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We experimentally investigate the forced synchronization of a self-excited chaotic
thermoacoustic oscillator with two natural frequencies, f1 and f2. On increasing the
forcing amplitude, εf , at a fixed forcing frequency, ff , we find two different types
of synchronization: (i) ff /f1 = 1 : 1 or 2 : 1 chaos-destroying synchronization (CDS),
and (ii) phase synchronization of chaos (PSC). En route to 1 : 1 CDS, the system
transitions from an unforced chaotic state (CH1,2) to a forced chaotic state (CH1,2,f ),
then to a two-frequency quasiperiodic state where chaos is destroyed (T2

2,f ), and finally
to a phase-locked period-1 state (P1f ). The route to 2 : 1 CDS is similar, but the
quasiperiodic state hosts a doubled torus (2T

2
2,f ) that transforms into a phase-locked

period-2 orbit (P2f ) when CDS occurs. En route to PSC, the system transitions to
a forced chaotic state (CH1,2,f ) followed by a phase-locked chaotic state, where f1,
f2 and ff still coexist but their phase difference remains bounded. We find that the
maximum reduction in thermoacoustic amplitude occurs near the onset of CDS, and
that the critical εf required for the onset of CDS does not vary significantly with
ff . We then use two unidirectionally coupled Anishchenko–Astakhov oscillators to
phenomenologically model the experimental synchronization dynamics, including (i) the
route to 1 : 1 CDS, (ii) various phase dynamics, such as phase drifting, slipping and
locking, and (iii) the thermoacoustic amplitude variations in the ff /f1–εf plane. This study
extends the applicability of open-loop control further to a chaotic thermoacoustic system,
demonstrating (i) the feasibility of using an existing actuation strategy to weaken aperiodic
thermoacoustic oscillations, and (ii) the possibility of developing new active suppression
strategies based on both established and emerging methods of chaos control.
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1. Introduction

With increased awareness of the adverse impact caused by NOx emissions on public health
and the environment, gas turbines for power generation and aircraft propulsion are now
operated under lean premixed combustion conditions (Lieuwen 2012). However, such lean
premixed combustion systems are more susceptible to thermoacoustic instability, which
often leads to operational problems such as an unstable flame, excessive vibration, and
increased hazardous emissions (Zinn & Lieuwen 2005). If the thermoacoustic amplitude
is beyond the limit that the system can withstand, structural failure is likely to occur,
increasing the maintenance costs and shortening the life of gas turbines (Poinsot 2017).
These problems necessitate the development of appropriate control strategies.

Existing control strategies fall generally into two categories (Candel 2002; Huang
& Yang 2009): passive control and active control. In passive control, the aim is to
strengthen the damping mechanisms or weaken the driving mechanisms, without the use
of external energy. Examples include installing Helmholtz resonators (Zhao & Morgans
2009) and optimizing the combustor geometry (Aguilar & Juniper 2020). Active control
can be divided into open-loop and closed-loop forms. Closed-loop control uses sensors to
instruct actuators via a feedback controller so as to manipulate the system into a desired
state (Dowling & Morgans 2005). Although proven in various combustors (Paschereit &
Gutmark 2002; Morgans & Stow 2007; Bothien, Moeck & Paschereit 2008), closed-loop
control requires precise sensor–actuator coordination via a feedback algorithm, which
can be difficult to design for oscillations with multiple modes. By contrast, open-loop
control is a simpler and more robust alternative. Previous studies have demonstrated
the effectiveness of open-loop control in weakening period-1 thermoacoustic oscillations
(McManus, Vandsburger & Bowman 1990; Richards et al. 2007; Bellows, Hreiz &
Lieuwen 2008; Ćosić et al. 2012), but whether it can work on more complex dynamics
remains an open question.

1.1. Chaos in thermoacoustics
That question is important because recent studies have shown that thermoacoustic
oscillations can be far more complex than period-1 alone (Juniper & Sujith 2018). Such
complex thermoacoustic oscillations can contain multiple incommensurate frequencies,
broadband spectral peaks, and a time-dependent amplitude (Sujith & Unni 2021). As
a fundamental class of complex behaviour, chaos is characterized by a highly sensitive
dependence on the initial conditions and by an irregular geometry in phase space (Moon
1987; Strogatz 2018). In a chaotic system, two trajectories that are initially very close in
phase space will diverge rapidly over time, eventually following totally different paths
depending on the initial conditions (Thompson & Stewart 2002). In early work, Keanini,
Yu & Daily (1989) reported the first experimental evidence of chaotic thermoacoustic
oscillations in a ramjet and characterized the complex dynamics using phase space
reconstruction and the correlation dimension. Over the next two decades, however,
there were only a handful of reports of chaotic thermoacoustic oscillations (Sterling
1993; Fichera, Losenno & Pagano 2001; Lei & Turan 2009). Recently, more evidence
of chaos has emerged, aided by the application of dynamical systems theory to the
analysis of unsteady combustion phenomena (Juniper & Sujith 2018). For example, chaotic
oscillations have been observed in various types of self-excited thermoacoustic systems,
ranging from laminar to turbulent combustors and from premixed to diffusion flames
(Gotoda et al. 2011; Boudy et al. 2012; Kabiraj et al. 2015; Orchini, Illingworth & Juniper
2015; Guan, Murugesan & Li 2018; Guan et al. 2019d; Huhn & Magri 2020; Sun et al.
2020; Wang et al. 2021).
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Forced synchronization of a chaotic thermoacoustic system

The route to chaos is an equally important feature that can help to explain how a
chaotic attractor is born in a nonlinear dynamical system. There are three classic routes to
chaos (Anishchenko et al. 2007): the period-doubling route, the Ruelle–Takens–Newhouse
(RTN) route, and the intermittency route. Along the period-doubling route, a system
becomes chaotic through a cascade of period-doubling bifurcations (Feigenbaum 1978).
This route has been established numerically in a Rijke tube model by varying the heater
power (Subramanian et al. 2010; Huhn & Magri 2020) and in a G-equation flame model
coupled with linear acoustics by varying the flame position (Kashinath, Waugh & Juniper
2014). Along the RTN route, the system first transitions to an unstable quasiperiodic T

3

torus through three successive Hopf bifurcations, and then becomes chaotic after the T
3

torus breaks down (Newhouse, Ruelle & Takens 1978). This route has been established
both experimentally in a turbulent premixed combustor by varying the equivalence ratio
(Kabiraj et al. 2015), and numerically in a ducted premixed flame by varying the flame
position (Kashinath et al. 2014; Orchini et al. 2015). Along the intermittency route, as the
system approaches the bifurcation point, the phase trajectory diverts from its regular orbit
to a chaotic orbit, and then revisits its regular orbit after exhibiting a transient epoch of
chaos. The chaotic behaviour lasts longer in time as the system approaches the bifurcation
point. Eventually, the system transitions to sustained chaos after passing the bifurcation
point (Pomeau & Manneville 1980). This route was recently established experimentally in
a Rijke tube by varying the flame position (Guan, Gupta & Li 2020).

1.2. Forced synchronization of chaos
Forced synchronization of chaos refers to a process whereby one (or more) self-excited
chaotic oscillator(s) adjusts its motion in response to external forcing (Boccaletti et al.
2002b). In general, forced synchronization is of interest because the natural frequency
of a self-excited oscillator can be shifted to the forcing frequency (e.g. a non-resonant
frequency of the system) and the oscillator amplitude can be reduced simultaneously
(e.g. via asynchronous quenching) (Pikovsky, Rosenblum & Kurths 2003). Forced
synchronization of chaos has been observed in many prototypical chaotic systems, such
as the Rössler attractor (Rosenblum, Pikovsky & Kurths 1996), the Lorenz attractor
(Pikovsky et al. 1997a; Park, Zaks & Kurths 1999), and the Anishchenko–Astakhov
oscillator (Anishchenko et al. 1992). It has also been observed in several experimental
systems, such as plasma discharge tubes (Rosa et al. 2000, 2003; Ticos et al. 2000),
electrochemical oscillators (Kiss & Hudson 2001, 2002), and lasers (Boccaletti et al.
2002a; Lin et al. 2012). There are two main types of forced synchronization of chaos:
(i) in chaos-destroying synchronization (CDS), chaos is completely destroyed and the
phase difference between the oscillator and the forcing is a constant value; and (ii) in
phase synchronization of chaos (PSC), the oscillator frequency is locked to the forcing
frequency, and the phase difference between the oscillator and the forcing remains
bounded, exhibiting a random walk type of motion, but chaos still exists (Rosenblum et al.
1996). In the synchronous regime, the motion of the synchronized oscillator is periodic for
CDS, but chaotic for PSC. This is because the initially wildly diverging phase trajectories
of the chaotic attractor are replaced by a periodic orbit in CDS, but are confined to a
small region in PSC – because chaos still exists (Pikovsky et al. 1997a; Park et al. 1999).
In PSC, Pikovsky et al. (1997b) showed that the phase-synchronized region of a chaotic
oscillator is the overlap of all the phase-locked regions of the unstable periodic orbits
(UPOs) embedded in that chaotic attractor. In other words, PSC occurs when all the UPOs
are phase-locked to the external forcing.
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In thermoacoustics, the forced synchronization of chaos has been studied less widely
than that of periodic and quasiperiodic oscillations (Balusamy et al. 2015; Guan et al.
2019a,b; Mondal, Pawar & Sujith 2019; Sato et al. 2020; Aravind, Sankar & Lacoste
2022; Passarelli et al. 2023). For the latter, a wide range of synchronization phenomena
has been observed experimentally, including: (i) two different routes to synchronization,
one via a saddle-node bifurcation and the other via an inverse Neimark–Sacker
bifurcation; (ii) a region of 1 : 1 synchronization centred on the natural frequency
(referred to as the 1 : 1 Arnold tongue); and (iii) asynchronous quenching and resonant
amplification when the forcing frequency is far from and close to the natural frequency,
respectively. Crucially, these synchronization phenomena observed in experiments have
been reproduced phenomenologically with low-order oscillator models. Such models
are less computationally demanding than high-fidelity numerical simulations and can
be deployed flexibly as surrogate models to understand and predict complex physical
processes (Jaensch et al. 2017; Bonciolini & Noiray 2019). This approach sets the stage for
the development of quantitatively accurate models by leveraging the qualitative insights
gained from low-order phenomenological modelling. However, the forced synchronization
of chaotic thermoacoustic oscillations remains largely unexplored in both experiments and
low-order modelling. Although Kashinath, Li & Juniper (2018) have demonstrated the
stabilization of one of the UPOs of a chaotic attractor in a confined premixed flame model
using external periodic forcing at the dominant natural frequency, the synchronization
dynamics in the overall parameter space and the optimal actuation strategy remain unclear.

