid.

We believe it is instructive to include the following diagram at this point, since these
global methods shall not appear very explicitly in this paper (but rather in the references).

Our focus here is to show that the input for methods (2) and (3) can be proved for a

reasonably large class of quantum groups. We shall thus concentrate on the boldface part
of the diagram, on which we expound later. The arrows should not always be understood

as strict implications; sometimes additional conditions are needed.

(3) Akemann–
Ostrand

(2) Derivations

(1) Malleable
deformations

Quantum Markov
semigroups and

gradient-S2

Approximate linear
+ almost commuting

intertwiners

W∗CCAP
or W∗CBAP

Weak compactness

Strong solidity

Or

And

In [27], Isono provided the first examples of von Neumann algebras coming from the

theory of compact quantum groups that are strongly solid. The approach falls into

category (3) already described. In particular, Isono proved that free orthogonal quantum
groups are strongly solid. Later different proofs of this fact were given in [23] (see also the

earlier paper [46] on solidity). In [8], strong solidity results for quantum automorphism

groups were obtained.
We note that [26, Theorem C] also covers free products of free orthogonal/unitary

quantum groups and quantum automorphism groups. In the present paper, we shall

deal with a property that implies strong solidity and is stable under free products and
monoidal equivalence. One advantage of this approach is that our methods apply to a

free product of (certain) compact quantum groups followed by a monoidal equivalence.

This is especially important for the treatment of free wreath products [4].
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In [10] it was proved that the type III deformations of free orthogonal and unitary

quantum groups are also strongly solid. The proof builds upon the weak compactness

properties from [6] and follows the path of method (2) already described. The theory
of quantum Markov semigroups (QMSs) is used to construct the closable derivations in

method (2) from [17]. This is done for the specific examples of free orthogonal and unitary

quantum groups.
This paper continues the line of [10] by involving two new ideas. First, we look at [10]

from the viewpoint of a rigid C∗-tensor category. Although this paper is not written in the

abstract language of C∗-tensor categories (as we found it less accessible), this is precisely
the structure of Irr(G) that occurs in our proofs.

Second, we refine the method from [10]. We introduce a new property for a QMS of

central multipliers on a compact quantum group which we call ‘approximate linearity with

almost commuting intertwiners’ (see Definition 2.2). The definition is certainly technical
in nature, but it has some clear advantages, namely, it is immediately clear that it is

invariant under monoidal equivalence of quantum groups. A first consequence is that since

the free orthogonal quantum groups O+
N are monoidally equivalent to SUq(2),q ∈ (0,1)

with q+q−1 =N , the estimates from [10] can be carried out on SUq(2). We also prove a

couple of other stability properties, including free wreath products.

Theorem 0.1. Approximate linearity with almost commuting intertwiners of a QMS of

central multipliers is stable under the following:

(1) Monoidal equivalence.

(2) Free products.

(3) Taking dual quantum subgroups.

(4) Free wreath products with S+
N (more precisely, Theorem 5.1).

The proof for free wreath products is a combination of [30, Theorem 5.11] (see

also [44]), the other stability properties and the fact that SUq(2) carries a QMS that is

approximately linear with almost commuting intertwiners. To prove the latter statements
we provide a conceptual way to construct QMSs from suitable families of unital completely

positive maps. This makes use of generating functionals and differentiation at 0. The

proof also simplifies [10, Section 6.1]. We are indebted to Adam Skalski for sharing this

argument.
We then show that indeed the strong solidity and Akemann–Ostrand-type results as in

the diagram are implied. We first show the following (in path (2)):

Theorem 0.2. Let G be a compact quantum group of Kac type such that L∞(G)

has the weak∗ completely bounded approximation property (W∗CBAP). Suppose that G

carries a QMS of central multipliers that is approximately linear with almost commuting
intertwiners and which is immediately L2-compact. Then L∞(G) is strongly solid.

Then we show the following theorem using noncommutative Riesz transforms (see

also [12]). Since the Akemann–Ostrand property could be of independent interest, we

record it in this paper in a separate section.
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Theorem 0.3. Let G be a compact quantum group of Kac type such that Cr(G) is locally

reflexive. Suppose that G carries a QMS of central multipliers that is approximately linear

with almost commuting intertwiners and which is immediately L2-compact. Then L∞(G)
satisfies the Akemann–Ostrand property (more precisely, AO+ from [27]).

In [27] it was proved in the factorial case that together with the W∗CBAP, Theorem 0.3
implies strong solidity. In that case, Theorem 0.3 implies Theorem 0.2.

We now turn to the examples. Most of the work is contained in the following theorem,

from which a diversity of results follow by stability properties. Its proof heavily uses the
estimates [46, Appendix]; it is interesting that these estimates are precisely sharp enough

for our purposes.

Theorem 0.4. SUq(2) carries a QMS of central multipliers that is approximately linear

with almost commuting multipliers and immediately L2-compact.

We can now harvest our results using the stability properties and several monoidal

equivalence and isomorphism results for compact quantum groups that have been proved

by others, most notably [4].

Theorem 0.5. The following (Kac-type) compact quantum groups are strongly solid and

satisfy AO+:

(1) All seven series of free orthogonal easy quantum groups classified in [50] under the

names O+
N3

, S+
N5

, H+
N5

, B+
N4

, S′+
N5

, B′+
N4

and B#+
N4

for N3 ≥ 3, N4 ≥ 4, N5 ≥ 5 (see
[8]).

(2) The quantum reflection groups Hs+
N � Ẑs �∗S+

N for N ≥ 5, ∞≥ s≥ 2, where Z∞ =Z.

(3) The free unitary quantum groups U+
N for N ≥ 3 (see [26]).

The selection of examples presented in Theorem 0.5 is a bit random and not exhaustive.

We have chosen to present examples that relate to attempts to classify easy quantum

groups. The representation category of the families in Theorem 0.5 are precisely the ones
whose representation categories can be described in terms of noncoloured, noncrossing

partitions. One may wonder what happens when more colours are added to the partitions,

like in [25]. Our theorem shows that some cases are already covered.
It should be mentioned that part of Theorem 0.5 was proved in the literature already

using different methods (we have given references in the theorem). Our method gives a

unified way to treat all examples at once. To our knowledge, strong solidity for H+
N and

the more general quantum reflection groups has not been covered, nor has AO+. Other

new examples include all free wreath products of these examples with S+
N .

Structure

Section 1 introduces preliminary notation. In Section 2 we introduce almost linearity

with almost commuting intertwiners and show stability properties. We conclude most
of Theorem 0.1 except for the wreath products. Section 3 contains the implications for

strong solidity and proves Theorem 0.2. In Section 4 we show that SUq(2) carries a good

QMS and prove Theorem 0.4. From this we can conclude the proof of the case of wreath
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products in Theorem 0.1 as well as strong solidity of the examples in Theorem 0.5; this is
done in Section 5. In Section 6 we prove the corresponding statements for the Akemann–

Ostrand property, which concludes Theorem 0.3.

1. Preliminaries

By δ(x ∈X) we denote the function that is 1 if x ∈X and 0 otherwise. Inner products

are linear in the left leg. For ξ,η vectors in a Hilbert space H we write ωξ,η(x) = 〈xξ,η〉.
The standard theory of von Neumann algebras can be found in [42]. For operator spaces

we refer to [22].

1.1. Finite-dimensional approximations and strong solidity

See [9] for the following notions.

Definition 1.1. We say that a von Neumann algebra M has the W∗CBAP if there exists

a net (Φi)i of normal completely bounded finite-rank maps M →M such that:

(1) there exists Λ≥ 1 such that for all i we have ‖Φi‖cb ≤ Λ and

(2) for every x ∈M we have Φi(x)→ x σ-weakly.

Λ is called the Cowling–Haagerup constant. If Λ = 1, then we say that M has the

W∗CCAP.

For quantum groups of Kac type, the W∗CBAP (resp., W∗CCAP) is equivalent to

weak amenability of the quantum group (resp., weak amenability with Cowling–Haagerup

constant 1). For the Haagerup property, see also [13].

Definition 1.2. We say that a finite von Neumann algebra with faithful normal state

(M,τ) has the Haagerup property if there exists a net (Φi)i of normal unital completely
positive maps M →M such that τ ◦Φi = τ , such that Φi is compact as a map L2(M,τ)→
L2(M,τ) and such that for every x ∈M we have Φi(x)→ x strongly.

We further need the notions of solidity [9] and strong solidity as in the next definition.

Definition 1.3. A finite von Neumann algebra M is called strongly solid if for every

diffuse amenable von Neumann subalgebra P ⊆ M , NorM (P )′′ is amenable, where the

normaliser is defined as

NorM (P ) = {u ∈M | u unitary such that uPu∗ = P} .

1.2. Compact quantum groups and represenations

The theory of compact quantum groups has been established by Woronowicz [51].

Definition 1.4. A compact quantum group G is a pair (C(G),ΔG) of a unital C∗-
algebra C(G) and a unital ∗-homomorphism ΔG : C(G)→ C(G)⊗minC(G) (comultipli-

cation) satisfying (ΔG ⊗ id) ◦ΔG = (id⊗ΔG) ◦ΔG (coassociativity) and such that both

ΔG(C(G))(C(G)⊗1) and ΔG(C(G))(1⊗C(G)) are dense in C(G)⊗minC(G).
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A compact quantum group G admits a unique state ϕ on C(G) called the Haar state

which satisfies left and right invariance:

(ϕ⊗ id)◦ΔG(x) = ϕ(x)1 = (id⊗ϕ)◦ΔG(x).

G is called Kac if τ is tracial. We let Cr(G) = πϕ(C(G)) and L∞(G) = πϕ(C(G))′′ be the
C∗-algebra and von Neumann algebra generated by the GNS-representation πϕ of ϕ. A

(finite dimensional unitary) representation of G is a unitary element u ∈ C(G)⊗Mn(C)

such that (ΔG⊗ id)(u) = u13u23, where u23 =1⊗u and u13 is u23 with the flip map applied

to its first two tensor legs. We also set u12 = u⊗1n. All representations are assumed to be
unitary and finite dimensional, and we shall just call them representations. The elements

(id⊗ω)(y) with ω ∈ Mn(C)
∗ are called the matrix coefficients of u. We shall use the

Woronowicz quantum Peter–Weyl theorem [51], which states that for every α,β ∈ Irr(G)
there exists positive Qα ∈Mnα

(C) with qdim(α) := Tr(Qα) = Tr
(
Q−1

α

)
such that

ϕ
((

uβ
μ,ν

)∗
uα
ξ,η

)
= δα,β qdim(α)−1

〈
Q

1
2
αξ,Q

1
2
αμ
〉
〈ξ,η〉, ξ,η,μ,ν ∈ Cnα . (1.1)

The quantity qdim(α) is called the quantum dimension.
After these preliminaries the comultiplication ΔG shall never be used, and we stress

that all occurrences of the greek letter Δ (without subscript G) concern generators of

quantum Markov semigroups.
Set u1 ∈C(G)⊗Mn1

(C) and u2 ∈C(G)⊗Mn2
(C). The tensor product u1⊗u2 is defined

as the representation u1
12u

2
13. We call u irreducible if the matrix algebra generated by

(ω⊗ id)(u),ω ∈ C(G)∗, is simple. A morphism between u1 ∈ C(G)⊗Mn1
(C) and u2 ∈

C(G)⊗Mn2
(C) is a map T :Cn1 →Cn2 such that u1(1⊗T ) = (1⊗T )u2. Let Mor

(
u1,u2

)
be the (normed) vector space of morphisms. There is a quantum version of Schur’s lemma

which states that u is irreducible if and only if Mor(u,u) = C1. If Mor
(
u1,u2

)
contains a

unitary element, then u1 and u2 are called equivalent. We write Irr(G) for the equivalence
classes of irreducible representations and Rep(G) for the equivalence classes of all finite

dimensional representations. Its elements shall typically be denoted by α,β and γ. The

dimension of α ∈ Rep(G) is denoted by nα and satisfies nα ≤ qdim(α). Tensor products
and Mor are well defined on equivalence classes. For α,β ∈ Irr(G), the tensor product

α⊗β is equivalent to a direct sum of irreducibles ⊕γ∈Irr(G)mγ ·γ, where mγ ·γ =⊕mγ

i=1γ is

an mγ-fold copy. This decomposition is unique up to equivalence, and the set of all such
decompositions is referred to as the fusion rules. We write α⊆ β if Mor(α,β) contains an

isometry. For α ∈ Rep(G) we denote by α its contragredient representation.