1.3. Chaos control
Chaos control refers to a process whereby a specific behaviour is induced in a chaotic
system by perturbing it deliberately (Boccaletti et al. 2000). Ott, Grebogi & Yorke
(1990) first proposed a chaos control strategy whereby one of the infinite number of
UPOs of a chaotic attractor is stabilized by the application of a judiciously chosen small
transient perturbation. Since its discovery, this control strategy has been demonstrated
successfully on various experimental systems, such as magnetoelastic ribbons (Ditto,
Rauseo & Spano 1990) and cardiac arrhythmias (Garfinkel et al. 1992). However, without
sufficient prior knowledge of the system properties and with incomplete measurements
of the system itself, it can be difficult to implement this control strategy in practice
(Fradkov & Evans 2005). Furthermore, the strategy is suitable only for slowly oscillating
systems because applying a judiciously chosen transient perturbation is feasible only when
the system time scales are sufficiently long (Kociuba, Heckenberg & White 2001). By
contrast, the open-loop control of chaos via the application of periodic perturbations can
be a simpler alternative: the perturbations are applied continuously, without requiring
real-time measurements of the system, thus making the control of rapidly oscillating
systems possible (Fradkov & Evans 2005). Such a chaos control strategy has found
success in a variety of theoretical and experimental systems, such as the Duffing–Holmes
oscillator (Lima & Pettini 1990), a periodically driven pendulum (Braiman & Goldhirsch
1991), a bistable magnetoelastic beam (Fronzoni, Giocondo & Pettini 1991), a CO2 laser
(Meucci et al. 1994), and discharge plasma (Ding et al. 1994). As one can see, the
forced synchronization of chaos and the open-loop control of chaos are based on similar
mechanisms: a chaotic system is forced externally and continuously such that one of its
UPOs becomes stable (Ditto & Showalter 1997; Kurths et al. 2003). This commonality
justifies our use of a forced synchronization framework to study the open-loop control of
chaotic thermoacoustic oscillations.
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1.4. Contributions of the present study
In this study, we investigate the forced synchronization of chaotic thermoacoustic
oscillations, with the aim of answering three research questions.

(i) A variety of forced synchronization dynamics has been reported in recent studies
of periodic and quasiperiodic thermoacoustic systems subjected to external forcing.
What forced synchronization dynamics does a chaotic thermoacoustic system show?

(ii) Open-loop periodic acoustic forcing is known to be able to weaken both
periodic and quasiperiodic thermoacoustic oscillations. Can it also weaken chaotic
thermoacoustic oscillations? If so, what is the optimal forcing strategy to reduce the
thermoacoustic amplitude? How does this forcing strategy differ from that used for
periodic and quasiperiodic thermoacoustic oscillations?

(iii) Can a low-order model phenomenologically reproduce the experimental
synchronization dynamics and the changes in thermoacoustic amplitude revealed
by answering the first two questions?

To answer these questions, we systematically test a wide range of forcing frequencies
and amplitudes on a prototypical combustion system (§ 2) capable of hosting self-excited
chaotic thermoacoustic oscillations, as reported by Guan et al. (2020). We measure the
acoustic pressure and heat-release-rate response of the forced system, and analyse the
data within a forced synchronization framework (§ 3). We then use a low-order model
to phenomenologically reproduce the experimentally observed dynamics, including the
changes in thermoacoustic amplitude (§ 4). Finally, we conclude this paper by discussing
the limitations and practical implications of our findings (§ 5).

2. Experimental set-up and data analysis

The experimental set-up (figure 1) used in this study is identical to that of our recent studies
on synchronization and system identification (Guan et al. 2019a,b,c; Lee et al. 2020). The
operating conditions are identical to those used by Guan et al. (2020): an equivalence ratio
of 0.44 (±3.2 %) and a bulk reactant velocity of 1.4 m s−1 (±0.2 %). Under these operating
conditions, the system exhibits period-1 limit cycles, quasiperiodicity, intermittency and
chaos, as the bifurcation parameter – the non-dimensional flame position z̃ – increases.
Here, z̃ ≡ z/L, where z is the distance from the burner exit to the bottom of the tube
combustor, and L is the length of the tube combustor itself. We choose to force the chaotic
thermoacoustic oscillator at z̃ = 0.122 (characterized in § 3 of Guan et al. 2020) because
at this position, the highly unsteady chaotic flame is not blown off easily by the applied
forcing. This facilitates the exploration of the synchronization dynamics over a wide range
of forcing frequencies (0.70 ≤ ff /f1 ≤ 1.40, 0.53 ≤ ff /f2 ≤ 1.06) and forcing amplitudes
(up to εf = 0.6). Here, f1 and f2 are the two dominant natural frequencies of the chaotic
thermoacoustic oscillator, and ff is the frequency of the sinusoidal forcing signal fed into
a loudspeaker. The forcing amplitude is defined as εf ≡ u′/ū, where u′ is the amplitude
of the velocity perturbations, and ū is the time-averaged velocity, both measured at the
burner exit with a constant-temperature hot wire. The forced response of the system is
measured in two different ways: (i) via the acoustic pressure fluctuations (p′(t)) using two
probe microphones (GRAS 40SA, ±2.5 × 10−5 Pa) mounted 43 mm (PM-1) and 387 mm
(PM-2) from the bottom of the combustor; and (ii) via the CH∗ flame chemiluminescence
emission (q′(t)) using a photomultiplier tube (Thorlabs PMM01) equipped with a bandpass
optical filter centred on 430 nm. In this study, we use only the pressure signal from PM-2
because it shows roughly the same dynamics as the signal from PM-1 but with a higher
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Figure 1. Schematic diagram of the experimental set-up, which is identical to that used in our recent studies
on synchronization and system identification (Guan et al. 2019a,b,c; Lee et al. 2020).

signal-to-noise ratio. To supplement the p′(t) and q′(t) signals, we capture time-resolved
flame images with a high-speed camera (HSC: Photron FASTCAM SA-Z) operating at
4000 Hz, with an image resolution of 256 × 512 pixels and a bit depth of 12.

The p′(t) and q′(t) signals are digitized at 16 384 Hz for 6 s using a 16-bit data converter
(DAQ: NI USB-6356). We process both signals using the same methods and parameters
as in Guan et al. (2020). Time–frequency analysis is performed via the short-time
Fourier transform, and frequency analysis is performed by computing the power spectral
density (PSD) via the Welch (1967) algorithm. We compute the instantaneous phase of a
signal using the Hilbert transform (Gabor 1946), and then determine the instantaneous
phase difference between two given signals (Li & Juniper 2013a): �ψx,y ≡ ψx − ψy
(e.g. �ψp′,q′ ≡ ψp′ − ψq′). To characterize the nonlinear dynamics, we use phase space
reconstruction, the correlation dimension, the permutation spectrum test, the 0–1 test, and
the filtered horizontal visibility graph. These techniques are described in Appendix A.