Proposition 1.5 (Frobenius duality). For α,β,γ ∈ Rep(G), we have Mor(α,β ⊗ γ) �
Mor

(
β⊗α,γ

)
linearly. Consequently, if α and γ are irreducible, then α ⊆ β⊗ γ if and

only if γ ⊆ β⊗α.

Lemma 1.6. Set α,γ ∈ Irr(G). There are only finitely many β ∈ Irr(G) such that 1 ⊆
α⊗β⊗γ.

Proof. If 1⊆ α⊗β⊗γ, then by Frobenious duality we have β ⊆ α⊗γ, and there are only

finitely many such β. �
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We let Pol(G) be the ∗-algebra of matrix coefficients of (finite-dimensional) repre-

sentations of G. It is given by the linear span of (id⊗ ω)(u) for all representations

u ∈ C(G)⊗Mn(C) and ω ∈Mn(C)
∗. There is a distinguished faithful ∗-homomorphism

ε : Pol(G)→ C called the counit that satisfies

(ε⊗ id)◦ΔG = id = (id⊗ ε)◦ΔG.

Pol(G) carries the inner product 〈x,y〉= ϕ(y∗x) and norm ‖x‖22 = 〈x,x〉. The completion
of Pol(G) with respect to this norm is called L2(G) and may be identified with the GNS-

space of ϕ. For α ∈ Irr(G) we let Pα : Pol(G)→ Pol(G) be the orthogonal projection onto

the matrix coefficients of α.
For compact quantum groups H and G we say that H is a dual quantum subgroup of

G, notation Ĥ< Ĝ, if L∞(H)⊆ L∞(G) and the von Neumann algebraic comultiplication

of L∞(G) restricts to L∞(H) as the comultiplication of H. In this case Irr(H) ⊆ Irr(G)

naturally, and the fusion rules and morphisms of Irr(G) restrict to Irr(H) (it is a full
subcategory).

A central multiplier Φ : L∞(G)→ L∞(G) is a map such that for every α ∈ Irr(G) there

exist Δα ∈C such that Φ((id⊗ω)(α)) =Δα(id⊗ω)(α) for all α∈ Irr(G) and ω ∈Mnα
(C)∗.

We refer to [29] for more general background on multipliers.

Remark 1.7. We have that (Irr(G),Mor) with the tensor products, fusion rules and

contragredients forms a rigid C∗-tensor category. A large part of this paper can be
directly translated in terms of the abstract setting of rigid C∗-tensor categories. However,

since our many applications are in quantum group theory, our presentation follows the

terminology of quantum group theory. Recall that by Tannaka–Krein duality, rigid C∗-
tensor categories with specified fibre functor are always of the form (Irr(G),Mor) [52].

1.3. Quantum Markov semigroups

Let M be a von Neumann algebra with a faithful normal state ϕ. A quantum Markov
semigroup (QMS) Φ= (Φt)t≥0 is a semigroup of normal unital completely positive maps

Φt : M → M such that for every x ∈ M , the map t �→ Φt(x) is strongly continuous.

Moreover, we assume that a QMS is GNS-symmetric in the sense that ϕ(Φt(x)y) =
ϕ(xΦt(y)) for all x,y ∈ M . The QMS Φ is called ϕ-modular (or modular) if Φt ◦σϕ

s =

σϕ
s ◦Φt for all t ≥ 0,s ∈ R, where σϕ is the modular automorphism group of ϕ [43].

The QMSs occuring in this paper are QMSs of central multipliers which are always
modular and GNS-symmetric. Further, they are norm-continuous on Pol(G). It should

also be stressed that the most important of our applications are for finite von Neumann

algebras and ϕ tracial. However, in the analysis we shall also need the Haar state on

Gq = SUq(2),q ∈ (−1,1), which is nontracial even though L∞(Gq) is of type I.
If Φ is a QMS of central multipliers, then for every α ∈ Irr(G) there exists Δα ≥ 0 such

that Φt(xα) = exp(−tΔα)xα for every matrix coefficient xα of α. The values (Δα)α∈Irr(G)

completely determine Φ. We set the generator Δ :⊆ L2(G)→ L2(G) to be the closure of

Pol(G)→ Pol(G) : xα �→Δαxα.

https://doi.org/10.1017/S1474748021000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000165


2142 M. Caspers

The QMS Φ is called immediately L2-compact if Δ has compact resolvent. The generator
Δ is closely related to the associated quantum Dirichlet form. In [14] it was proved that

a (general) von Neumann algebra has the Haagerup property if and only if it admits an

immediately L2-compact QMS.

1.4. Free products

To two compact quantum groups G1 and G2 one can associate a free product quantum
group G1 ∗G2 [49]. It satisfies L∞(G) =L∞(G1)∗L∞(G2), where free products are taken

with respect to the von Neumann algebraic Haar states. The quantum groups’s Haar state

is the free product of the Haar states of the two compact quantum groups. Moreover, the
quantum group can be equipped with a natural comultiplication, which shall not be used

in this paper. What is relevant for us is the following proposition, which describes Irr(G)

as a fusion category:

Proposition 1.8 ([49] or [11, Theorem 3.4]). Let G1 and G2 be compact quantum groups.

A tensor product γ1 ⊗ ·· · ⊗ γn with γi ∈ Irr(Gki
) and ki �= ki+1 is called reduced. All

such reduced tensor products form a well-defined complete set of mutually inequivalent

irreducible representations of G1 ∗G2. In other words, they constitute Irr(G1 ∗G2). The

fusion rules are as follows for reduced tensors β1⊗·· ·⊗βl and γ1⊗·· ·⊗γn. If βl and γ1
are not representations of the same quantum group, then

β1⊗·· ·⊗βl ·γ1⊗·· ·⊗γn = β1⊗·· ·⊗βl⊗γ1⊗·· ·⊗γn.

If βl and γ1 are representations of the same quantum group, then

(β1⊗·· ·⊗βl)⊗ (γ1⊗·· ·⊗γn) =

(
(β1⊗·· ·⊗βl−1)⊗

( ⊕
i,αi �=1

αi

)
⊗ (γ2⊗·· ·⊗γn)

)

⊕
( ⊕

i,αi=1

(β1⊗·· ·⊗βl−1)⊗ (γ2⊗·· ·⊗γn)

)
,

(1.2)
where βl ⊗ γ1 = ⊕iαi is the decomposition of βl ⊗ γ1 into irreducibles (with possible

multiplicity). Note that in equation (1.2) the latter summand is not necessarily reduced,

but the fusion rules are hereby defined inductively.

We shall use the shorthand notation

γ1 · · ·γn = γ1⊗·· ·⊗γn

for a reduced word.

1.5. Multiplicity freeness

A compact quantum group G is called multiplicity free if for α,β,γ ∈ Irr(G), the space

Mor(γ,α⊗β) is ≤ 1-dimensional. That is, γ occurs at most once in the decomposition
of α⊗β into irreducible representations. When G1 and G2 are multiplicity free, then in

equation (1.2) the last summation is in fact a single summand if βk = γ1, and it vanishes

otherwise (it follows, for example, by Frobenius duality, Proposition 1.5). So, with the
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summation over α going over irreducible representations, we record that

(β1 · · ·βk)⊗ (γ1 · · ·γn)

=

L⊕
i=1

⊕
1 �=α⊆βk−i+1⊗γi

(β1 · · ·βk−i)α(γi+1 · · ·γn),
(1.3)

where L−1 is the maximum index i for which γi = βk−i+1. We note that the summands
in equation (1.3) are reduced. This decomposition shall be used without further reference

in the rest of the paper.

Assumption. Throughout the entire paper we assume that all compact quantum groups
(e.g., H, G, G1 and G2) are multiplicity free.

The following result should be well known and is easy to prove:

Proposition 1.9. If G1 and G2 are compact quantum groups that are multiplicity free,

then so is G1 ∗G2. If Ĥ< Ĝ and G is multiplicity free, then so is H.

Proof. Suppose that we have an irreducible representation α = α1 · · ·αl contained in

(β1 · · ·βk)⊗(γ1 · · ·γn). Then by considering the length, αmust be one of the ith summands
in equation (1.3), with i satisfying 2i= k+n− l+1. But all those summands are mutually

inequivalent, by Proposition 1.8 and the fact that G1 and G2 are multiplicity free. �

ThatG is multiplicity free has the following consequence. For β,γ ∈ Irr(G) and α⊆ β⊗γ,

there exists an intertwiner

V β,γ
α ∈Mor(α,β⊗γ)

that is moreover unique up to a phase factor. All expressions and proofs occuring in this

paper are independent of this phase factor unless mentioned otherwise.

1.6. Monoidal equivalence

Definition 1.10. Two compact quantum groups G1 and G2 are called monoidally

equivalent if there exists a bijection π : (Irr(G1),MorG1
) → (Irr(G2),MorG2

) that maps

the trivial representation of G1 to the trivial representation of G2 and which for any

morphisms S,T and unit 1α ∈Mor(α,α),α ∈ Rep(G), satisfies

π(1α) = 1α, π(S⊗T ) = π(S)⊗π(T ),

π(S∗) = π(S)∗, π(ST ) = π(S)π(T ),

where in the last equality we assume that S and T are composable. The bijection π is

then called a monoidal equivalence.

Proposition 1.11. Let G1 and G2 be monoidally equivalent compact quantum groups, so
that we may identify Irr(G1) = Irr(G2). Let

(
Φ1

t

)
t≥0

be a QMS of central multipliers on

L∞(G1) such that Φ1
t (xα) = exp(−tΔα)xα for every matrix coefficient xα of α ∈ Irr(G1).

Then there exists a QMS of central multipliers
(
Φ2

t

)
t≥0

on L∞(G2) such that Φ2
t (xα) =

exp(−tΔα)xα for every matrix coefficient xα of α ∈ Irr(G2).
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Proof. The proof of this fact is the same as [24, Proposition 6.3], and is based on [5,

Theorems 3.9 and 6.1] together with a transference method. �

In a sense, one could also say that a central QMS lives on the level of the rigid C∗-tensor
category [31].

2. A rigid C∗-tensor category approach to gradient estimates

To a QMS on a tracial von Neumann algebra one can associate a canonical bimodule
(in principle only defined over a dense subalgebra of M) which is called the gradient

bimodule H∇. In [10], sufficient conditions were given to assure that H∇ is in fact a

von Neumann bimodule that is moreover quasicontained in the coarse bimodule. In this

section we provide a categorical viewpoint on the approach in [10]. What we show is that
the methods and estimates that occur in the proofs of [10] actually live on the level of

a monoidal category. In particular, all computations in [10] can be carried out on the

level of SUq(2), after which they transfer to a much larger class of quantum groups. A
particular feature of our current approach is that the properties we consider are stable

under repeated applications of constructions like free products, wreath products, taking

dual quantum subgroups and monoidal equivalence. This should be compared to, for
instance, [26, Theorem C], where such results (and consequences for rigidity properties)

were limited to free products of quantum groups in a specific class. We thus cover a

richer class of quantum groups than has occurred in the literature so far. In particular,

this approach allows us to use the main result of [30], and we cover in particular free
wreath products and H+

N . We prove, for instance, that H+
N is strongly solid. We will come

back to these results in subsequent sections. In the current section we introduce the main

technical definition of being ‘approximately linear with almost commuting intertwiners’
and prove that is stable under free products, monoidal equivalence and taking quantum

subgroups.

2.1. Approximately linear with almost commuting intertwiners

Let G be a compact quantum group and recall that it is assumed to be multiplicity free.
For α,β,γ ∈ Irr(G),β2 ⊆ α⊗β⊗γ, we define

Lα,γ
β ={(β1,β2) ∈ Irr(G)× Irr(G) | β1 ⊆ α⊗β,β2 ⊆ β1⊗γ},

Rα,γ
β ={(β1,β2) ∈ Irr(G)× Irr(G) | β1 ⊆ β⊗γ,β2 ⊆ α⊗β1},

Lα,γ
β,β2

=
{
β1 ∈ Irr(G) | (β1,β2) ∈ Lα,γ

β

}
,

Rα,γ
β,β2

=
{
β1 ∈ Irr(G) | (β1,β2) ∈Rα,γ

β

}
.