3. Experimental results and discussion

3.1. Unforced chaotic thermoacoustic oscillator
We previously established the existence of chaos in this system by analysing the p′(t)
signal (see § 3 of Guan et al. 2020). In this subsection, we supplement that evidence
by analysing the q′(t) signal as well, providing a more complete characterization of
the unforced chaotic attractor. This attractor is generated via the intermittency route
to chaos as the flame position (z̃) is varied, with the other operating parameters held
constant. One of the natural frequencies, f1, is generated via a Hopf bifurcation at z̃ =
0.034, where the system transitions from a fixed point to a limit cycle. Another natural
frequency, f2, is generated via a torus-birth bifurcation at z̃ = 0.099, where the system
transitions from the limit cycle to a two-frequency quasiperiodic (torus) attractor. After
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Figure 2. Unforced chaotic dynamics in both the p′(t) and q′(t) signals: (a) time trace, (b) spectrogram and
PSD, (c) histograms of the normalized amplitudes and of the wrapped phase difference between p′(t) and q′(t),
denoted as �ψp′,q′ . The p′(t) and q′(t) signals are shown in blue and black, respectively. Here, p̃′ ≡ p′/p′

0,rms,
where p′

0,rms is the r.m.s. of p′(t) without forcing; q̃′ is defined similarly.

passing through a type-II intermittent regime (0.105 ≤ z̃ < 0.122), the system eventually
becomes chaotic. For details about the birth of this chaotic attractor, please see Guan
et al. (2020). In figure 2, we characterize both the p′ (blue) and q′ (black) signals from
this unforced chaotic oscillator (CH1,2). Both signals are normalized by their respective
root mean square (r.m.s.) values without forcing: p̃′ ≡ p′/p′

0,rms and q̃′ ≡ q′/q′
0,rms. Both

signals feature irregular waveforms with temporal amplitude variations and occasional
high-amplitude bursts (figure 2a), which are the classic signatures of a chaotic time series.
The spectrogram and PSD show a broadband peak at f1 = 171 ± 10 Hz with a temporally
varying intensity (figures 2b i,ii), which is again indicative of a chaotic time series.
Moreover, we find two intermittent spectral peaks: f2 = 210 ± 5 Hz and f3 = 228 ± 8 Hz.
The f2 peak is narrower and weaker than the f1 peak, but both peaks often coexist in both
the p′(t) and q′(t) signals, indicating that both f1 and f2 are thermoacoustic modes. The
f3 peak emerges strongly near the f2 peak, but only in the p′(t) spectrum (not the q′(t)
spectrum), implying that f3 is a pure acoustic mode, i.e. it is not due to flame–acoustic
feedback. The emergence of this f3 mode produces a large drop in q̃′(t) (grey shading in
figure 2a). Because a chaotic oscillator cannot be replicated exactly every time owing to
its exceptional sensitivity to the initial conditions, we show in figures 2(c i–iii) histograms
of the normalized amplitudes, p′/p′

max and q′/q′
max, and of the wrapped phase difference

between p′(t) and q′(t), denoted as �ψp′,q′ . In each plot, the solid lines and surrounding
shading represent the mean and standard deviation (σ ), respectively. This is done to
highlight their statistical similarities, i.e. the base oscillator generated for each test case
can be treated as the same oscillator in this study. It can be concluded that none of the
statistical properties of the unforced chaotic oscillator show significant differences – except
for very small-scale fluctuations of order ±0.1 for both p′/p′

max and q′/q′
max. It is worth

noting that neither signal obeys a Gaussian distribution in our laminar system, which is
unlike the high-dimensional chaotic combustion noise observed by Nair & Sujith (2014)
in a turbulent system. The core of the �ψp′,q′ distribution resides in the in-phase regime
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Figure 3. Overview of the forced synchronization dynamics: (a) dynamical states, (b) 0–1 test metric K,
(c) normalized thermoacoustic amplitude ηp′ , and (d) proximity map for all the forced and unforced cases.
In (a–c), the grey background denotes flame blow-off (FBO). In (d), the colour bar denotes the cost function J.

(dark grey shading in figure 2c iii), implying that the Rayleigh criterion is met (Magri,
Juniper & Moeck 2020; Schuermans et al. 2023). Further analysis of this low-dimensional
chaotic state is presented in Appendix A via the permutation spectrum test, the 0–1 test,
the correlation dimension, and the filtered horizontal visibility graph.

3.2. Forced synchronization of a chaotic thermoacoustic oscillator
We examine the forced synchronization of the chaotic thermoacoustic oscillator from § 3.1
across a wide range of forcing frequencies (0.70 ≤ ff /f1 ≤ 1.40 and 0.53 ≤ ff /f2 ≤ 1.06)
and forcing amplitudes (0.0 ≤ εf ≤ 0.6).

3.2.1. Dynamical states
We start by presenting a map of the dynamical states in figure 3(a). The overall parameter
space can be divided into two regions based on whether CDS occurs.

In the first region (0.70 ≤ ff /f1 ≤ 1.15 and 0.53 ≤ ff /f2 ≤ 0.87), CDS occurs when εf
exceeds a critical value, with the system following two routes to synchronization. Along
the first route, unforced self-excited chaos (CH1,2, blue) → forced chaos (CH1,2,f , green)
→ single torus (T2

2,f , purple) → period-1 orbit (P1f , magenta). This route occurs in the
range 0.82 ≤ ff /f1 ≤ 1.15 (0.62 ≤ ff /f2 ≤ 0.87) and ends with ff : f1 = 1 : 1 CDS before
flame blow-off (FBO) or a transition out of the period-1 state and into a new chaotic state
(CH3,f ) at higher εf . Along the second route, unforced self-excited chaos (CH1,2, blue)
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Forced synchronization of a chaotic thermoacoustic system

→ forced chaos (CH1,2,f , green) → doubled torus (2T
2
2,f , pink) → period-2 orbit (P2f ,

dark red). This route occurs in the range 0.70 ≤ ff /f1 ≤ 0.82 (0.53 ≤ ff /f2 ≤ 0.62) and
ends with ff : f1 = 2 : 1 CDS before FBO or a transition out of the period-2 state and into
a new chaotic state (CH3,f ) at higher εf . For both routes, the new chaotic state above the
synchronization regime has a pure acoustic mode at f3 (§ 3.1) and a forced mode at ff .
Moreover, FBO occurs when εf is high (i.e. grey shading in figure 3a).

In the second region (1.15 ≤ ff /f1 ≤ 1.40 and 0.87 ≤ ff /f2 ≤ 1.06), chaos is not
destroyed by the forcing even when εf is exceedingly high (0.60), approximately nine
times greater than the average critical forcing amplitude required for CDS. However, PSC
occurs when εf exceeds a critical value. This phase-synchronized state (PSC, dark green)
is chaotic, and the phase difference no longer drifts in time but becomes bounded. The
flame is eventually blown off (FBO) by the strong forcing when εf exceeds a critical value.

3.2.2. Chaos map
In figure 3(b), we map the regions where chaotic dynamics dominates using the 0–1
test, which can be viewed as a method for extracting a binary quantity from the power
spectrum (Gottwald & Melbourne 2009). When εf is zero or small, the 0–1 test metric
K is approximately 1, indicating chaotic dynamics corresponding to the unforced base
state (CH1,2) or the states with small εf (CH1,2,f ). When εf is moderate, K falls below
0.5, indicating non-chaotic dynamics corresponding to the single and doubled torus
attractors (T2

2,f and 2T
2
2,f ). When εf reaches a critical value, K approaches 0, indicating

non-chaotic dynamics corresponding to the periodic states (P1f and P2f ) arising after
chaos is destroyed by CDS. When εf exceeds the critical value, K returns to 1 before FBO.
This indicates that the system is again dominated by chaotic dynamics, which corresponds
to the forced chaotic state (CH3,f ). In summary, the 0–1 test qualitatively delineates the
chaotic and non-chaotic regimes, which are consistent with the dynamical states mapped
out in figure 3(a). This confirms the existence of chaos in some of the forced dynamical
states.

3.2.3. Thermoacoustic amplitude
In figure 3(c), we examine the changes in thermoacoustic amplitude brought on by the
forcing. The normalized thermoacoustic amplitude is defined as ηp′ ≡ (σ ∗

p′ − σp′)/σp′ ,
where σ ∗

p′ and σp′ are the r.m.s. of p′(t) when the chaotic oscillator is forced and unforced,
respectively. Thus, the forcing weakens the thermoacoustic oscillations when ηp′ < 0
(blue) but amplifies them when ηp′ > 0 (red). We note the following features in figure 3(c):

(i) Amplitude reduction (ηp′ < 0) occurs not only when ff is an off-resonant frequency
of f1 but also when it is in the vicinity of f1. As in previous studies (Bellows et al.
2008; Ćosić et al. 2012; Guan et al. 2019a,b; Mondal et al. 2019), applying forcing
at an off-resonant frequency can induce asynchronous quenching without triggering
resonant amplification near the natural mode, thus reducing the total energy of the
oscillations. However, in this study, ηp′ is also reduced by synchronous quenching
(Odajima, Nishida & Hatta 1974), and the resonant amplification near f1 is weak.
Thus, amplitude reduction (ηp′ < 0) still occurs when ff is near f1. In § 3.4, we
will show more details about synchronous and asynchronous quenching as well as
resonant amplification.

(ii) The thermoacoustic amplitude increases gradually as εf increases after the onset of
CDS, implying that the optimal forcing amplitude for a given forcing frequency is
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that which just enables the onset of CDS. This concurs with previous studies (Guan
et al. 2019a,b; Mondal et al. 2019), where the optimal forcing amplitude was found
to be the critical (minimum) value required for the onset of synchronization.

(iii) The thermoacoustic amplitude increases markedly owing to the occurrence of
resonant amplification near the weaker thermoacoustic mode f2. This is unlike
previous studies (Guan et al. 2019a,b; Mondal et al. 2019), where resonant
amplification tends to occur near the dominant natural mode.

(iv) The critical forcing amplitude varies only slightly across different forcing
frequencies, resulting in a flat CDS boundary, rather than a characteristic ∨ shape
around the natural frequency. The latter behaviour is observed typically in the forced
synchronization of periodic and quasiperiodic systems (Guan et al. 2019a,b; Mondal
et al. 2019).

3.2.4. Proximity map
Figure 3(d) shows the proximity map for all the forced and unforced cases examined
in figures 3(a–c). This map enables these cases to be compared in terms of the control
efficacy and actuation cost. The construction algorithm is described in Appendix B.

Figure 3(d) shows that the cases with a small value of the cost function (J < 1) tend
to cluster together, whereas those with intermediate J (= 1) are more scattered but still
confined to a relatively small part of the feature space. By contrast, the cases with large
J (> 1) are more scattered, stretching over three different arcs in the feature space. This
implies that the cases with small J have similar forced responses in p′ and q′, requiring
approximately the same forcing amplitudes to achieve the same thermoacoustic amplitude
reductions even across different ff values. In other words, the control efficiency is largely
insensitive to the forcing frequency when ff /f1 ≤ 1.15, which contrasts with previous
studies where the results are strongly dependent on ff . Nevertheless, our findings are
consistent with the forced response map shown in figure 3(c), where the boundary for
thermoacoustic amplitude reduction does not change significantly across different values
of ff .

In summary, we have shown that: (i) 1 : 1 and 2 : 1 CDS occurs when ff /f1 ≤ 1.15;
(ii) PSC occurs when ff /f1 > 1.15; (iii) chaos arises again from a phase-locked limit
cycle when εf is sufficiently high; (iv) the thermoacoustic oscillations can be weakened
via asynchronous and synchronous quenching; (v) resonant amplification occurs at
approximately f2; and (vi) the control efficiency is largely insensitive to the forcing
frequency when ff /f1 ≤ 1.15, preventing the formation of a characteristic ∨-shaped
synchronization boundary. In the next subsection, we provide more details about the
system dynamics en route to CDS and beyond.

3.3. Route to chaos-destroying synchronization
We examine the forced response of the system en route to 1 : 1 and 2 : 1 CDS and PSC
as εf increases at a fixed ff /f1. Figures 4, 6 and 7 show the results from both the p′ and
q′ signals: (a) time traces of the normalized amplitudes, (b) PSDs, (c,d) phase portraits,
(e) Poincaré maps, ( f ) instantaneous phase differences (�ψp′,q′ , �ψp′,f , �ψq′,f ), and (g)
histograms of the wrapped phase differences (ζp′,q′ , ζp′,f , ζq′,f ). Each figure is for five
values of εf , beginning with εf = 0 (unforced) at the bottom row.
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Figure 4. Route to 1 : 1 CDS in a chaotic thermoacoustic oscillator forced at ff /f1 = 1.01 ( ff /f2 = 0.76):
(a) normalized time traces, (b) PSD, (c,d) phase portraits, (e) Poincaré maps, ( f ) instantaneous phase
differences (�ψp′,q′ , �ψp′,f , �ψq′,f ), and (g) histograms of the wrapped phase differences (ζp′,q′ , ζp′,f , ζq′,f ).
The forcing amplitude, listed on the far right, is εf = 0 for the bottom row (unforced) and increases to the top
row. The p′(t) data are shown in different colours based on the specific dynamical state, while the q′(t) data
are always shown in black. In ( f,g), the light and dark grey shading denote anti-phase and in-phase motion,
respectively.

3.3.1. The 1 : 1 chaos-destroying synchronization
In figure 4, we examine the route to 1 : 1 CDS at ff /f1 = 1.01 ( ff /f2 = 0.76). Sequences
of time-resolved flame images are shown in figure 5 to supplement the scalar data shown
in figure 4. As εf increases, we find that the system exhibits a wide range of forced
synchronization dynamics.

(i) When unforced (εf = 0), the system is chaotic (CH1,2) with two natural modes
( f1 and f2). In figure 2, similar chaotic behaviour was observed in both the time
and frequency domains. As forcing is not yet applied, only �ψp′,q′ and ζp′,q′ are
shown. While �ψp′,q′ drifts unboundedly in time, several in-phase synchronous
epochs appear intermittently (see the inset in figure 4 f v). Moreover, ζp′,q′ shows a
tight unimodal distribution. Put together, these observations indicate the presence of
intermittent frequency locking between p′ and q′. Unlike the intermittent frequency
locking reported by Pawar et al. (2017) and Guan et al. (2022a,b), here the
intermittent relationship occurs between two chaotic signals, with switching between
frequency-locked chaos and desynchronization. As discussed in § 3.1, the majority of
ζp′,q′ resides in the in-phase regime (dark grey shading), implying that the Rayleigh
criterion is met (Magri et al. 2020; Schuermans et al. 2023). Figure 5(e) shows a
sequence of time-resolved flame images for this unforced chaotic state (CH1,2). We
highlight in yellow text five images equispaced in time: t1, t24, t47, t70 and t93. If
the flame were oscillating periodically at its dominant frequency of f1 = 171 Hz,
then the image sequence (recorded at 4000 Hz) would repeat itself every 23 frames.
However, the flame fronts at these five time instants are seen to be quite different
from each other, ruling out periodicity. Compared with the flame fronts in periodic
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Figure 5. Sequences of time-resolved flame images for the five dynamical states shown in figure 4 (from
bottom to top): (e) CH1,2 (blue) → (d) CH1,2,f (green) → (c) T

2
2,f (purple) → (b) P1f (magenta) → (a) CH3,f

(orange). The images are captured at a frame rate of 4000 Hz. The burner lip is marked by two bronze lines
below the flame roots.

(Guan et al. 2019c) and quasiperiodic (Guan et al. 2019b) systems, the flame fronts
in this chaotic system are more asymmetric, with a clear rightward lean and a
weaker right flame root. However, the leaning direction is not always to the right;
we will show later that for CH3,f , the leaning direction can change seemingly
randomly. These asymmetries are believed to arise from spatial variations in the local
entrainment and flame anchoring characteristics around the burner lip, possibly due
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to imperfect machining. The effects of these variations are relatively minor when
the thermoacoustic oscillations are regular, but become amplified when the degree
of chaos increases. Flame roll-up wrinkles and pinch-off can also be observed, but
the modulation of the flame fronts is irregular, causing the number and curvature of
the flame wrinkles to vary from cycle to cycle.

(ii) When forced at a low amplitude (εf = 0.021), the system transitions to a forced
chaotic state (CH1,2,f ) with two natural modes ( f1 and f2) and a forced mode
( ff ). The time traces show irregular time-dependent amplitude modulations, and
the PSD plots show two broadband peaks at f1 and f2, indicating the dominance
of chaotic dynamics in both the time and frequency domains. The phase portraits
and double-sided Poincaré maps show an irregular structure, consistent with the
presence of a chaotic attractor. All three instantaneous phase differences (�ψp′,q′ ,
�ψp′,f ,�ψq′,f ) drift unboundedly in time, but with finite constant epochs appearing
simultaneously (e.g. at approximately t = 1–3 s). Meanwhile, only ζp′,q′ shows a
tight unimodal distribution, with both ζp′,f and ζq′,f showing uniform distributions.
Put together, these observations indicate that intermittent frequency locking occurs
between p′ and q′, while desynchronization occurs for the other two pairs of signals.
Figure 5(d) shows a sequence of time-resolved flame images for this forced chaotic
state (CH1,2,f ). We again highlight in yellow text five equispaced time instants: t1,
t24, t47, t70 and t93. We do not observe any regular repetition of the flame fronts,
consistent with the aperiodic nature of this state. The flame-front characteristics
of this forced chaotic state are broadly similar to those of the unforced chaotic
state examined earlier (CH1,2). This is expected as the dynamics of the q′ signal
is approximately the same for these two chaotic states.

(iii) When forced at a moderate amplitude (εf = 0.041), the system transitions to a
two-frequency quasiperiodic state (T2

2,f ) with two incommensurate modes ( f2 and
ff ). The f1 mode is suppressed by the forcing. The time traces show regular amplitude
modulations, and the PSD plots show sharp peaks at f2 and ff as well as at their
linear combinations, indicating the dominance of quasiperiodic dynamics. The phase
portraits and single-sided Poincaré maps show a doughnut-like structure and a
hollow ring pattern, respectively, indicating the presence of a torus attractor. All
three instantaneous phase differences (�ψp′,q′ ,�ψp′,f ,�ψq′,f ) drift unboundedly in
time, and their histograms (ζp′,q′ , ζp′,f , ζq′,f ) show uniform distributions, indicating
that the three pairs of signals are not synchronous. Figure 5(c) shows a sequence
of time-resolved flame images for this two-frequency quasiperiodic state (T2

2,f ). We
highlight in yellow text three equispaced time instants: t10, t33 and t56. Compared
with the markedly different flame fronts seen in the chaotic states (CH1,2 and
CH1,2,f ), here the flame fronts appear more similar from cycle to cycle, although
they are still not repetitive. This is consistent with the fact that a quasiperiodic
system evolves with a period of infinity, so it never repeats itself exactly but can
come arbitrarily close (Hilborn 2000).

(iv) When forced at a critical amplitude (εf = 0.052), the system transitions to a
phase-locked limit cycle (P1f ) with a suppression of the remaining natural mode
( f2). The time traces show periodic oscillations, and the PSD plots show only a
single sharp peak at ff , indicating the dominance of periodic dynamics in both the
time and frequency domains. The phase portraits and single-sided Poincaré maps
show a closed orbit and a distinct group of intercepts, respectively, indicating the
presence of a limit cycle in phase space. Both �ψp′,q′ and �ψp′,f are bounded in
the anti-phase regime (light grey shading), while �ψq′,f is bounded in the in-phase
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regime (dark grey shading). Put together, these observations reveal that the system
has locked into the periodic forcing, with no sign of chaos, consistent with CDS
(Pikovsky et al. 2003). We also find a significant reduction in the pressure amplitude,
demonstrating that open-loop periodic acoustic forcing can effectively weaken
chaotic thermoacoustic oscillations. Figure 5(b) shows a sequence of time-resolved
flame images for this phase-locked limit cycle (P1f ). We highlight in yellow text
three equispaced time instants: t1, t24 and t47. The flame front repeats exactly at these
three chosen time instants, providing further confirmation of limit-cycle dynamics.