Lemma 2.1. Given α,γ ∈ Irr(G), the number of elements in the sets Lα,γ
β , Rα,γ

β , Lα,γ
β,β2

,

Rα,γ
β,β2

is bounded uniformly in β,β2.

Proof. Suppose that β1 ⊆ α⊗β,β1 ∈ Irr(G); then by Frobenius duality (Proposition 1.5)

we have that β ⊆ α⊗β1. But this can only happen if dim(β) ≤ dim(α)dim(β1), so that

dim(β1)≥ dim(β)dim(α)−1. By counting dimensions we see that α⊗β can therefore have

https://doi.org/10.1017/S1474748021000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000165


Riesz Transforms on Compact Quantum Groups and Strong Solidity 2145

at most dim(α) irreducible inequivalent subrepresentations. Applying the same argument

in turn to β1 ⊗β⊗ γ, we see that there are at most dim(γ) irreducible representations

contained in this representation. �

Let Φ := (Φt)t≥0 be a QMS of central multipliers on G. The following definition is

our main technical tool. Recall that we need G to be multiplicity free to define up to a

phase factor uniquely determined intertwiners V α,β
γ , α,β,γ ∈ Irr(G). So from this point

the multiplicity freeness is being used.

Definition 2.2. We say that Φ is approximately linear with almost commuting intertwin-

ers if the following holds. For every α,γ ∈ Irr(G), there exists a finite set A00 :=A00(α,γ)⊆
Irr(G) such that for every β ∈ Irr(G)\A00 and β2 ⊆α⊗β⊗γ, there exist bijections (called

the v-maps)

vα,γ( · ;β,β2) := v( · ;β,β2) : L
α,γ
β,β2

→Rα,γ
β,β2

,

such that the following holds. There exists a set A ⊆ Irr(G)\A00 and a constant C :=

C(α,γ)> 0 such that the following are true:

(1) For all β ∈A,(β1,β2) ∈ Lα,γ
β , we have∣∣Δβ −Δβ1

−Δv(β1;β,β2)+Δβ2

∣∣≤C qdim(β)−1 (2.1)

and

|Δβ −Δβ1
| ≤ C, (2.2)

and for all β ∈ Irr(G)\(A∪A00),(β1,β2) ∈ Lα,γ
β , we have

Δβ −Δβ1
−Δv(β1;β,β2)+Δβ2

= 0. (2.3)

(2) For all β ∈A,(β1,β2) ∈ Lα,γ
β , we have

inf
z∈T

∥∥∥V β1,γ
β2

(
V α,β
β1

⊗ idγ

)
− zV

α,v(β1;β,β2)
β2

(
idα⊗V β,γ

v(β1;β,β2)

)∥∥∥≤ C qdim(β)−1 (2.4)

and for all β ∈ Irr(G)\(A∪A00),(β1,β2) ∈ Lα,γ
β , we have

inf
z∈T

∥∥∥V β1,γ
β2

(
V α,β
β1

⊗ idγ

)
− zV

α,v(β1;β,β2)
β2

(
idα⊗V β,γ

v(β1;β,β2)

)∥∥∥= 0. (2.5)

(3) There exists a polynomial P such that for every N ∈ N we have

#{β ∈A |Δβ <N} ≤ P (N) (2.6)

and β �→ δ(β ∈A) qdim(β)−1 is square summable.

Remark 2.3. In summary, Definition 2.2 entails the following. We cut Irr(G) into three

disjoint sets. Each of these sets has a size condition and a condition on estimates of

eigenvalues of Δ, as well as certain almost commutations of intertwiners:
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A00 A The rest: Irr(G)\(A00∪A)

-Finite set -Grows polynomially compared to Δ -No size restrictions

-No conditions -Estimates (2.1),(2.2) and (2.4) -Vanishing of equations (2.3),(2.5)

We shall usually refer to property (1) as being approximately linear and (2) as having

almost commuting intertwiners. We note that they have to be satisfied for the same
choice of A and A00, which is why we did not define ‘approximate linearity’ and ‘almost

commuting intertwiners’ as independent notions.

Theorem 2.4. The property of Φ being approximately linear with almost commuting

intertwiners is stable under monoidal equivalence of compact quantum groups.

Proof. Monoidally equivalent compact quantum groups have the same representation

category seen as a rigid C∗-tensor category. In particular, the quantum dimension,
norms of intertwiners and irreducible representations with their fusion rules are invariant

under monoidal equivalence (see [5, Remarks 3.2, 3.4 and 3.5]). Since all properties in

Definition 2.2 are expressed in these terms, the theorem follows directly. �
The following theorem is clear to specialists; for completeness, we give its proof:

Theorem 2.5. Suppose that Φ is a QMS of central multipliers on a compact quantum

group G. Suppose that H is a compact quantum group with Ĥ< Ĝ. Then Irr(H)⊆ Irr(G)
and L∞(H) ⊆ L∞(G). In particular, the restriction of Φ to L∞(H) is a QMS of

central multipliers. Furthermore, if Φ is approximately linear with almost commuting

intertwiners, then so is its restriction to L∞(H).

Proof. Indeed, if Ĥ < Ĝ, then there exists a surjective ∗-homomorphism π̂ : �∞
(
Ĝ

)
→

�∞
(
Ĥ

)
. Since �∞

(
Ĝ

)
is an �∞-direct sum of finite-dimensional simple C∗-algebras (i.e.,

matrix algebras), π̂ must be either 0 or faithful on each of the simple matrix blocks.

Then �∞
(
Ĥ

)
is given by the �∞-direct sum of all matrix blocks for which π̂ is faithful.

The matrix blocks of �∞
(
Ĝ

)
are labelled by Irr(G) and the matrix blocks of �∞

(
Ĥ

)
are labelled by Irr(H), which is thus a subset of Irr(G). Since L∞(H) is generated by

the matrix coefficients of Irr(H), it must thus be a subalgebra of L∞(G). We see that Φ

restricts to L∞(H) and is again a QMS of central multipliers. It is clear that Φ restricted
to L∞(H) satisfies Definition 2.2, since one has to check fewer conditions than for the

original Φ (in particular, the sets Lα,γ
β,β2

and Rα,γ
β,β2

and the bijection vα,γ(·;β,β2) stay the

same but need only be considered for α,β,γ ∈ Irr(H),β2 ⊆ α⊗β⊗γ). �

2.2. Free products

Our next aim is to show that Definition 2.2 is stable under free products.

Theorem 2.6. Let Φ1 and Φ2 be QMSs of central multipliers on respective compact
quantum groups G1 and G2. Let Φ = Φ1 ∗ Φ2 be the free product QMS of central

multipliers on G1 ∗G2. If Φ
1 and Φ2 are both approximately linear with almost commuting

intertwiners, then so is Φ.
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The proof of this theorem will take the rest of this section, for which we will fix the
following notation. First we let Δ be the generator of Φ with eigenvalues Δα,α ∈ Irr(G).

In particular, this defines Δα for the subsets Irr(G1) and Irr(G2) of Irr(G). The

straightforward proof of the following lemma can be found at [10, Beginning of Section
5]:

Lemma 2.7 (Leibniz rule). For β = β1 · · ·βl ∈ Irr(G) a reduced word, we have

Δβ =

l∑
r=1

Δβr
.

Now let

α= α1 · · ·αk, γ = γ1 · · ·γm,

in Irr(G) be reduced words of representations of lengths k and m, respectively. So

αi,i= 1, . . . ,k, is alternatingly in Irr(G1) and Irr(G2), and similarly for γi. When αi,γj ∈
Irr(G1) (resp., αi,γj ∈ Irr(G2)), we define A1

00 (αi,γj) and A1 (αi,γj) (resp., A2
00 (αi,γj)

and A2 (αi,γj)) to be the sets A00 and A of Definition 2.2 for G1 (resp., G2) with respect

to αi,γj and Φ1 (resp., Φ2). This makes sense because of the assumption that αi and γj
are representations of the same quantum group.

Definition of A00 and A associated to α,γ ∈ G. The set A00 ⊆ Irr(G) will consist of all

representations β ∈ Irr(G) of the following form:

• β equals a reduced word β = αk · · ·αk−i+1γj · · ·γ1 for some 0≤ i≤ k, 0≤ j ≤m.
• β equals a reduced word β=αk · · ·αk−i+1βi+1γj · · ·γ1 for some 0≤ i < k, 0≤ j <m,

and at least one of the following holds:
– βi+1 ∈As

00 (αk−i,γj+1) when there is s ∈ 1,2 such that αk−i,γj+1 ∈ Irr(Gs),
– 1⊆ αk−i⊗βi+1⊗γj+1.

Since As
00,s = 1,2, is finite (for the first sub-bullet) and we have Lemma 1.6 (for the

second sub-bullet), we see that A00 is a finite set. We set A ⊆ Irr(G) to be the set of

representations β ∈ Irr(G) of the following form:

• β equals a reduced word β=αk · · ·αk−i+1βi+1γj · · ·γ1 for some 0≤ i < k, 0≤ j <m,
and βi+1 ∈As (αk−i,γj+1) when there is s ∈ 1,2 such that αk−i−1,γj+1 ∈ Irr(Gs).

As part of the proof of Theorem 2.6, we shall at this point establish that Definition 2.2,

property (2.2) holds.

Lemma 2.8. Property (2.2) holds for G and the choice of A.

Proof. The QMSs on G1 and G2 are both approximately linear with almost commuting

intertwiners. Therefore, let P be a polynomial such that for all possible choices s = 1,2
and 1≤ i≤ k, 1≤ j ≤m such that αi,γj ∈ Irr(Gs), we have for all N ∈ N that

#
{
β̃ ∈As (αi,γj) |Δ˜β ≤N

}
≤ P (N).
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Suppose that β ∈A. Then from the definition of A we see that the length of the reduced
expression β = β1 · · ·βl cannot be longer than the sum of the lengths of α and γ minus

1 – that is, l≤ k+m−1. Moreover, we may write β = β1 · · ·βl = αk · · ·αk−i+1βi+1γj · · ·γ1

for some 0 ≤ i < k, 0 ≤ j < m, with i+ j + 2 = l, and there is an s = 1,2 such that
βi+1 ∈As (αk−i,γj+1). We have by the Leibniz rule Δβ :=Δβ1···βl

=
∑l

r=1Δβr
. If Δβ ≤N ,

then certainly Δβi+1
≤N . Therefore, we crudely estimate

#{β ∈A |Δβ ≤N} ≤ (k+m−1)2P (N).

This concludes the proof of the growth bound on A as in Definition 2.2(2.2). From a

similar reasoning, it also follows that β �→ δ(β) qdim(β)−1 is square summable. �

Definition of the bijections vα,β( · ;β,β2) for G. Take β ∈ Irr(G)\A00. There are three

cases to be treated.

Case 1. Assume that there exists some i < j such that we have a decomposition as a

reduced word

β = (β1 · · ·βi)(βi+1 · · ·βj−1)(βj · · ·βl),

where 1≤ i is the smallest index for which βi is not the conjugate of αk−i+1 (and if this

does not exist, then i= 1) and j ≤ l is the largest index such that βj is not the conjugate

of γl−j+1 (and if this does not exist, then j = l). Heuristically, this means that in α⊗β⊗γ,
the letters of α can annihilate at most the first i−1 letters of β, and the letters of γ can

annihilate at most the last l− j letters of β. More precisely, we get the following. The

irreducible representations contained in α⊗β⊗γ are precisely given by representations

that have a reduced expression

β′ (βi+1 · · ·βj−1)β
′′, with β′ ⊆ α⊗ (β1 · · ·βi),β

′′ ⊆ (βj · · ·βl)⊗γ irreducible.

Furthermore, we have singleton sets

Lα,γ
β,β′(βi+1···βj−1)β′′ = {β′(βi+1 · · ·βl)} and Rα,γ

β,β′(βi+1···βj−1)β′′ = {(β1 · · ·βj−1)β
′′} .

We therefore set the bijection from Lα,γ
β,β′(βi+1···βj−1)β′′ to Rα,γ

β,β′(βi+1···βj−1)β′′ by

v (β′(βi+1 · · ·βl);β,β
′ (βi+1 · · ·βj−1)β

′′) = (β1 . . . βj−1)β
′′.