(v) When forced at a high amplitude (εf = 0.098), the system transitions from P1f
to another forced chaotic state (CH3,f ) with a new dominant natural mode ( f3).
The time traces and PSD plots resemble those seen in the previous chaotic states.
However, because the f3 mode is purely acoustic, its spectral peak is present only
in the PSD of p′(t) and not in that of q′(t). Furthermore, the PSD background
level is significantly higher (35 dB Hz−1) than that of P1f . The phase portraits
and double-sided Poincaré maps show a complex object and two irregular blobs,
respectively, confirming the presence of a chaotic attractor. Although �ψp′,f drifts
relatively slowly with several anti-phase epochs, both �ψp′,q′ and �ψq′,f drift
unboundedly in time. Moreover, ζp′,f has a higher peak than both ζp′,q′ and ζq′,f . This
indicates that p′(t) and the forcing signal undergo intermittent frequency locking,
while the other two pairs of signals are asynchronous. With chaos re-emerging in
the system, the phase dynamics indicates that the chaotic attractor is intermittently
entrained by the external forcing. Figure 5(a) shows a sequence of time-resolved
flame images for this forced chaotic state (CH3,f ). We highlight in yellow text five
equispaced time instants: t1, t24, t47, t70 and t93. The flame fronts at these five instants
are quite different from each other, but are again dominated by flame leaning and
irregular roll-up wrinkles. In the example shown, we find that the leaning direction
changes seemingly randomly from right (t15 → t38) to left (t38 → t107). Unlike the
previous two chaotic flames (CH1,2 and CH1,2,f ), this chaotic flame (CH3,f ) has
a more irregular shape, with its tip stretched to a flatter plateau, as also seen by
Guan et al. (2019b). This is thought to be because the flame is near its FBO limit:
the chaotic flame front is highly unsteady and cannot withstand the strong incident
acoustic perturbations. This concurs with previous experimental findings showing
that a chaotic flame is more susceptible to FBO (Bourehla & Baillot 1998).

3.3.2. The 2 : 1 chaos-destroying synchronization
In figure 6, we examine the route to 2 : 1 CDS at ff /f1 = 0.74 ( ff /f2 = 0.56). The flame
dynamics observed along this route are similar to those presented in figure 5, so for
conciseness we do not show them again here. As εf increases, we find that the system
exhibits a wide range of forced synchronization dynamics.

(i) When unforced (εf = 0) or forced at a low amplitude (εf = 0.019), the system
behaves similarly to the chaotic cases involving 1 : 1 CDS (figure 4: CH1,2 and
CH1,2,f ).

(ii) When forced at a moderate amplitude (εf = 0.055), the system transitions to a
two-frequency quasiperiodic state with two incommensurate modes ( f2 and ff ). The
natural mode at f1 is suppressed by the forcing. However, the attractors reconstructed
from p′ and q′ are different because the dominant modes in these two signals are
different. With p′, we find a doubled torus attractor (2T

2
2,f ) because the PSD of p′

contains a second harmonic of ff , or 2ff , that is stronger than ff itself. This folds
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Figure 6. The same as for figure 4 but along the route to 2 : 1 CDS at ff /f1 = 0.74 ( ff /f2 = 0.56).

the original single torus, creating a doubled torus attractor. A similar attractor has
been observed by Kuznetsov, Feudel & Pikovsky (1998) in a quasiperiodically forced
logistic map and by Bezruchko, Kuznetsov & Seleznev (2000) in a quasiperiodically
forced electronic circuit. These researchers demonstrated how a doubled torus can
be produced by forcing a stable period-2 orbit with small-amplitude perturbations,
resulting in four smooth closed curves in the double-sided Poincaré map. With q′,
however, we find a thick loop of trajectories in phase space. A laminar premixed
flame is known to respond more strongly at low frequencies, behaving as a low-pass
filter (Ducruix, Durox & Candel 2000). In the PSD of q′, we find that the ff
mode is stronger than the 2ff mode, while the f2 mode is weak but noticeable.
These factors make the torus resemble a limit cycle, with no closed curves in the
Poincaré map. Meanwhile, �ψp′,f still drifts unboundedly in time, and ζp′,f has a
uniform distribution. However, �ψq′,f is bounded in time, and ζq′,f has a unimodal
distribution, indicating in-phase frequency locking between q′ and the forcing. This
demonstrates that p′ and q′ do not necessarily exhibit the same synchronization
dynamics under the same forcing conditions.

(iii) When forced at a critical amplitude (εf = 0.063), the system transitions to a period-2
limit cycle (P2f ) with a suppression of the natural mode at f2. This can be viewed
as an inverse of the doubled torus-birth bifurcation reported by Kuznetsov et al.
(1998) and Bezruchko et al. (2000). The time trace of p′ shows a periodic waveform
with two peaks in each cycle, and the second harmonic of ff becomes the dominant
mode in the PSD. The phase portrait shows two closed loops, and the Poincaré map
shows two discrete sets of intercepts, which are all classic features of a period-2
limit cycle. The time trace of q′ shows a periodic waveform as well, but the f2
mode no longer appears in the PSD, indicating that the smeared torus has completely
transformed into a phase-locked limit cycle. We use the 2ff mode when computing
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Figure 7. The same as for figure 4 but along the route to PSC at ff /f1 = 1.29 ( ff /f2 = 0.97).

the phase relationship between p′ and the forcing. We find that�ψp′,2f (yellow curve
in figure 6 f ) exhibits bounded oscillations, and ζp′,2f shows a broad peak in the
in-phase regime, confirming the phase-locking of p′ to 2ff . The phase relationship
between q′ and the forcing remains unchanged. As chaos is destroyed completely
by the forcing, and phase locking occurs between the system and the forcing, we
again classify this as CDS but in a 2 : 1 locking ratio. We also find that the pressure
amplitude is reduced significantly, confirming again that open-loop periodic acoustic
forcing can effectively weaken chaotic thermoacoustic oscillations.

(iv) When forced at a high amplitude (εf = 0.107) or above, the system transitions to
another chaotic state (CH3,f ) before the flame is eventually blown off, which is the
same behaviour seen en route to 1 : 1 CDS (§ 3.3.1).

3.3.3. Phase synchronization of chaos
In figure 7, we examine the route to PSC at ff /f1 = 1.29 ( ff /f2 = 0.97). Unlike the routes
to 1 : 1 CDS (§ 3.3.1) and 2 : 1 CDS (§ 3.3.2), the route to PSC does not involve the
destruction of chaos by the forcing before FBO. As εf increases, we find that the system
exhibits a wide range of forced synchronization dynamics.

(i) When unforced (εf = 0) or forced at a low amplitude (εf = 0.087), the system
behaves similarly to the chaotic cases involving 1 : 1 CDS (figure 4: CH1,2 and
CH1,2,f ) and 2 : 1 CDS (figure 6: CH1,2 and CH1,2,f ).

(ii) When forced at a moderate amplitude (εf = 0.191), the system remains in a forced
chaotic state but is intermittently frequency locked to the forcing. This is evidenced
by the phase relationship between p′ and the forcing: �ψp′,f slips intermittently by
even integer multiples of π, causing ζp′,f to exhibit a broad in-phase peak. However,
the phase relationship between q′ and the forcing indicates desynchronization, as
evidenced by the unbounded phase drifting of �ψq′,f and the uniform distribution
of ζq′,f .
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t37 t55 t73 t91

Figure 8. Sequence of time-resolved flame images for the PSC state shown in figure 7 (εf = 0.607). The
images are captured at a frame rate of 4000 Hz. The burner lip is marked by two bronze lines below the flame
roots.

(iii) When forced at a high amplitude (εf = 0.391), the system remains in a forced chaotic
state but is now phase locked to the forcing. With such strong forcing, phase diffusion
of the chaotic attractor is weakened, confining the phase trajectory to a limited space.
In the synchronization literature, this phenomenon is called PSC (Pikovsky et al.
2003). Although the attractor is still chaotic, the phase difference remains bounded
in the in-phase regime. The two scattered clusters of intercepts in the Poincaré map
move away from each other whilst shrinking, which is again consistent with PSC
(Pikovsky et al. 2003). However, no synchronization is observed between q′ and the
forcing. Although εf is relatively high, the energy injected by the periodic forcing
is limited, insufficient to simply mask the inherent chaotic motion. As figure 9(c)
will show, the energy from the forced mode is still well below the total energy of the
system. The PSC observed here is due to the external forcing imposing order in the
system, weakening the phase diffusion and entraining the natural frequency, but the
forcing is not strong enough to destroy chaos itself and bring about complete order
(Pikovsky et al. 2003).