Case 2. Assume that we have a reduced expression

β = β1 · · ·βl = αk · · ·αk−i+1βi+1γj · · ·γ1, (2.7)

for some 0≤ i < k, 0≤ j <m, with i+ j+1= l. Moreover, since β �∈A00, we assume that
βi+1 �∈As

00 (αk−i,γj+1),s= 1,2.

A representation contained in α⊗β⊗γ can have two different forms, which determine

Case 2 and Case 3. In Case 2 we assume that αk−i, γj+1 and βi+1 are representations of the
same quantum group. Moreover, we assume that we have a subrepresentation of α⊗β⊗γ

of the form α1 · · ·αk−i−1β
′′
i+1γj+2 · · ·γm, where β′′

i+1 ⊆ αk−i⊗βi+1⊗ γj+1 is irreducible.

Further, β′′
i+1 is nontrivial, since β �∈ A00. So the expression α1 · · ·αk−i−1β

′′
i+1γj+2 · · ·γm
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is reduced. In this case, since we already observed that βi+1 �∈As
00 (αk−i,γj+1),s= 1,2, so

that the sets below are defined, we have

Lα,γ
β,α1···αk−i−1β′′

i+1γj+2···γm
=
{
α1 · · ·αk−i−1β

′
i+1βi+2 · · ·βl | β′

i+1 ∈ L
αk−i,γj+1

βi+1,β′′
i+1

}
,

Rα,γ
β,α1···αk−i−1β′′

i+1γj+2···γm
=
{
β1 · · ·βiβ

′
i+1γj+2 · · ·γm | β′

i+1 ∈R
αk−i,γj+1

βi+1,β′′
i+1

}
.

Since there is by assumption a bijection v
(
·;βi+1,β

′′
i+1

)
:L

αk−i,γj+1

βi+1,β′′
i+1

→R
αk−i,γj+1

βi+1,β′′
i+1

, we may

set

v(α1 · · ·αk−i−1β
′
i+1βi+2 · · ·βl;β,α1 · · ·αk−i−1β

′′
i+1γj+2 · · ·γm)

= β1 · · ·βiv(β
′
i+1;βi+1,β

′′
i+1)γj+2 · · ·γm,

for β′
i+1 ∈ L

αk−i,γj+1

βi+1,β′′
i+1

. By the previous, then, this is a bijection

v( · ;β,α1 · · ·αk−i−1β
′′
i+1γj+2 · · ·γm) :Lα,γ

β,α1···αk−i−1β′′
i+1γj+2···γm

→Rα,γ
β,α1···αk−i−1β′′

i+1γj+2···γm
.

Case 3. We still assume that β is written as equation (2.7) and treat the remaining

case. The other form that a representation contained in α⊗β⊗γ can have is a reduced

expression β′β′′ with either β′ ⊆ α⊗ (αk · · ·αk−i−1βi+1) and β′′ ⊆
(
γj · · ·γ1

)
⊗γ or β′ ⊆

α⊗ (αk · · ·αk−i−1) and β′′ ⊆
(
βi+1γj · · ·γ1

)
⊗ γ. We treat the first of these cases; the

second one can be treated similarly. In fact, both are rather close to Case 1. We get

Lα,γ
β,β′β′′ =

{
β′γj · · ·γ1

}
, Rα,γ

β,β′β′′ = {αk · · ·αk−i−1βi+1β
′′} .

Therefore we may set the bijection Lα,γ
β,β′β′′ →Rα,γ

β,β′β′′ by

v(β′γj . . . γ1;β,β
′β′′) = αk . . . αk−i−1βi+1β

′′.

Remark 2.9. Note that we have exhausted all the cases for β �∈ A00. Indeed, the only

other possible form that a β ∈ Irr(G) can have is β = β1 · · ·βl = αk · · ·αk−iγj · · ·γ1 for
suitable i,j, but those representations are in A00. It should also be noted that if β falls

into Case 1, then β �∈A.

In the following proof we need the following notation. Set V :K1⊗K2 →K3 and W :

H1⊗H2 →H3, with Ki and Hi Hilbert spaces. Then

V �W :K1⊗H1⊗H2⊗K2 →K3⊗H3

is the map that sends ξ1⊗ η1⊗ η2⊗ ξ2 to V (ξ1⊗ ξ2)⊗W (η1⊗ η2). Note that if H3 = C,

then the range space simplifies to K3⊗H3 =K3.

Proposition 2.10. Properties (2.2) and (2.2) of Definition 2.2 hold for the foregoing
choices.

Proof.We treat the three cases previously described separately. In Remark 2.9 we already

noted that for β ∈ Irr(G) as in Case 1, we have β �∈A∪A00. So in Case 1 we must prove

equations (2.3) and (2.5) only.
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Proof of equation (2.3) in Case 1. Take β ∈ Irr(G) as in Case 1, so that β �∈A∪A00.

We recall from the discussion of Case 1 that any irreducible representation contained in

α⊗β⊗γ can be written as a reduced expression of the form β′ (βi+1 · · ·βj−1)β
′′, i < j,

with β′ ⊆ α⊗β1 · · ·βi and β′′ ⊆ βj · · ·βl⊗γ irreducible. Further, we have one-point sets

Lα,γ
β,β′(βi+1···βj−1)β′′ = {β′βi+1 · · ·βl}, Rα,γ

β,β′(βi+1···βj−1)β′′ = {β1 · · ·βj−1β
′′},

and the v-bijection maps the one set to the other. We therefore conclude that

equation (2.3) equals

Δβ −Δβ′βi+1···βl
−Δβ1···βj−1β′′ +Δβ′(βi+1···βj−1)β′′

=

l∑
r=1

Δβr
−
(
Δβ′ +

l∑
r=i+1

Δβr

)
−
(
Δβ′′ +

j−1∑
r=1

Δβr

)
+

(
Δβ′ +Δβ′′ +

j−1∑
r=i+1

Δβr

)
= 0.

Proof of equation (2.5) in Case 1. To prove equation (2.5), we note that for a suitable
choice of phase factors,

V α,β
β′βi+1···βl

= V α,β1···βi

β′ ⊗ idβi+1···βl
, V

α,β1···βj−1β
′′

β′βi+1···βj−1β′′ = V α,β1···βi

β′ ⊗ idβi+1···βj−1β′′,

V β,γ
β1···βj−1β′′ = idβ1···βj−1

⊗V
βj ···βl,γ
β′′ , V

β′βi+1···βl,γ
β′βi+1···βj−1β′′ = idβ′βi+1···βj−1

⊗V
βj ···βl,γ
β′′ .

By using these identities in the first and last equations we find the following. The second

equation is elementary, since the intertwiners commute as they act on different tensor

legs. So we get

V
β′βi+1···βl,γ
β′βi+1···βj−1β′′ ◦

(
V α,β
β′βi+1···βl

⊗ idγ

)
=
(
idβ′βi+1···βj−1

⊗V
βj ···βl,γ
β′′

)
◦
(
V α,β1···βi

β′ ⊗ idβi+1···βl
⊗ idγ

)
=
(
V α,β1···βi

β′ ⊗ idβi+1···βj−1β′′

)
◦
(
idα⊗ idβ1···βj−1

⊗V
βj ···βl,γ
β′′

)
= V

α,β1···βj−1β
′′

β′βi+1···βj−1β′′ ◦
(
idα⊗V β,γ

β1···βj−1β′′

)
.

This proves that equation (2.5) is true for β in Case 1.

Proof of formulas (2.1) and (2.3) in Case 2. Now set β ∈ Irr(G) and assume that we

are in Case 2, so β �∈ A00. Take β′′ ⊆ α⊗β⊗γ, which in Case 2 is assumed to be of the
form of a reduced expression α1 · · ·αk−i−1β

′′
i+1γj+2 · · ·γm, where αk−i, βi+1 and γj+1 are

representations of the same quantum group and β′′
i+1 ⊆ αk−i⊗βi+1⊗γj+1 is irreducible,

nontrivial and not contained in As
00 (αk−i,γj+1). Take β′

i+1 ∈ L
αk−i,γj+1

βi+1,β′′
i+1

so that

β′ := α1 · · ·αk−i−1β
′
i+1βi+2 · · ·βl ∈ Lα,γ

β,α1···αk−i−1β′′
i+1γj+2···γm
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and the v-image of β′ is β1 · · ·βiv
(
β′
i+1

)
γj+2 · · ·γm. We have

Δβ −Δβ′ −Δv(β′)+Δβ′′ =

(
l∑

r=1

Δβr

)
−
(

k−i−1∑
r=1

Δαr
+Δβ′

i+1
+

l∑
r=i+2

Δβr

)

−

⎛⎝ i∑
r=1

Δβr
+Δv(β′

i+1)
+

m∑
r=j+2

Δγr

⎞⎠
+

⎛⎝k−i−1∑
r=1

Δαr
+Δβ′′

i+1
+

m∑
r=j+2

Δγr

⎞⎠
=Δβi+1

−Δβ′
i+1

−Δv(β′
i+1)

+Δβ′′
i+1

.

So since the QMSs on G1 and G2 are approximately linear, we can conclude as follows.

When βi+1 ∈As (αk−i,γj+1),s=1,2, we see that there is a constant C > 0 depending only

on αk−i and γj+1, such that∣∣∣Δβi+1
−Δβ′

i+1
−Δv(β′

i+1)
+Δβ′′

i+1

∣∣∣≤C qdim(βi+1)
−1.

So by equation (2.7) and the multiplicativity of the quantum dimension,

∣∣∣Δβi+1
−Δβ′

i+1
−Δv(β′

i+1)
+Δβ′′

i+1

∣∣∣≤ C

(
i∏

r=1

qdim(αr)

)(
m∏

r=i+2

qdim(γr)

)
qdim(β)−1.

This concludes formula (2.1). When βi+1 �∈ As (αk−i,γj+1),s = 1,2, and as we have also
assumed that βi+1 �∈As

00 (αk−i,γj+1),s= 1,2, we find∣∣∣Δβi+1
−Δβ′

i+1
−Δv(β′

i+1)
+Δβ′′

i+1

∣∣∣= 0,

and we conclude equation (2.3).

Proof of formula (2.2) in Case 2. We stay in the setting of the previous subproof

and assume that βi+1 ∈ As (αk−i,γj+1),s = 1,2. Recall that in Case 2 β′ must be of

the form α1 · · ·αk−i−1β
′
i+1βi+2 · · ·βl, with 1 �= β′

i+1 ∈ L
αk−i,γj+1

βi+1,β′′
i+1

. In that case, β1 · · ·βi =

αk · · ·αk−i+1. This gives

Δβ −Δβ′ =

(
l∑

r=1

Δβr

)
−
(

l∑
r=i+2

Δβr
+Δβ′

i+1
+

k−i+1∑
r=1

Δαr

)

=

i−1∑
r=0

Δαk−r
+Δβi+1

−Δβ′
i+1

−
k−i+1∑
r=1

Δαr
.

We therefore estimate

|Δβ −Δβ′ | ≤
∣∣∣∣∣
i−1∑
r=0

Δαk−r
−

k−i+1∑
r=1

Δαr

∣∣∣∣∣+ ∣∣∣Δβi+1
−Δβ′

i+1

∣∣∣≤ ∣∣∣∣∣
i−1∑
r=0

Δαk−r
−

k−i+1∑
r=1

Δαr

∣∣∣∣∣+C,
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for some constant C that depends only on α and γ, since both the QMSs on G1 and G2

are approximately linear. This proves that formula (2.2) holds for β ∈A in Case 2.

Proof of formulas (2.4) and (2.5) in Case 2. To prove formula (2.4) for Case 2, note

that up to a phase factor,

V α,β
α1···αk−i−1β′

i+1βi+2···βl
= V

α,β1···βi+1

α1···αk−i−1β′
i+1

⊗ idβi+2···βl
,

V
α,β1···βiv(β′

i+1)γj+2···γm

α1···αk−i−1β′′
i+1γj+2···γm

= V
α,β1···βiv(β′

i)
α1···αk−i−1β′′

i+1
⊗ idγj+2...γm

,

V β,γ

β1···βiv(β′
i+1)γj+2···γm

= idβ1···βi
⊗V

βi+1···βl,γ

v(β′
i+1)γj+2···γm

,

V
α1···αk−i−1β

′
i+1βi+2···βl,γ

α1···αk−i−1β′′
i+1γj+2···γm

= idα1···αk−i−1
⊗V

β′
i+1βi+2···βl,γ

β′′
i+1γj+2···γm

.

Write x≈D y for ‖x−y‖ ≤D. Let D = C qdim(βi+1)
−1 if β′

i+1 ∈As (αk−i,γj+1), and let
D = 0 otherwise. We find since G1 and G2 have almost commuting intertwiners that

V
α1···αk−i−1β

′
i+1βi+2···βl,γ

α1···αk−i−1β′′
i+1γj+2···γm

◦
(
V α,β
α1···αk−i−1β′

i+1βi+2···βl
⊗ idγ

)
=
(
idα1···αk−i−1

⊗V
β′
i+1βi+2···βl,γ

β′′
i+1γj+2···γm

)
◦
(
V

α,β1···βi+1

α1···αk−i−1β′
i+1

⊗ idβi+2···βl
⊗ idγ

)
=
(
idα1···αk−i−1

⊗V
β′
i+1,γj+1

β′′
i+1

�V
βi+2···βl,γ1···γj

1 ⊗ idγj+2···γm

)
◦
(
idα1···αk−i−1

⊗V
αk−i,βi+1

β′
i+1

�V
αk−i+1···αk,β1···βi

1 ⊗ idβi+2···βl
⊗ idγ

)
≈D

(
idα1···αk−i−1

⊗V
αk−i,v(β′

i+1)
β′′
i+1

�V
αk−i+1···αk,β1···βi

1 ⊗ idγj+2···γm

)
◦
(
idα⊗ idβ1···βi

⊗V
βi+1,γj+1

v(β′
i+1)

�V
βi+2···βl,γ1···γj

1 ⊗ idγj+2···γm

)
=

(
V

α,β1···βiv(β′
i+1)

α1···αk−i−1β′′
i+1

⊗ idγj+2···γm

)
◦
(
idα⊗ idβ1···βi

⊗V
βi+1···βl,γ

v(β′
i+1)γj+2···γm

)
= V

α,β1···βiv(β′
i+1)γj+2···γm

α1···αk−i−1β′′
i+1γj+2···γm

◦
(
idα⊗V β,γ

β1···βiv(β′
i+1)γj+2···γm

)
.

So formulas (2.4) and (2.5) hold in Case 2.

Proof of formulas (2.1) and (2.3) in Case 3. We shall write

β = β1 · · ·βl = αk · · ·αk−i+1βi+1γj · · ·γ1.

This case is essentially the same as Case 1 for i+1= j (so that the terms βi+1 · · ·βj−1 in

the proof of Case 1 vanish). Nevertheless, we provide full details here.

Consider the subrepresentation of α⊗β⊗γ given by the reduced word β′β′′, where β′ ⊆
α⊗ (αk · · ·αk−i+1βi+1) and β′′ ⊆

(
γj · · ·γ1

)
⊗γ. (The case where β′ ⊆ α⊗ (αk · · ·αk−i+1)

and β′′ ⊆
(
βi+1γj · · ·γ1

)
⊗γ can be treated in the same manner, or by taking adjoints.)

We recall that

Lα,γ
β,β′β′′ =

{
β′γj · · ·γ1

}
and Rα,γ

β,β′β′′ = {αk · · ·αk−i+1βi+1β
′′} .
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We write v as shorthand for the bijection between these singleton sets. We now find that

Δαk···αk−i+1βi+1γj ···γ1
−Δβ′γj ···γ1

−Δαk···αk−i+1βi+1β′′ +Δβ′β′′

=

(
Δβi+1

+

k∑
r=k−i+1

Δαr
+

j∑
r=1

Δγr

)
−
(
Δβ′ +

j∑
r=1

Δγr

)

−
(
Δβi+1

+Δβ′′ +

k∑
r=k−i+1

Δαr

)
+(Δβ′ +Δβ′′) = 0.

This proves equation (2.3) and certainly formula (2.1); in fact the expression always is 0.

Proof of formula (2.2) in Case 3. Formula (2.2) can be proved as in Case 2; we omit

the details here.

Proof of formula (2.4) and (2.5) in Case 3. For suitable phase factors for the

intertwiners, we have

V α,β
β′βi+2···βl

= V
α,β1···βi+1

β′ ⊗ idβi+2···βl
, V

α,β1···βi+1β
′′

β′β′′ = V
α,β1···βi+1

β′ ⊗ idβ′′,

V β,γ
β1···βi+1β′′ = idβ1···βi+1

⊗V
βi+2···βl,γ
β′′ , V

β′βi+2···βl,γ
β′β′′ = idβ′ ⊗V

βi+2···βl,γ
β′′ .

By using these identities in the first and last equations we find the following. The second
equation is elementary, since the intertwiners commute as they act on different tensor

legs. So we get

V
β′βi+2···βl,γ
β′β′′ ◦

(
V α,β
β′βi+2···βl

⊗ idγ

)
=
(
idβ′ ⊗V

βi+2···βl,γ
β′′

)
◦
(
V

α,β1···βi+1

β′ ⊗ idβi+2···βl
⊗ idγ

)
=
(
V

α,β1···βi+1

β′ ⊗ idβ′′

)
◦
(
idα⊗ idβ1···βi+1

⊗V
βi+2···βl,γ
β′′

)
= V

α,β1···βi+1β
′′

β′β′′ ◦
(
idα⊗V β,γ

β1···βi+1β′′

)
.

This proves that equation (2.5) and certainly formula (2.4) are true in Case 3. �

3. Approximate linearity with almost commuting intertwiners implies

immediately gradient-S2

One of the main tools introduced in [10] is the notion of a QMS being immediately

gradient Hilbert–Schmidt or immediately gradient-S2, where S2 refers to the Schatten–

von Neumann noncommutative L2-space. The aim of this section is to show that

if a QMS is approximately linear with almost commuting intertwiners, then it is
immediately gradient-S2. The immediately gradient-S2 property, together with some

additional assumptions, implies rigidity results for von Neumann algebras. The proofs

of the latter facts were given in [10] and shall not be repeated here.
We note in the following definition that since Φ is a QMS of central multipliers, the

∗-algebra Pol(G) is in the domain of the generator Δ.

Definition 3.1. Let Φ = (exp(−tΔ))t≥0 be a QMS of central multipliers on a compact

quantum group G. The QMS Φ is called immediately gradient-S2 if for every a,c∈Pol(G)
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the map

Ψa,c
t : xΩϕ �→ exp(−tΔ)(Δ(axc)−Δ(ax)c−aΔ(xc)+aΔ(x)c)Ωϕ, x ∈ Pol(G),

is bounded L2(G)→ L2(G) for t≥ 0 and moreover Hilbert–Schmidt for t > 0.

We first need the following estimate for the isotypical projections.

Proposition 3.2. Suppose that Φ is approximately linear with almost commuting

intertwiners. Let a,c ∈ Pol(G) be matrix coeffiecients of, respectively, α,γ ∈ Irr(G). Let
A00 = A00(α,γ) and the v-map be as in Definition 2.2. There exists a constant C =

C(a,c)> 0 such that for all β ∈ Irr(G)\A00,(β1,β2) ∈ Lα,γ
β , and every matrix coefficient x

of β we have

∥∥Pβ2
(Pβ1

(ax)c)−Pβ2

(
aPv(β1;β,β2)(xc)

)∥∥
2
≤ C qdim(β)−1δ(β ∈A)‖x‖2,

where v and A are as in Definition 2.2.

Proof.

In this proof we identify L∞(G)⊗Ms(C) with Ms(L∞(G)). For an element X ∈
Ms(L∞(G)) and vectors ξ,η ∈ Cs, we thus have under this correspondence 〈Xξ,η〉 =
(id⊗ωξ,η)(X) ∈ L∞(G). We shall also write m := (0, . . . ,0,1,0, . . . ,0)t,1≤m≤ s (1 at the

mth coordinate) for the orthonormal basis vectors in Cs. Let uα, uβ and uγ be some

concrete representatives for α, β and γ.
Set a= 〈uαi,j〉, c= 〈uγm,n〉 and x=

〈
uβk,l

〉
, with β ∈ Irr(G)\A00. By the Woronowicz

quantum Peter–Weyl theorem we find

‖a‖22 = qdim(α)−1
〈
Q

1
2
α i,Q

1
2
α i
〉
, ‖x‖22 = qdim(β)−1

〈
Q

1
2

β k,Q
1
2

β k
〉
,

‖c‖22 = qdim(γ)−1
〈
Q

1
2
γm,Q

1
2
γm
〉
. (3.1)

We have

Pβ2

(
aPv(β1;β2)(xc)

)
=
〈
uβ2

(
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
i⊗m⊗k,

(
V

α,v(β1;β2)
β2

)∗
×
(
1⊗V β,γ

v(β1;β2)

)∗
j⊗n⊗ l

〉
and

Pβ2
(Pβ1

(ax)c) =
〈
uβ2

(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗

i⊗m⊗k,
(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗

j⊗n⊗ l
〉
.
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For any z ∈ T, we have

Pβ2

(
aPv(β1;β2)(xc)

)
−Pβ2

(Pβ1
(ax)c)

=
〈
uβ2

((
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
−z
(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗)

i⊗m⊗k,
(
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
j⊗n⊗ l

〉
−
〈
uβ2z

(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗

i⊗m⊗k,
(
z
(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗

−
(
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗)
j⊗n⊗ l

〉
.

(3.2)
We shall estimate the last two lines. The norm of the first of these lines can be expressed

by the Peter–Weyl theorem (equation (3.1)) as

∥∥∥〈uβ2

((
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
− z
(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗)

i⊗m⊗k,

×
(
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
j⊗n⊗ l

〉∥∥∥
2

= qdim(β2)
−1
∥∥∥Q 1

2

β2

((
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
−z
(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗)

i⊗m⊗k
∥∥∥
2

×
∥∥∥(V α,v(β1;β2)

β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
j⊗n⊗ l

∥∥∥
2

≤ qdim(β2)
−1
∥∥∥((V α,v(β1;β2)

β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
−z
(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗)

Q
1
2
α i⊗Q

1
2

βm⊗Q
1
2
γ k
∥∥∥
2
.

By Definition 2.2 there exists a constant C > 0 and z0 ∈ T such that

∥∥∥〈uβ2

((
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
− z0

(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗)

i⊗m⊗k,

×
(
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗
j⊗n⊗ l

〉∥∥∥
2

≤ C qdim(β)−1 qdim(β2)
−1δ(β ∈A)

∥∥∥Q 1
2
α i⊗Q

1
2

βm⊗Q
1
2
γ k
∥∥∥
2
.

(3.3)

Similarly, the second line in equation (3.2) can be estimated with the same z0 ∈ T as

∥∥∥〈uβ2z0

(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗

i⊗m⊗k,
(
z0

(
V β1⊗γ
β2

)∗(
V α,β
β1

⊗1
)∗

−
(
V

α,v(β1;β2)
β2

)∗(
1⊗V β,γ

v(β1;β2)

)∗)
j⊗n⊗ l

〉∥∥∥
2

≤ C qdim(β)−1 qdim(β2)
−1δ(β ∈A)

∥∥∥Q 1
2
α i⊗Q

1
2

βm⊗Q
1
2
γ k
∥∥∥
2
.

(3.4)

https://doi.org/10.1017/S1474748021000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000165


2156 M. Caspers

Combining formulas (3.2), (3.3) and (3.4), we get

∥∥Pβ2

(
aPv(β1;β2)(xc)

)
−Pβ2

(
Pβ1

(ax)c
)∥∥

2
≤ 2C qdim(β)−1

× qdim(β2)
−1δ(β ∈A)

∥∥Q 1
2
α i⊗Q

1
2

βm⊗Q
1
2
γ k
∥∥
2
.

Then using equation (3.1),

∥∥Pβ2

(
aPv(β1;β2)(xc)

)
−Pβ2

(Pβ1
(ax)c)

∥∥
2

≤ 2C qdim(β)−1δ(β ∈A)
qdim(α) qdim(β) qdim(γ)

qdim(β2)
‖a‖2‖x‖2‖c‖2.