(iv) When forced at a higher amplitude (εf = 0.607), the system remains phase
synchronized with the forcing, even though q′ and the forcing are still
desynchronized. Figure 8 shows a sequence of time-resolved flame images for this
PSC state. We highlight in yellow text twelve equispaced time instants: t1, t19,
t37, . . . , t199. The time separation is chosen to be approximately equal to 1/ff times
the camera frame rate. If the flame were dominated by periodic dynamics, then
it would show approximately similar behaviour at all the selected time instants.
Instead, we find that the flame exhibits markedly different dynamics at certain
times (e.g. t1, t9, t37), with the number and curvature of the flame roll-up wrinkles
varying temporally. During these times, the flame is slightly asymmetric with an
irregular shape. However, the flame exhibits similar dynamics at other selected times
(e.g. t163, t181, t199). During these times, the flame is symmetric with unstretched
roll-up wrinkles. These observations align well with the q′ dynamics, which feature
a prominent ff component but remain chaotic. Meanwhile, the pressure amplitude
grows above that of the unforced state, indicating the occurrence of resonant
amplification near f2. When forced at an even higher amplitude, the flame is
eventually blown off.

In this subsection, we have presented two routes to CDS and one route to PSC.
For both routes to CDS, the system transitions as follows: unforced chaos (CH1,2) →
three-frequency forced chaos (CH1,2,f ) → two-frequency quasiperiodicity (T2

2,f or 2T
2
2,f )

→ phase-locked limit cycle with chaos destroyed (P1f or P2f ) → two-frequency forced
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Figure 9. (a) Experimental evidence of synchronous quenching near f1 and resonant amplification near f1
and f2: the normalized modal power of the p′ signal as a function of the normalized forcing frequency
ff /f1 ( ff /f2). (a) The forcing amplitude is fixed at εf = 0.065, while ff is varied with a step size of 2.5 Hz.
Also shown are two representative cases: (b) asynchronous quenching at ff /f1 = 0.84 ( ff /f2 = 0.64), and
(c) resonant amplification at ff /f1 = 1.22 ( ff /f2 = 0.92). In (b,c), the normalized forcing power is defined
as (εf /εf ,CDS)

2 and (εf /εf ,PSC)
2. Here εf ,CDS and εf ,PSC are the critical forcing amplitudes required for CDS

and PSC, respectively.

chaos (CH3,f ) → FBO. Meanwhile, the periodic forcing is seen to weaken the chaotic
thermoacoustic oscillations. However, we do not observe PSC before CDS because for
ff /f1 ≤ 1.15, the intermediate regime is quite small (i.e. chaos can be destroyed easily),
with the average critical forcing amplitude required for CDS being only εf = 0.06. The
intermediate states can be observed for the following reasons. Both Afraimovich &
Schilnikov (1991) theoretically and Anishchenko, Safonova & Chua (1993) experimentally
showed that a chaotic attractor can be born via the loss of smoothness of a torus attractor.
A transition in the opposite direction can also occur, whereby a chaotic attractor can
regain its smoothness and become a torus attractor. This has been demonstrated by
Anishchenko (1995) using two unidirectionally coupled circuits, with one acting as a
source of periodic forcing and the other acting as a self-excited chaotic oscillator. Similarly,
in our system, the unforced self-excited chaotic oscillator is born from a torus attractor
via type-II intermittency (Guan et al. 2020). Under the influence of external forcing, this
chaotic attractor regains its smoothness, becoming a torus attractor. When εf reaches
a critical value, this torus attractor becomes a phase-locked limit cycle via an inverse
torus-birth bifurcation. By contrast, when ff /f1 > 1.15, owing to the significant resonant
amplification occurring at the f1 and f2 modes, the chaotic attractor does not regain its
smoothness easily, leading to PSC. As one can imagine, if the flame were not blown
off, then the observed chaos could be destroyed eventually by the forcing, resulting
in CDS.

3.4. Synchronous/asynchronous quenching and resonant amplification
Figure 9 shows the power of the two natural modes (P∗

1 and P∗
2), the forced mode (P∗

f ), and
the overall p′ signal (P∗

t ). All three are normalized by the power of the overall p′ signal
when unforced (P0). The power of each mode is extracted by integrating the PSD around
its main frequency with a bandwidth of 8 Hz. In figure 9(a), the forcing amplitude is fixed
at εf = 0.065, while ff is varied with a step size of 2.5 Hz. In figures 9(b,c), the normalized
forcing power is defined as (εf /εf ,CDS)

2 and (εf /εf ,PSC)
2. Here, εf ,CDS and εf ,PSC are the

critical forcing amplitudes required for CDS and PSC, respectively.
First, we examine the forced response of the system at a fixed forcing amplitude but

different forcing frequencies. Figure 9(a) shows that as ff /f1 increases from 0.7 to 1.4,
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P∗
t exhibits two local maxima near the two natural modes ( ff /f1 = 1 and ff /f2 = 1).

These maxima are caused by peaks in P∗
f at the same frequencies, indicating resonant

amplification of the forcing (Odajima et al. 1974). By contrast, P∗
1 stays close to 0 in

the vicinity of ff /f1 = 1 but starts to rise at higher frequencies ( ff /f1 ≥ 1.28), indicating
synchronous quenching of the natural mode at f1. However, P∗

2 does not fall to 0 in the
vicinity of ff /f2 = 1, indicating the absence of synchronous quenching of the natural mode
at f2.

Next, we examine a representative case of asynchronous quenching. Figure 9(b) shows
that as (εf /εf ,CDS)

2 increases, sequential synchronization of the two natural modes occurs
(§ 3.3): P∗

1 drops to 0 first, followed by P∗
2. Meanwhile, P∗

t first increases and then
decreases because P∗

2 rises abruptly when the forcing is just introduced. This phenomenon
is also observed for the other forcing frequencies (§ 3.3). When (εf /εf ,CDS)

2 = 1, chaos
is destroyed, inducing a transition to a phase-locked limit cycle, as per the route to CDS
(§ 3.3). Both P∗

1 and P∗
2 drop to 0, and both P∗

t and P∗
f drop to negligible values. Such a

decrease in the total power (P∗
t ) via a suppression of the natural modes (P∗

1 and P∗
2) without

resonant amplification of the forced mode (P∗
f ) is indicative of asynchronous quenching

(Minorsky 1967; Keen & Fletcher 1970; Li & Juniper 2013b; Kushwaha et al. 2022).
Finally, we examine a representative case of resonant amplification. Figure 9(c) shows

that when (εf /εf ,PSC)
2 increases, sequential synchronization of the two natural modes

does not occur. Instead, the chaotic phase trajectory is constrained in phase space by the
forcing when (εf /εf ,PSC)

2 = 1. The two natural modes (P∗
1 and P∗

2) always coexist with
the forced mode (P∗

f ) until FBO, which is consistent with the observations of PSC in
§ 3.2.3. As before, P∗

2 increases owing to the introduction of external forcing, peaking at
approximately (εf /εf ,PSC)

2 = 0.27, where P∗
t also peaks. Although P∗

1 and P∗
2 decrease

gradually as (εf /εf ,PSC)
2 increases beyond that critical point, the decrease of P∗

1 and P∗
2

is partially compensated for by the increase of P∗
f , preventing P∗

t from dropping abruptly.
Relative to the unforced state, here P∗

t is significantly higher (P∗
t = 1 →≈ 3) owing to

the forcing, which is a hallmark feature of resonant amplification (Odajima et al. 1974;
Kushwaha et al. 2022).

4. Low-order modelling

Despite its simplicity, low-order modelling has been adopted widely in thermoacoustic
analysis to reproduce, understand and control the system dynamics at relatively low
computational costs (Laurent et al. 2019; Weng et al. 2020; Bonciolini et al. 2021;
Fournier et al. 2021; Faure-Beaulieu et al. 2021; Guan et al. 2021; Doranehgard,
Gupta & Li 2022; Liao et al. 2024). With a variety of chaos models available, the
ability to adequately capture the synchronization dynamics exhibited by our experimental
thermoacoustic system is not guaranteed by any arbitrary chaos model. After evaluating
numerous candidates, we settled on two unidirectionally coupled Anishchenko–Astakhov
(AA) oscillators as our low-order model. This model is distinct from the Van der Pol
oscillator-based models used in our previous studies on the forced synchronization of
periodic and quasiperiodic thermoacoustic oscillations (Guan et al. 2019a,b). Our choice
of the AA model stems from its ability to capture a reverse transition from chaos to order
seen in our experiments (§ 3): Anishchenko (1995) demonstrated that a chaotic attractor
subjected to external periodic forcing can regain its smoothness by transforming first to a
torus and then to a limit cycle. Our choice of the AA model is therefore validated by the
analogies between it and our experimental system.
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4.1. Model definition
The AA model is defined as in Anishchenko (1995):

ẋ1 = (m1 − z1)x1 + y1,
ẏ1 = −x1,
ż1 = g( f (x1)− z1),

f (x) =
{

x2, x ≥ 0,
0, x < 0,

ẋ2/λ = (m2 − z2)x2 + y2
− Af (x2 − 3x1)+ Af (y2 − 3λy1),

ẏ2/λ = −x2,
ż2/λ = g( f (x2)− z2),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where x1, y1, z1, x2, y2 and z2 are the dynamical variables, m is the excitation coefficient,
g is an inertial factor, λ ≡ ωf /ωn is the frequency detuning parameter, and Af is the
forcing strength. One AA oscillator acts as the external forcing (i.e. the master oscillator),
while the other acts as a self-excited oscillator subjected to that forcing (i.e. the slave
oscillator). In general, an AA oscillator can become chaotic when either m or g increases.
We tune m1 to 0.6 to generate periodic forcing, and m2 to 1.1 to create a chaotic base
oscillator while keeping g fixed at 0.55. We choose g to satisfy two requirements: (i) one
oscillator is periodic while the other is chaotic; and (ii) the amplitude reduction trends
are qualitatively similar to those observed experimentally. In our simulations, we use the
dynamical variable x2 as the system indicator because the other two dynamical variables
(y2 and z2) behave similarly to x2. For conciseness, we use x to represent x2 from here
onwards.