This concludes the proof, since the fraction qdim(β)
qdim(β2)

is bounded for all pairs β,β2 with

β2 ⊆ α⊗β⊗γ. �

Theorem 3.3. Suppose that Φ is approximately linear with almost commuting intertwin-

ers. Then Φ is immediately gradient-S2.

Proof. We use the same notation as in the proof of Proposition 3.2. Let a,c ∈ Pol(G) be

matrix coefficients of, respectively, α,γ ∈ Irr(G). Say that a= 〈αξ,η〉 and c= 〈γζ,ψ〉. Let
eβi , 1 ≤ i ≤ nβ , be orthogonal vectors in Hβ such that

〈
βeβi ,e

β
j

〉
is orthogonal in L2(G)

[19, Proposition 2.1]. We must show that for any t > 0,

∑
β∈Irr(G)

nβ∑
i,j=1

∥∥∥Ψa,b
t (〈βei,ej〉)

∥∥∥
2

‖〈βei,ej〉‖2
<∞. (3.5)

Let x= 〈βei,ej〉 for some fixed β ∈ Irr(G), 1≤ i≤ nβ . We start by examining the term

Ψa,b
0 (x) = Δ(axc)−Δ(ax)c−aΔ(xc)+aΔ(x)c

=
∑

(β1,β2)∈Lα,γ
β

(Δβ2
Pβ2

(Pβ1
(ax)c)−Δβ1

Pβ2
(Pβ1

(ax)c))

+
∑

(β′
1,β2)∈Rα,γ

β

(
−Δβ′

1
Pβ2

(
aPβ′

1
(xc)

)
+ΔβPβ2

(
aPβ′

1
(xc)

))
.

Now if β �∈A00, then we may write this expression as
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Ψa,b
0 (x) = Δ(axc)−Δ(ax)c−aΔ(xc)+aΔ(x)c

=
∑

(β1,β2)∈Lα,γ
β

(
Δβ2

Pβ2
(Pβ1

(ax)c)−Δβ1
Pβ2

(Pβ1
(ax)c)

−Δv(β1;β2)Pβ2

(
aPv(β1;β2)(xc)

)
+ΔβPβ2

(
aPv(β1;β2)(xc)

))
=

∑
(β1,β2)∈Lα,γ

β

(
Δβ2

−Δβ1
−Δv(β1;β2)+Δβ

)
Pβ2

(aPv(β1;β2)(xc))

+(Δβ1
−Δβ)(Pβ2

(aPv(β1;β2)(xc))−Pβ2
(Pβ1

(ax)c))

Since
∥∥Pβ2

(
aPv(β1;β2)(xc)

)∥∥
2
≤ ‖a‖‖c‖‖x‖2, we estimate

∥∥∥Ψa,b
t (x)

∥∥∥
2
≤

∑
(β1,β2)∈Lα,γ

β

exp(−tΔβ2
)
∣∣Δβ2

−Δβ1
−Δv(β1;β2)+Δβ

∣∣‖a‖‖c‖‖x‖2
+exp(−tΔβ2

) |Δβ1
−Δβ |

∥∥Pβ2
(Pβ1

(ax)c)−Pβ2

(
aPv(β1;β2)(xc)

)∥∥
2
.

(3.6)

Since the semigroup is approximately linear with almost commuting intertwiners, we see
by Proposition 3.2 that there exists a constant C > 0 depending only on a and c, such

that ∥∥Pβ2
(Pβ1

(ax)c)−Pβ2

(
aPv(β1;β2)(xc)

)∥∥
2
≤ C

1
2 qdim(β)−1δ(β ∈A)‖x‖2,

as well as ∣∣Δβ2
−Δβ1

−Δv(β1;β2)+Δβ

∣∣≤ C qdim(β)−1δ(β ∈A)

and, when β ∈A,

|Δβ1
−Δβ | ≤ C

1
2 .

Combining this with formula (3.6), and estimating exp(−tΔβ2
) ≤ C ′ exp(−tβ) for some

constant C ′ > 0 for all β,β2 in the summations, we find∥∥∥Ψa,b
t (x)

∥∥∥
2
≤ C(1+‖a‖‖c‖) qdim(β)−1δ(β ∈A)

∑
(β1,β2)∈Lα,γ

β

exp(−tΔβ2
)‖x‖2

≤ CC ′(1+‖a‖‖c‖) qdim(β)−1δ(β ∈A)
(
#Lα,γ

β

)
exp(−tΔβ)‖x‖2.

By Lemma 2.1 we have that #Lα,γ
β is bounded in β, with the bound depending only on α

and γ. We may therefore assemble terms and conclude that there exists a constant C(a,c)
depending only on a and c, such that∥∥∥Ψa,b

t (x)
∥∥∥
2
≤ C(a,c) qdim(β)−1δ(β ∈A)exp(−tΔβ)‖x‖2. (3.7)

https://doi.org/10.1017/S1474748021000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000165


2158 M. Caspers

We can now estimate term (3.5) as follows, where in the last line we use the fact that the

classical dimension is smaller than or equal to the quantum dimension:

∑
β∈Irr(G)\A00

nβ∑
i,j=1

∥∥∥Ψa,b
t (〈βei,ej〉)

∥∥∥2
2

‖〈βei,ej〉‖22
≤ C(a,c)2

∑
β∈A

nβ∑
i,j=1

qdim(β)−2 exp(−2tΔβ)

≤ C(a,c)2
∑
β∈A

qdim(β)−2n2
β exp(−2tΔβ)

≤ C(a,c)2
∑
β∈A

exp(−2tΔβ).

(3.8)

In turn, we may estimate using Definition 2.2(2.2) and get∑
β∈A

exp(−2tΔβ) =
∑
N∈N

∑
β∈A,

N<Δβ≤N+1

exp(−2tN)≤
∑
N∈N

P (N)exp(−2tN)<∞.
(3.9)

Combining formula (3.8) and (3.9), we see that for t > 0,

∑
β∈Irr(G)\A00

nβ∑
i,j=1

∥∥∥Ψa,b
t (〈βei,ej〉)

∥∥∥2
2

‖〈βei,ej〉‖22
≤

∑
β∈Irr(G)\A00

nβ∑
i,j=1

∥∥∥Ψa,b
t (〈βei,ej〉)

∥∥∥2
2

‖〈βei,ej〉‖22
+C(a,c)2

∑
N∈N

P (N)exp(−2tN)<∞.

So formula (3.5) is finite as A00 is finite.

Finally, set x ∈ Pol(G) and write xβ = Pβ(x) so that x=
∑

β∈Irr(G)xβ . By the triangle
inequality, formula (3.7) and the Cauchy–Schwarz inequality, we have

‖Ψa,c
0 (x)‖2 ≤

∥∥∥∥∥∥
∑

β∈A00

Pβ(x)

∥∥∥∥∥∥
2

+
∑
β∈A

C(a,c) qdim(β)−1 ‖Pβx‖2

≤

∥∥∥∥∥∥
∑

β∈A00

Pβ(x)

∥∥∥∥∥∥
2

+C(a,c)

⎛⎝∑
β∈A

qdim(β)−2

⎞⎠ 1
2
⎛⎝∑

β∈A

‖Pβx‖22

⎞⎠ 1
2

≤

⎛⎜⎝1+C(a,c)

⎛⎝∑
β∈A

qdim(β)−2

⎞⎠ 1
2

⎞⎟⎠
⎛⎝∥∥∥∥∥∥

∑
β∈A00

Pβ(x)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
β∈A

Pβx

∥∥∥∥∥∥
2

⎞⎠

≤
√
2

⎛⎜⎝1+C(a,c)

⎛⎝∑
β∈A

qdim(β)−2

⎞⎠ 1
2

⎞⎟⎠
∥∥∥∥∥∥
∑

β∈Irr(G)

Pβx

∥∥∥∥∥∥
2

.

This gives the boundedness of Ψa,c
0 and concludes that Φ is immediately gradient-S2 by

Definition 2.2(2.2). �
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Recall that we say that a QMS is immediately L2-compact if for every t > 0, the map
xΩϕ �→ Φt(x)Ωϕ is compact as a map on L2(G). Equivalently, the generator Δ ≥ 0 has

compact resolvent.

Theorem 3.4. Let G be a compact quantum group with the W∗CBAP with constant

Λ. Suppose that G admits a QMS that is immediately gradient-S2 and immediately L2-

compact. Then the following are true:

(1) If G is of Kac type, then L∞(G) is strongly solid.

(2) If L∞(G) is solid and Λ = 1, then L∞(G) is strongly solid.

Proof. Part (3.4) was proved in [10, Proposition 7.9] and is based on the results of [6].

For part (3.4) we see by [10, Section 3.2] (based on [17]) that there exists a closable real

derivation ∂ : Pol(G)→H∂ into an L∞(G)-L∞(G) H∂ such that Δ = ∂∗∂. Further, since
Φ is immediately L2-compact, Δ has compact resolvent. Moreover, by [10, Proposition
4.3] (see also [12, Theorem 3.9]), this bimodule H∂ can be constructed in such a way that

it is weakly contained in the coarse bimodule of L∞(G). It follows then from the main

results of [34, Corollary B] that L∞(G) is strongly solid; we note that [34, Corollary B]
is stated only for group von Neumann algebras, but it holds in this context as well (see,

e.g., [10, Appendix]). �

Combining Theorems 3.3 and 3.4, we conclude the following main results of this paper:

Corollary 3.5. Let G be a compact quantum group of Kac type with the W∗CBAP.
Suppose that G admits a QMS of central multipliers that is approximately linear with
almost commuting intertwiners and immediately L2-compact. Then L∞(G) is strongly

solid.

We also get the following corollary, which shall not be used further in this paper:

Corollary 3.6. Let G be a compact quantum group with the W∗CCAP such that L∞(G) is
solid. Suppose that G admits a QMS of central multipliers that is approximately linear with

almost commuting intertwiners and immediately L2-compact. Then L∞(G) is strongly

solid.

4. Quantum Markov semigroups and differentiable families of states

We prove that SUq(2) admits a QMS of central multipliers that is approximately linear

with almost commuting intertwiners. Parts of the proof compare to our analysis from [10].
However, we present a much more conceptual and shorter approach by making use of

generating functionals. We are indebted to Adam Skalski for showing us the argument

contained in Section 4.2.

4.1. Preliminaries on quantum SU(2)

Definition 4.1. Let Gq,q ∈ (−1,1)\{0}, be the quantum SU(2) group. It may be defined

as follows. Consider the Hilbert space �2 (N≥0)⊗ �2(Z) with natural orthonormal basis
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ei⊗fk,i ∈ N≥0,k ∈ Z. Define the operators

αei⊗fk =
√

1− q2iei−1⊗fk,

γei⊗fk = qiei⊗fk+1,

and the comultiplication determined by

ΔGq
(α) = α⊗α− qγ∗⊗γ, ΔGq

(γ) = γ⊗α+α∗⊗γ.

It was proved in [1] that Irr(Gq) = N≥0, and the fusion rules of Gq are described by

α⊗β = |α−β|⊕ |α−β|+2⊕·· ·⊕ |α+β|−2⊕|α+β|, α,β ∈ N≥0.

4.2. QMSs on quantum SU(2)

We construct a natural QMS of central multipliers on Gq – that is, quantum SU(2). The

QMS is the same as the one from [10, Section 6.1], but the approach is more conceptual.
See also [7] for related results.

Definition 4.2. A generating functional is a (linear) functional L : Pol(G)→C such that
L(1) = 0 and L(x∗) = L(x) (i.e., L is self-adjoint) and such that if we have ε(x) = 0 for

x ∈ Pol(G), then L(x∗x)≤ 0 (i.e., L is conditionally negative definite).

A state on the unital ∗-algebra Pol(G) is a map μ : Pol(G) → C such that μ(x∗x) ≥
0,x ∈ Pol(G), and μ(1) = 1. Recall that ε denotes the counit.

Proposition 4.3. Let G be a compact quantum group and let (μt)t≥0 be a family of

states on Pol(G) (not necessarily forming a convolution semigroup). Assume that for

every x ∈ Pol(G), the limit

L(x) := lim
t↘0

1

t
(ε(x)−μt(x))

exists. Then L : Pol(G)→ C is a generating functional.

Proof. Let x ∈ Pol(G) be such that ε(x) = 0. Then

μt(x
∗x)− ε(x∗x) = μt(x

∗x)− ε(x)∗ε(x) = μt(x
∗x)≥ 0.

All other properties are clear. �

Let Uα,α ∈ N, be the Chebyshev polynomials of the second kind with derivative U ′
α.

They are orthogonal polynomials satisfying U0 = 1,U1(λ) = λ and the recursion relation

λUα(λ) = Uα+1(λ)+Uα−1(λ), λ ∈ R,α ∈ N≥1.

In [21, Theorem 17] (see also [7]), it was proved that for every t ∈ [−1,1] there exists a

state μt : Pol(G)→ C characterised by

μt

(
uα
ij

)
=

(
Uα (q

t+ q−t)

Uα (q+ q−1)

)3

δi,j, α ∈ N≥0,1≤ i,j ≤ nα. (4.1)
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Proposition 4.4. There exists a generating functional L : Pol(Gq)→ C given by

(L⊗ id)uα =Δαidnα
, with Δα =

U ′
α

(
q1+ q−1

)
Uα (q+ q−1)

.

Proof. Consider the function

cα(t) :=

(
Uα (q

t+ q−t)

Uα (q+ q−1)

)3

, [−1,1].

The derivative of this function is

c′α(t) =
U ′
α (q

t+ q−t)

Uα (q+ q−1)

(
qt− q−t

)
log(q).

Proposition 4.3 and equation (4.1) show that there is a generating functional L0 :
Pol(G)→ C determined by

(L0⊗ id)(uα) = c′α(1)idnα
.

Then also L = log(q)−1(q− q−1)−1L is a generating functional and the proposition is
proved. �

Theorem 4.5. Let G = SUq(2) with q ∈ (−1,1)\{0}. There exists a QMS Φ = (Φt)t≥0

on L∞(G) determined by

(Φt⊗ id)uα = exp(−tΔα)u
α, α ∈ N≥0.

Here Δα is defined in Proposition 4.4. Moreover, Φ is approximately linear with almost

commuting intertwiners.

Proof. Let L : Pol(G) → C be the generating functional from Proposition 4.4. By [20,
Lemma 6.14] we see that

exp(−tL) :=

∞∑
k=0

1

k!
(−tL)∗k

is a convolution semigroup of states. We set

Φt = (exp(−tL)⊗ id)◦Δ, t≥ 0,

which then forms a QMS. We have, writing uα
i,j for the matrix coefficients with respect

to some orthonormal basis of Cnα ,

Φt

(
uα
ij

)
= (exp(−tL)⊗ id)

(
nα∑
k=1

uα
ik⊗uα

kj

)
= exp(−tΔα)u

α
ij .

It follows that (Φt)t≥0 is a QMS with the desired properties. �

4.3. Approximate linearity

In this section and the next, we prove that the QMS from Theorem 4.5 is approximately

linear with almost commuting intertwiners. In order to do so we fix the following notation.
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Recall that Irr(G) = N≥0. Take α,γ ∈ N≥0. Set A00 = {0,1, . . . ,max(α,γ)} and let A =

N≥0\A00. We note that A and A00 partition N≥0 and therefore we do not need to check

equations (2.3) and (2.5). Take β ∈ A. Then if β2 ⊆ α⊗β⊗ γ, we must have β2 ∈ {β−
α−γ,β−α−γ+2, . . . ,β+α+γ}. We have

Lα,γ
β,β2

= {β−α,β−α+2, . . . ,β+α},
Rα,γ

β,β2
= {β−γ,β−γ+2, . . . ,β+γ}.

We set v(β1;β,β2) = β+β2−β1.

The proof of the next proposition is the same as [10, Section 6.1 and 6.2]:

Proposition 4.6. The QMS defined in Theorem 4.5 is approximately linear.

Proof. For any m,n ∈ Z\{0}, we have

1+ q−2m

1− q−2m
− 1+ q−2n

1− q−2n
=

2
(
q−2m− q−2n

)
(1− q−2m)(1− q−2n)

=
2
(
q2n− q2m

)
(q2m−1)(q2n−1)

.

Let Nq = q+q−1, which is the quantum dimension of the fundamental representation. By
[23, Lemma 4.4], we have the explicit expression

Δα =
α√

N2
q −4

(
1+ q−2α−2

1− q−2α−2

)
+

2

(1− q2)
√
N2

q −4
. (4.2)

Therefore it follows that for β,β1 ∈ Irr(G) we have

|Δβ −Δβ1
| ≤ |β−β1|

1√
N2

q −4

1+ q−2β−2

1− q−2β−2
+

β1√
N2

q −4

∣∣∣∣1+ q−2β−2

1− q−2β−2
− 1+ q−2β1−2

1− q−2β1−2

∣∣∣∣
= |β−β1|

1√
N2

q −4

1+ q−2β−2

1− q−2β−2
+

β1√
N2

q −4

∣∣∣∣∣ 2
(
q2β+2− q2β1+2

)
(q2β+2−1)(q2β1+2−1)

∣∣∣∣∣ .

This expression can be estimated uniformly over all β,β1 ∈ N≥0 with |β− β1| ≤ α+ γ.

This yields formula (2.2). Further,
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N2

q −4 |Δβ −Δβ1
−Δβ+β2−β1

+Δβ2
|

=

∣∣∣∣β 1+ q−2β−2

1− q−2β−2
−β1

1+ q−2β1−2

1− q−2β1−2
− (β+β2−β1)

1+ q−2(β+β2−β1)−2

1− q−2(β+β2−β1)−2
+β2

1+ q−2β2−2

1− q−2β2−2

∣∣∣∣
≤ β

∣∣∣∣1+ q−2β−2

1− q−2β−2
− 1+ q−2(β+β2−β1)−2

1− q−2(β+β2−β1)−2

∣∣∣∣+β1

∣∣∣∣1+ q−2β1−2

1− q−2β1−2
− 1+ q−2(β+β2−β1)−2

1− q−2(β+β2−β1)−2

∣∣∣∣
+β2

∣∣∣∣1+ q−2β2−2

1− q−2β2−2
− 1+ q−2(β+β2−β1)−2

1− q−2(β+β2−β1)−2

∣∣∣∣
≤ β
∣∣∣q2β − q2(β+β2−β1)

∣∣∣+β1

∣∣∣q2β1 − q2(β+β2−β1)
∣∣∣+β2

∣∣∣q2β2 − q2(β+β2−β1)
∣∣∣ .

As qdim(β)≈ q−β asymptotically, we see that there exists a constant C > 0 such that for

all β,β1,β2 ∈ N≥0 with |β−β1| ≤ α+γ and |β−β2| ≤ α+γ, we have√
N2

q −4 |Δβ −Δβ1
−Δβ+β2−β1

+Δβ2
| ≤ Cβ qdim(β)−2 ≤ C qdim(β)−1.

This yields the desired estimate (2.1). �

4.4. Almost commuting intertwiners

In this section we extend the results from [46, Appendix] on almost commuting

intertwiners. In fact these results are self-improving, in the sense that the main estimates

are already proved in [46]. Here we show that they automatically imply the same results
for a larger range of representations.

The following lemma and proposition pertain to Gq,q ∈ (−1,1)\{0}. Note however that
the principle of proof of Lemma 4.7 actually works for any compact quantum group. In

the following statements we require that α+k be even or odd (and γ+ l be even). In other

words, α and k have either the same parity or different parity. This is because otherwise
the intertwiner V α,β

β+k or V α+1,β
β+k would be 0 by the fusion rules, and the statements to

come would thus be trivial.

Lemma 4.7. Set α,β ∈ N≥0 with α≤ β. Set k ∈ Z with |k| ≤ α and α+k odd. Then we
have, up to a phase factor,∑

k′=−α,−α+2,...,α

V 1,β+k′

β+k

(
id1⊗V α,β

β+k′

)(
V 1,α
α+1⊗ idβ

)∗
= V α+1,β

β+k . (4.3)

Proof. We may decompose 1⊗α⊗β =⊕δ∈N≥0
mδ · δ, where mδ denotes the multiplicity.

Each of the intertwiners V 1,β+k′

β+k

(
id1⊗V α,β

β+k′

)
intertwines 1⊗α⊗β with a copy of β+k,

and the copies are orthogonal for different k′. Moreover,∑
k′=−α,−α+2,...,α

V 1,β+k′

β+k

(
id1⊗V α,β

β+k′

)
intertwines 1⊗α⊗β with mβ+k · (β+k) – that is, it exhausts all the summands.

The the total expression on the left-hand side of equation (4.3) intertwines (α+1)⊗β

with β+ k and therefore by Schur’s lemma must be a scalar multiple of the isometry
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V α+1,β+l
β+k+l . By the first paragraph of this proof and the fact that

(
V 1,α
α+1

)∗
is an isometry

that maps α+1 into its isotypical component in 1⊗α, we find that this scalar multiple
must be in T. �

Proposition 4.8. Set α,γ ∈N≥0. There exists a constant C > 0 such that for all β ∈N≥0,

β ≥max(α,γ), and k,l ∈ Z with |k| ≤ α,|l| ≤ γ and α+k and γ+ l even, we have

inf
z∈Z

∥∥∥V β+k,γ
β+k+l

(
V α,β
β+k⊗ idγ

)
− zV α,β+l

β+k+l

(
idα⊗V β,γ

β+l

)∥∥∥≤ C qdim(β)−1. (4.4)

Proof. This lemma was proved in [46, Lemmas A.1 and A.2] for the case when α,γ = 1
and (k,l) is equal to either (1,1), (1, − 1) or (−1,1). For (k,l) = (−1, − 1), the same

conclusion can be derived, as follows. Both V β−1,γ
β−2

(
V α,β
β−1⊗ idγ

)
and V α,β−1

β−2

(
idα⊗V β,γ

β−1

)
are intertwiners from α⊗β⊗γ to β−2. But by the fusion rules, β−2 occurs at most once
in the decomposition of α⊗β⊗γ in terms of irreducibles. Therefore such an intertwiner

is unique up to a phase factor. So the left-hand side of formula (4.4) is 0. We note that

actually also in the case when (k,l) = (1,1), the left-hand side of formula (4.4) is 0 for the

analogous reason.
We now prove the general case by an induction argument. Suppose that the statement

is true for α and γ. Then we shall prove it for α+1 and γ. Consider the composition of

maps with α,β,γ,k,l as in the proposition and |k′| ≤ α such that α+k′ is even:

Aβ : 1⊗α⊗β ⊗γ
id1⊗idα⊗V β,γ

β+l−−−−−−−−→ 1⊗α⊗ (β + l)
id1⊗V α,β+l

β+k′+l−−−−−−−→ 1⊗ (β +k′ + l)
V 1,β+k′+l

β+k+l−−−−−→ β +k+ l,

Bβ : 1⊗α⊗β ⊗γ
id1⊗V α,β

β+k′ ⊗idγ

−−−−−−−−→ 1⊗ (β +k′)⊗γ
id1⊗V β+k′,γ

β+k′+1−−−−−−−→ 1⊗ (β +k′ + l)
V 1,β+k′+l

β+k+l−−−−−→ β +k+ l,

Cβ : 1⊗α⊗β ⊗γ
id1⊗V α,β

β+k′ ⊗idγ

−−−−−−−−→ 1⊗ (β +k′)⊗γ
V 1,β+k′

β+k ⊗idγ−−−−−−−→ (β +k)⊗γ
V β+k,γ

β+k+l−−−−→ β +k+ l.

By the induction hypothesis, we have

inf
z∈T

‖Aβ − zBβ‖ ≤ C qdim(β)−1 and inf
z∈T

‖Bβ − zCβ‖ ≤ C qdim(β)−1

for some constant C > 0 that depends only on α and γ. By the triangle inequality,

inf
z∈T

‖Aβ − zCβ‖ ≤ 2C qdim(β)−1.

For every β, let zβ ∈ T be the phase factor where this infimum is attained, so that

‖Aβ − zβCβ‖ ≤ 2C qdim(β)−1.