4.2. Comparison with experiments
Figures 10(a,b) compare the synchronization maps of ηp′ from the experiments and ηx′
from the model, respectively. Here, ηx′ is defined analogously to ηp′ but for x′(t) = x′

2(t).
As before, the response amplitude is weakened by the forcing when ηp′ < 0 (blue regions)
but is amplified by the forcing when ηp′ > 0 (red regions). Overlaid on the colour maps
of ηp′ and ηx′ are lines indicating the minimum forcing amplitude required for 1 : 1 CDS
(black solid line) and 2 : 1 CDS (black dotted line). The experimental map (figure 10a)
is only partially filled with data because of FBO (grey regions), whereas the modelling
map (figure 10b) has no such restrictions and can therefore offer predictive insight into the
synchronization behaviour exhibited potentially by the thermoacoustic system had it not
suffered FBO.

We find that the model can phenomenologically reproduce many of the characteristic
synchronization features observed in the experiments, including: (i) the emergence of
a forced chaotic state and a two-frequency quasiperiodic state as the forcing amplitude
increases at either an off-resonant frequency or a natural frequency, as shown in
figure 10(d) as unforced chaos (Af = 0) → forced chaos (Af = 0.048) → two-frequency
quasiperiodicity (Af = 0.080) → periodicity with chaos destruction (Af = 0.100); (ii)
a wide range of phase dynamics, including phase drifting, slipping and locking; (iii) a
reduction of the forced response amplitude near the onset of CDS when ωf < 1.1; and (iv)
an increase of the forced response amplitude when ωf ≥ 1.1. There are, however, several
synchronization features from the experiments that cannot be reproduced by the model,
including: (i) 2 : 1 CDS; (ii) the re-emergence of chaos when the forcing amplitude is high
(CH3,f ); and (iii) the flat synchronization boundary.

5. Conclusions

In this experimental study, we have investigated the forced synchronization of a chaotic
thermoacoustic oscillator, with a focus on the effectiveness of using open-loop periodic
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Figure 10. Synchronization map and the route to 1 : 1 CDS at a chosen forcing frequency ( ff /f1 = ωf /ωn =
0.92): (a,c) experiments and (b,d) low-order modelling. In (a,b), the colour maps indicate the normalized
response amplitude (ηp′ , ηx′ ), the black solid/dotted lines indicate the CDS boundary, and the grey background
indicates FBO.

acoustic forcing to weaken its self-excited oscillations. We considered a prototypical
combustion system containing a laminar premixed flame oscillating chaotically around
two natural frequencies, f1 and f2. Our answers to the three research questions raised in
§ 1.4 can be summarized as follows.

(i) We have identified two different types of synchronization: (1) chaos-destroying
synchronization (CDS) when ff /f1 ≤ 1.15 ( ff /f2 ≤ 0.87), and (2) phase
synchronization of chaos (PSC) when ff /f1 > 1.15 ( ff /f2 > 0.87). As εf increases
en route to CDS, the system exhibits a variety of dynamical states before FBO:
(a) a forced chaotic state, CH1,2,f , where the two self-excited natural modes, f1
and f2, coexist with the forced mode, ff ; (b) a two-frequency quasiperiodic state,
T

2
2,f , where the f1 mode is suppressed and chaos is destroyed, leaving behind two

incommensurate modes, f2 and ff ; (c) a phase-locked limit-cycle state, P1f , where
the f2 mode is suppressed and the system is synchronized with the periodic forcing,
leaving only ff in the response; and (d) a forced chaotic state, CH3,f , where the forced
mode coexists with a pure acoustic mode, f3. When ff /f1 ≤ 0.82 ( ff /f2 ≤ 0.62), we
found 2 : 1 CDS rather than 1 : 1 CDS. For 2 : 1 CDS, instead of exhibiting a single
torus (T2

2,f ) after chaos is destroyed, the system exhibits a doubled torus (2T
2
2,f ) and

thus a period-2 limit cycle (P2f ) when synchronization occurs at higher εf . As εf
increases en route to PSC, the system shows two different dynamical states before
FBO: (a) a forced chaotic state, CH1,2,f , where the two natural modes, f1 and f2,
coexist with the forced mode, ff ; and (b) a phase-locked chaotic state (PSC), where
f1, f2 and ff all coexist but the originally diffusive phase is entrained to be bounded.
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(ii) We have provided experimental evidence showing that periodic acoustic forcing
is effective in controlling chaotic thermoacoustic oscillations. In particular, we
showed that the two dominant natural modes can be synchronized to the forcing
at a critical forcing amplitude and that the thermoacoustic amplitude can be reduced
simultaneously to an exceedingly low level (ηp′ = −0.88). The optimal control
strategy is to apply forcing at a frequency away from f2 and at an amplitude to just
cause CDS, as this produces the largest reduction in thermoacoustic amplitude. This
amplitude reduction occurs via either asynchronous quenching at an off-resonant
frequency of f1 or synchronous quenching near f1 itself. The resonant amplification
near f1 is weak, limiting changes in the forced response across different forcing
frequencies when ff /f1 ≤ 1.15. Meanwhile, ff should not be set close to f2 to avoid
resonant amplification. Guided by our previous studies of the open-loop control of
period-1 and two-frequency quasiperiodic thermoacoustic oscillations (Guan et al.
2019a,b), we have now successfully extended the use of periodic acoustic forcing to
control chaotic thermoacoustic oscillations, further generalizing this simple control
strategy.

(iii) We have demonstrated that a low-order temporal model, based on two
unidirectionally coupled Anishchenko–Astakhov oscillators, can phenomeno-
logically reproduce many of the characteristic synchronization features observed
in the experiments, including (1) the emergence of a forced chaotic state and of
a two-frequency quasiperiodic state as the forcing amplitude increases at either an
off-resonant frequency or a natural frequency; (2) a wide range of phase dynamics,
including phase drifting, slipping and locking; (3) a reduction in the forced response
amplitude near the onset of CDS when ωf < 1.1; and (4) an increase in the forced
response amplitude when ωf ≥ 1.1.

The implications of this study are twofold. First, together with our previous studies
(Guan et al. 2019a,b), we have shown that open-loop periodic acoustic forcing is a versatile
control strategy that can effectively weaken both periodic and aperiodic thermoacoustic
oscillations. This implies that one can exploit existing open-loop actuation devices
designed originally to control periodic thermoacoustic oscillations, and use them to
control aperiodic thermoacoustic oscillations without incurring significant modifications.
This would save on development costs, capitalizing on the simplicity and robustness of
open-loop control devices. Second, it is well known that the open-loop control of chaos
using continuous external forcing was developed and tested originally in various other
dynamical systems (Lima & Pettini 1990; Braiman & Goldhirsch 1991; Fronzoni et al.
1991; Ding et al. 1994; Meucci et al. 1994). Here, we have shown for the first time that this
control strategy is also effective when applied to a chaotic thermoacoustic system. This
opens up new possibilities for the use of existing and emerging chaos control strategies to
weaken chaotic thermoacoustic oscillations in various self-excited combustion systems.
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Figure 11. Evidence of low-dimensional deterministic chaos in the p′(t) and q′(t) signals: (a–d) the
permutation spectrum and its standard deviation; (e, f ) the translation components from the 0–1 test; (g,h) the
correlation sum as a function of the normalized hypersphere radius; and (i, j) the mean degree of the filtered
horizontal visibility graph as a function of the noise-filter amplitude. The p′(t) and q′(t) signals are shown in
blue and black, respectively.

Appendix A. Characterization of chaos

To characterize the chaos in the unforced thermoacoustic oscillator, we apply to p′(t) and
q′(t) the same tools as in Guan et al. (2020): phase space reconstruction, the correlation
dimension, the permutation spectrum test, the 0–1 test, and the filtered horizontal visibility
graph. These tools are described below, and the results are shown in figure 11.

A.1. Phase space reconstruction
Phase space reconstruction can help in visualizing the evolution of a nonlinear dynamical
system. It is often performed using the time-delay embedding theorem of Takens
(1981), which states that a one-dimensional scalar time series observation is sufficient
to preserve the dynamical properties of the original multi-dimensional attractor. In
this study, a pressure time series p′

i (i = 1, 2, . . . ,N) is used to reconstruct the phase
space. The corresponding d-dimensional time-delayed embedded vector is P′

i(d) =
[p′

i, p′
i−τ , p′

i−2τ , . . . , p′
(i−(d−1)τ )], where the index i = (d − 1)τ + 1, . . . ,N refers to the

ith reconstruction of the state vector (Kantz & Schreiber 2004). The optimal time delay
τ and the embedding dimension d are determined using the first local minimum of the
average mutual information function (Fraser & Swinney 1986) and Cao’s method (Cao
1997), respectively. A similar process is applied to the heat-release-rate time series q′

i
(i = 1, 2, . . . ,N) to reconstruct its phase space. Except when computing the correlation
dimension, we reconstruct the phase space using τ = 1.2 ms and d = 3 for p′(t) and
q′(t) signals lasting 4 s each. The features of the reconstructed phase space of our
thermoacoustic system are discussed in § 3.2.
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A.2. Correlation dimension
The correlation dimension is a topological metric for characterizing the dimensionality
of an attractor (Kantz & Schreiber 2004). An attractor is a limit cycle if its correlation
dimension is 1, a two-frequency quasiperiodic torus if its correlation dimension is 2, and a
strange attractor if its correlation dimension is a non-integer number. We use the algorithm
proposed by Grassberger & Procaccia (1983) to estimate the correlation dimension of the
attractors reconstructed from p′

i and q′
i. For a given embedded time series {P′

i(d)}N−(d−1)τ
i=1 ,

the correlation sum is found via

CN(d,R) =
2

N∑
i=1

N∑
j=i+1

Θ
[
R −

∥∥∥P′
i(d)− P′

j(d)
∥∥∥]