By multiplying one of the intertwiners in the expression of Cβ with zβ , we may

assume without loss of generality that zβ = 1 for all β. Now consider the following

expressions, where Dβ is obtained from Aβ by summing over all k′ and multiplying with(
V 1,α
α+1⊗ idβ ⊗ idγ

)∗
on the right. Similarly, Eβ is obtained from Cβ by summing over all
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k′ and multiplying with
(
V 1,α
α+1⊗ idβ ⊗ idγ

)∗
. We set

Dβ =
∑
k′

V 1,β+k′+l
β+k+l

(
id1⊗V α,β+l

β+k′+l

)(
id1⊗ idα⊗V β,γ

β+l

)(
V 1,α
α+1⊗ idβ ⊗ idγ

)∗
=
∑
k′

V 1,β+k′+l
β+k+l

(
id1⊗V α,β+l

β+k′+l

)(
V 1,α
α+1⊗ idβ+l

)∗(
id1⊗ idα⊗V β,γ

β+l

)
,

Eβ =
∑
k′

V β+k,γ
β+k+l

(
V 1,β+k′

β+k ⊗ idγ

)(
id1⊗V α,β

β+k′ ⊗ idγ

)(
V 1,α
α+1⊗ idβ ⊗ idγ

)∗
.

It follows from the triangle inequality that

‖Dβ −Eβ‖ ≤ CK qdim(β)−1, (4.5)

where K is the total number of summands in Dβ and Eβ , which depends only on α and

γ. But by Lemma 4.7 we have, for suitable phase factors z1,z2 ∈ T,

V α+1,β+l
β+k+l

(
idα+1⊗V β,γ

β+l

)
= z1

∑
k′

V 1,β+k′+l
β+k+l

(
id1⊗V α,β+l

β+k′+l

)(
V 1,α
α+1⊗ idβ+l

)∗(
idα+1⊗V β,γ

β+l

)
,

V β+k,γ
β+k+l

(
V α+1,β
β+k ⊗ idγ

)
= z2

∑
k′

V β+k,γ
β+k+l

(
V 1,β+k′

β+k ⊗ idγ
)(

id1⊗V α,β
β+k′ ⊗ idγ

)(
V 1,α
α+1⊗ idβ ⊗ idγ

)∗
.

So formula (4.4) is just estimate (4.5). By induction, the lemma is proved for any α∈N≥1

and γ = 1. Analogously, we can do induction on γ, and the proof follows. �

In conclusion we record the following result:

Theorem 4.9. The QMS defined in Theorem 4.5 is approximately linear with almost
commuting intertwiners.

Proof. Formulas (2.1), (2.2) and (2.4) follow from Propositions 4.4 and 4.8. Finally, by
equation (4.2) we see that formula (2.6) holds for P a linear polynomial. �

5. Applications to strong solidity: Free wreath products and easy quantum

groups

In this section we gather the consequences of our main results. For the definition of the
free wreath product we refer to [4] (and [30] for the main properties we need).

Theorem 5.1. Let G be a compact quantum group. If G carries a QMS of central

multipliers that is approximately linear with almost commuting intertwiners, then so does

the free wreath product G �∗S+
N,N ≥ 5. If the QMS on G is immediately L2-compact, then

so is the one on G �∗ S+
N .

Proof. By [30, Theorem 5.11], the free wreath product G �∗ S+
N is monoidally equivalent

to a compact quantum group H whose dual Ĥ is a quantum subgroup of ̂G∗SUq(2) for q ∈
(0,1) such that q+q−1 =

√
N . By Theorem 4.9, SUq(2) has a QMS of central multipliers

that is approximately linear with almost commuting intertwiners, which is moreover

immediately L2-compact. Now since approximate linearity with almost commuting
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intertwiners (and immediate L2-compactness) passes to free products (Theorem 2.6),

monoidal equivalence (Theorem 2.4) and dual quantum subgroups (Theorem 2.5), we are

done. �
For the definition of the almost completely positive approximation property, we refer

to [21].

Theorem 5.2. Let G be a compact quantum group of Kac type either with the almost
completely positive approximation property or such that L∞

(
G �∗ S+

N

)
has the W∗CBAP.

If G carries a QMS of central multipliers that is approximately linear with almost

commuting intertwiners and which is immediately L2-compact, then the free wreath
product G �∗ S+

N,N ≥ 5, is strongly solid.

Proof. If G is of Kac type, then so is G �∗ S+
N . It follows from [30, Theorem 6.4 and

Remark 6.6] that G �∗ S+
N has the W∗CBAP. Then we conclude by Theorem 5.1 and

Corollary 3.5. �

Remark 5.3. Theorem 5.7 gives an answer to [30, Remark 6.6]. We note that in [30,
Remark 6.6], the strong solidity statement as suggested can only hold under additional

assumptions on G like the ones in Theorem 5.7. Indeed, if there would not but such

assumptions, then we could consider for instance the case where G decomposes as a

product of two nonamenable quantum groups whose von Neumann algebras are type II1
factors with the W∗CCAP (which exist by [24]). Then L∞(G) is not strongly solid and

neither is the ambient von Neumann algebra L∞
(
G �∗ S+

N

)
.

To our knowledge the following result has not appeared explicitly in the literature

so far. We refer to [41, Theorem 5.11] for strong solidity results for a related series of

compact quantum groups, and to [2] for the hyperoctahedral series. In the proofs to follow,
the symbol � stands for an isomorphism of compact quantum groups (not necessarily

preserving the fundamental representation).

Corollary 5.4. The hyperoctahedral compact quantum groups H+
N �Z2 �∗S+

N are strongly
solid for N ≥ 5.

Proof. This follows directly from Theorem 5.2. �

Theorem 5.5. The seven series of free orthogonal easy quantum groups that were

classified in [50] under the names O+
N3

, S+
N5

, H+
N5

, B+
N4

, S′+
N5

, B′+
N4

and B#+
N4

are strongly

solid for N3 ≥ 3, N4 ≥ 4, N5 ≥ 5.

Proof. It is known that all these examples have the almost completely positive

approximation property (and hence the von Neumann algebras have the W∗CCAP) by
[21], [30, Theorem 6.4] and the remainder of this proof.

By [5, Section 5], the quantum group O+
N is monoidally equivalent to SUq(2) for N =

q+ q−1,q ∈ (0,1), and so we conclude from Theorems 2.4 and 4.5 and Corollary 3.5.
Similarly, S+

N is monoidally equivalent to SOq(3) for N = q2 +1+ q−2; this follows for

instance from [30, Theorem 5.11], together with the observation that the dual of SOq(3)

has no quantum subgroups. By [40, Section 4] and [50, Propositions 5.1 and 5.2], we have
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identifications as compact quantum groups S′+
N �S+

N ×Z2, B
+
N �O+

N−1, B
′+
N �O+

N−1×Z2

and B#+
N � O+

N−1 ∗Z2, so that our results follow from the cases of O+
N and S+

N and

Theorem 2.6. The only remaining case, H+
N , was covered in Corollary 5.4. �

Remark 5.6. The cases of O+
N , S+

N , B+
N , S′+

N , B′+
N and B#+

N in Theorem 5.5 were already

covered in [26].

We also state the following theorem for completeness, though here we do not give
applications in the non-Kac case. We refer to [10] for such examples. We mention that it

is an open problem whether a theorem of this form holds under the assumption of the

W∗CBAP only instead of the W∗CCAP.

Theorem 5.7. Let G be a compact quantum group. Suppose that L∞
(
G �∗ S+

N

)
is solid

and has the W∗CCAP. If G carries a QMS of central multipliers that is approximately

linear with almost commuting intertwiners that is immediately L2-compact, then the free

wreath product G �∗ S+
N,N ≥ 5, is strongly solid.

Proof. It follows from [30, Theorem 6.4 and Remark 6.6] and [21] that G has the

W∗CCAP. Then we conclude by Theorem 5.1 and Corollary 3.6. �

6. Noncommutative Riesz transforms and the Akemann–Ostrand property

The aim of this section is to show that the methods in this paper also show that the

von Neumann algebras we consider satisfy the Akemann–Ostrand property. The proof is

the same as [12, Section 5], but the setting presented there is too narrow for the current
setup. Essentially we need to replace the filtrations considered in [12] by more general

fusion rules. Let us first recall the definition of the Akemann–Ostrand property from [27]:

Definition 6.1. A von Neumann algebra M satisfies the Akemann–Ostrand property

(briefly called AO+) if there exists a σ-weakly dense unital C∗-subalgebra A ⊆M such
that

(1) A is locally reflexive [9, Section 9] and

(2) there exists a unital completely positive map θ :A⊗minA
op →B(L2(M)) such that

θ(a⊗ bop)−abop is compact for all a,b ∈A.

Now let G be a compact quantum group and let Φ be a QMS of central multipliers on

G with generator Δ.

Definition 6.2. We say that Φ has subexponential growth if Δ has compact resolvent

and for every α,γ ∈ Irr(G) we have

lim
β→∞

sup
β′⊆α⊗β⊗γ
β′∈Irr(G)

∣∣∣∣Δβ′

Δα
−1

∣∣∣∣= 0.

Here the limit limα→∞ cα = c is defined as saying that for every ε > 0, there exists a

compact set K ⊆ Irr(G) such that for all α ∈ Irr(G)\K we have |cα− c|< ε.
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Remark 6.3. Formula (2.2) implies that Φ has subexponential growth.

Remark 6.4. The subexponential growth condition should be compared to the amenabil-
ity results from [18] and [10, Appendix]. These results show that if the eigenvalues of Δ

grow fast, then the von Neumann algebra must be amenable. As a rule of thumb, many

semigroups on nonamenable von Neumann algebras will have subexponential growth.

The aim of this section is to state the following theorem. By Remark 6.3 it applies
to all QMSs that are approximately linear with almost commuting intertwiners and for

which the generator has compact resolvent; in particular it applies to the examples in

this paper.

Theorem 6.5. Let G be a compact quantum group of Kac type. Let Φ be a QMS of central

multipliers that is immediately gradient-S2 and has subexponential growth.1 Assume that

Cr(G) is locally reflexive. Then L∞(G) satisfies AO+.

Proof sketch. The proof is a straightforward adaptation of the arguments in [12, Section

5], with the following considerations taken into account. The idea is to consider an L∞(G)-

L∞(G)-bimodule H∇ (called the gradient bimodule or the carré du champ) together with
an isometry

S := ∂Δ− 1
2 : L2(G)→H∇

(called the Riesz transform). We refer to [12, Eqn. (5.1)] for their definitions, which make

perfect sense in the current context. By [10, Proposition 3.8 and Proposition 4.4] and the
fact that Φ is immediately gradient-S2, we see that H∇ is weakly contained in the coarse

bimodule of L∞(G). We must then prove a suitable replacement of [12, Theorem 5.12]

stating that for every x,y ∈ Pol(G) (and hence for every x,y ∈ Cr(G)), the map

Tx,y : L2(G)→H∇ : ξ �→ S(xξy)−xS(ξ)y (6.1)

is compact. Then a standard argument yields the condition AO+, for which we refer to

[12, Proposition 5.2], finishing the proof.

The most important part is thus that we must prove that [12, Theorem 5.12] still holds

in the current context, meaning that formula (6.1) is compact. In [12, Theorem 5.12] the
von Neumann algebra is assumed to be filtered, which is not the case in the setting of

Theorem 6.5. However, we can still make the following observation. For α ∈ Irr(G) we set

the space of matrix coefficients

A(α) = {(ι⊗ω)(α) | ω ∈Mnα
(C)∗} .

Then for α,β ∈ Irr(G) we have

A(α)A(β)⊆⊕γ⊆α⊗βA(γ),

which replaces the filtered condition from [12]. With this observation in mind and with

the current notion of subexponential growth (Definition 6.2), the proof of [12, Theorem

5.12] translates literally to the current setting. �

1The immediately gradient-S2 condition can be replaced by the weaker gradient coarse condition
from [10, Definition 4.1].
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Essentially, Theorem 6.5 applies to all the examples mentioned in Section 5. For
instance, we get the following result, which was already known from [26], except for

the case of H+
N :

Theorem 6.6. The seven series of free orthogonal easy quantum groups classified in [50]
under the names O+

N3
, S+

N5
, H+

N5
, B+

N4
, S′+

N5
, B′+

N4
and B#+

N4
satisfy AO+ for N3 ≥ 3,

N4 ≥ 4 and N5 ≥ 5.

Finally, it should be mentioned that strong solidity results can also be obtained through
condition AO+ using results from [27].
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