N(N − 1)
, (A1)

where Θ is the Heaviside function:

Θ =

⎧⎪⎪⎨
⎪⎪⎩

1, for R −
∥∥∥P′

i(d)− P′
j(d)

∥∥∥ > 0,

0, for R −
∥∥∥P′

i(d)− P′
j(d)

∥∥∥ ≤ 0.
(A2)

Here, CN(d,R) is expected to follow a power-law scaling in the self-similar regime:

Dc(d,R) = ∂ log(CN(d,R))
∂ log(R)

. (A3)

The average local slope, Dc = Dc(d,R), is taken to be the correlation dimension of an
attractor. When evaluating Dc, one should avoid scales where R/Rmax is too small or too
large, because stochastic noise tends to dominate at small scales, while the finite size of the
attractor destroys any self-similarity at large scales (Kantz & Schreiber 2004). In this study,
we compute Dc using τ = 1.2 ms and d = 10, 12, 14 for p′(t) and q′(t) signals lasting 2 s
each. For the unforced chaotic state (§ 3.1, CH1,2), we find that the correlation dimension
converges to an average of Dc = 3.6 for p′(t), and Dc = 3.2 for q′(t) (figures 11g,h). Such
small non-integer values of Dc indicate the existence of strange attractors associated with
low-dimensional chaos.

A.3. Permutation spectrum test
The permutation spectrum test, as proposed by Kulp & Zunino (2014) based on the
same symbolization scheme as the permutation entropy (Bandt & Pompe 2002), is a
computationally efficient method of distinguishing between regular, stochastic and chaotic
dynamics. Instead of characterizing the dynamics of a time series by calculating the
Shannon entropy of the relative frequency of each ordinal pattern (as the permutation
entropy does), the permutation spectrum characterizes the dynamics of a time series by
evaluating the standard deviation for each ordinal pattern. The procedure is as follows.

(i) Divide the original embedded time series into shorter disjointed embedded
segments: {P′

1(d),P′
2(d), . . . ,P′

w(d)} ∈ {P′
i(d)}N−(d−1)τ

i=1 .
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(ii) Build permutations following the same symbolization scheme as the permutation
entropy (Bandt & Pompe 2002):

⎧⎪⎪⎨
⎪⎪⎩

n1(π1), n1(π2), . . . , n1(πd!)
n2(π1), n2(π2), . . . , n2(πd!)

...

nw(π1), nw(π2), . . . , nw(πd!)

⎫⎪⎪⎬
⎪⎪⎭
. (A4)

(iii) Evaluate the standard deviation of counts for each ordinal pattern:

ξk =
√√√√ 1

w − 1

w∑
w=1

|nw(πk)− μk|, (A5)

where k = 1, 2, . . . , d!, and μk is the mean of n1,2,...,w(πk).

Permutation spectra without any variations (zero standard deviation) indicate periodic
data, those with some variations but several consistent forbidden patterns indicate chaotic
data, and those with no forbidden patterns indicate stochastic data (Kulp & Zunino 2014).
In this study, we compute ξk using τ = 1.2 ms and d = 4 for 20 different subsets of the
p′(t) and q′(t) signals lasting 2 s each. The ordinal patterns are defined following the
convention of Parlitz et al. (2012). For the unforced chaotic state (§ 3.1, CH1,2), we find
that the p′(t) and q′(t) signals give non-overlapping permutation spectra (figures 11a,b)
and several zero-valued points of the standard deviation ξ (i.e. forbidden patterns, circled
in yellow in figures 11c,d). This indicates the presence of deterministic chaos in both p′(t)
and q′(t).

A.4. The 0–1 test
Gottwald & Melbourne (2004) proposed a binary test to distinguish between regular and
chaotic dynamics in deterministic systems. A system is dominated by chaotic dynamics
when the test metric is K = 1, but it is dominated by regular dynamics when K = 0. For a
given pressure time series (p′

i with i = 1, . . . ,N), its translation variables are defined as

mc(n) =
n∑

i=1

p′
i cos(ic), nc(n) =

n∑
i=1

p′
i sin(ic), (A6a,b)

where c ∈ (0,π), and n = 1, 2, . . . ,N. The mean square displacement Mc(n) of the two
translation variables is defined as

Mc(n) = lim
N→∞

1
N

N∑
j=1

[mc( j + n)− mc( j)]2 + [nc( j + n)− nc( j)]2, (A7)

where n � N and, in practice, n � ncut = N/10. This chaos detection test is based on the
growth rate of Mc(n) as a function of n, so a modified mean square displacement αc(n) is
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used to gain better convergence with the same asymptotic growth rate:

αc(n) = Mc(n)− Vosc(c, n), (A8)

where

Vosc(c, n) = [E(p′)]2 1 − cos(nc)
1 − cos c

(A9)

and

E(p′) = lim
N→∞

1
N

N∑
i=1

p′
i. (A10)

Finally, the asymptotic growth rate K is found by computing the correlation coefficient of
the vectors χ = [1, 2, . . . , ncut] and φ = [αc(1), αc(2), . . . , αc(ncut)]:

K = corr(χ ,φ). (A11)

In this study, we compute K for p′(t) and q′(t) signals lasting 6 s each. For the unforced
chaotic state (§ 3.1, CH1,2), we find that the translation variables (mc, nc) execute
Brownian-like motion (figures 11e, f ), indicating the presence of deterministic chaos in
both p′(t) and q′(t). As figure 3(b) shows, the test metric is K ≈ 1 for the base oscillator,
further confirming the presence of chaos.

A.5. Filtered horizontal visibility graph
The filtered horizontal visibility graph (f-HVG), proposed by Nuñez et al. (2012) based on
the original HVG (Luque et al. 2009), is a proven tool for distinguishing between noisy
periodic, chaotic and stochastic dynamics. The HVG offers a means of transforming a
time series into a network structure via graph theory. Given a pressure time series p′

i with
i = 1, 2, . . . ,N, the HVG algorithm assigns each element of the time series to a network
node. Thus, a series of N elements would map to an HVG of N nodes, with the amplitude
of each element being the stem length of the node. Two nodes, p′

i and p′
j, are considered

linked if a straight line can be drawn between the tips of their stems without intersecting
any intermediate stems: p′

i, p′
j > p′

n, for all n such that i < n < j. In the f-HVG, this rule is
changed to p′

i, p′
j > p′

n + famp, for all n such that i < n < j, where famp is the amplitude of a
noise filter. By incorporating this filter amplitude in the algorithm, one finds that the mean
degree k̄ of a noisy periodic signal will converge to a value such that T = 1/(2 − k̄/2),
where T is the period of the time series. By contrast, k̄ of a chaotic signal will not converge
until the filter amplitude is very large. For the unforced chaotic state (§ 3.1, CH1,2), we find
that k̄ has yet to converge to 2 (figures 11i, j), despite the noise-filter amplitude being at a
high enough value ( famp = 0.05) where k̄ of a limit-cycle attractor would have converged
(see figure 3 of Guan et al. 2020). Such an absence of convergence in k̄ further supports
the existence of chaotic dynamics (Nuñez et al. 2012).

Appendix B. Proximity map

The proximity map is used to compare the control efficiency across different
forcing conditions (Duriez, Brunton & Noack 2017). In this study, we use classic
multi-dimensional scaling (Seber 2009) to construct a proximity map in terms of the
pressure response, heat-release-rate response and forcing signal. The procedure is as
follows.
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(i) Define the dissimilarity matrix as Di,j ≡
√
(p̃′

i,rms − p̃′
j,rms)

2 +
√
(q̃′

i,rms − q̃′
j,rms)

2 +√
(εf ,i − εf ,j)2, where p̃′

i,rms and q̃′
i,rms are the r.m.s. of the p′(t) and q′(t) signals,

respectively, normalized by their unforced values, p′
0,rms and q′

0,rms, with i and j
denoting any two chosen cases.

(ii) Map the pairwise distance between every two cases, Di,j, into a feature space
where the feature coordinates (γi) satisfy min(

∑n
i=1

∑n
j=1 (‖γi − γj‖ − Di,j)

2), with
n being the total number of cases. For all the unforced chaotic states studied here,
Di,j = 0 because we find no statistically significant differences between them.

(iii) Draw each case with a new feature coordinate (γi, γj) in the feature space to construct
the proximity map.

We define the cost function as J ≡ p′
i,rms/p

′
0,rms + βεf , where β is a penalization factor

used to balance the weighting between (i) the control effects in terms of the thermoacoustic
amplitude, and (ii) the actuation cost in terms of the forcing amplitude. This enables the
control efficiency to be compared quantitatively across different forcing conditions. We
use β = 1 because we regard the state cost (thermoacoustic amplitude) and the input cost
(actuator voltage) as being equally important. Therefore, J could possibly be infinitely
close, but not equal, to 0 when complete oscillation suppression is achieved with an
infinitesimal amount of actuation energy.
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