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ABSTRACT

Let K be a (non-archimedean) local field and let F' be the function field of a curve over
K. Let D be a central simple algebra over F' of period n and A € F*. We show that if n
is coprime to the characteristic of the residue field of K and D - ()\) = 0 in H3(F, u%?),
then A is a reduced norm from D. This leads to a Hasse principle for the group SL;(D),
namely, an element A\ € F* is a reduced norm from D if and only if it is a reduced norm
locally at all discrete valuations of F.

1. Introduction

Let K be a p-adic field and F' a function field in one variable over K. Let Qg be the set of all
discrete valuations of F'. Let G be a semi-simple simply connected linear algebraic group defined
over F. It was conjectured in [CPS12] that the Hasse principle holds for principal homogeneous
spaces under G over F' with respect to Qp; i.e. if X is a principal homogeneous space under G
over F' with X (F,) # @ for all v € Qp, then X (F) # @. If G is SL;(D), where D is a central
simple algebra over F' of square-free index n, it follows from the injectivity of the Rost invariant
[MS90] and a Hasse principle for H3(F, u®?) due to Kato [Kat86] that this conjecture holds.
This conjecture has been settled for classical groups of type By, C),, and D,, [Hul4, Prel3]. It is
also settled for groups of type ?A,, with the assumption that n + 1 is square-free [Hul4, Prel3].

The main aim of this paper is to prove that the conjecture holds for SL; (D) for any central
simple algebra D over F' with period coprime to p. In fact we prove the following theorem
(cf. Theorem 11.1).

THEOREM 1.1. Let K be a local field and F' a function field in one variable over K. Let D be
a central simple algebra over F' of period coprime to the characteristic of the residue field of K
and A\ € F*. If D - (\) =0 € H3(F, u®?), then X is a reduced norm from D.

This, together with Kato’s result on the Hasse principle for H?(F, u$?), gives the following
theorem (cf. Corollary 11.2).

THEOREM 1.2. Let K be a local field and F a function field in one variable over K. Let Q) be
the set of discrete valuations of I'. Let D be a central simple algebra over I’ of period n coprime
to the characteristic of the residue field of K and X\ € F*. If )\ is a reduced norm from D ® F,,
for all v € Qp, then A is a reduced norm from D.
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LOCAL-GLOBAL PRINCIPLE

In fact we may restrict the set of discrete valuations to the set of divisorial discrete valuations
of F'; namely, those discrete valuations of I’ centered on a regular proper model of F' over the
ring of integers in K.

Here are the main steps in the proof. We reduce to the case where D is a division algebra
of period ¢ with ¢ a prime not equal to p. Given a central division algebra D over F of period
n = ¢4 with £ # p and A\ € F* with D - (\) = 0 € H*(F, u®?), we construct an extension L of
F of degree ¢, and p € L* such that Ny p(u) = A, (D® L) - (u) = 0 and the index of D ® L is
strictly smaller than the index of D. Then, by induction on the index of D, p is a reduced norm
from D ® L and hence N, p(i) = A is a reduced norm from D.

Let 2 be a regular proper two-dimensional scheme over the ring of integers in K with
function field F' and X the reduced special fiber of Z". By the patching techniques of Harbater,
Hartmann and Krashen [HH10, HHKO09], construction of such a pair (L, u) is reduced to the
construction of compatible pairs (L., p,) over F, for all x € Xy (7.5), where for any z € Xy, F),
is the field of fractions of the completion of the regular local ring at x on 2Z". We use local and
global class field theory to construct such local pairs (L, i1;). Our proof does not immediately
extend to the more general situation where F' is a function field in one variable over a complete
discretely valued field with arbitrary residue field.

Here is a brief description of the organization of the paper. In §3 we prove a few technical
results concerning central simple algebras and reduced norms over global fields. These results
are key to the later patching construction of the fields L, and p, € L, with required properties.

In §4 we prove the following local variant of Theorem 1.1.

THEOREM 1.3. Let F' be a complete discrete valued field with residue field k. Suppose that k is
a local field or a global field. Suppose further that if k is a global field, then either n is odd or
k has no real places. Let D be a central simple algebra over F of period n. Suppose that n is
coprime to char(k). Let o € H?(F, ju,,) be the class of D and A € F*. If a.- (\) = 0 € H3(F, u%?),
then A is a reduced norm from D.

Let A be a complete regular local ring of dimension 2 with residue field « finite, field of
fractions F' and maximal ideal m = (m,0). Let ¢ be a prime not equal to char(x). Let D be
a central simple algebra over F of period ¢* with n > 1 and « the class of D in H?(F, ).
Suppose that D is unramified on A, except possibly at m and §. In §5 we analyze the structure
of D. We prove that the index of D is equal to the period of D. A similar analysis is done by
Saltman [Sal97] with the additional assumption that F' contains all the primitive ¢"th roots of
unity, where ¢" is the period of D. Let A € F*. Suppose that A = un"é' for some unit u € A
and r,s € Z and - (\) =0 € H3(F, u$?). In §6 we construct possible pairs (L, ) with L/F of
degree {, i € L such that Nz p(u) = A, ind(D ® L) < ind(D) and « - (1) = 0 € H3(L, u?).

Let K be a local field and F' a function field of a curve over K. Let £ be a prime not equal to
the characteristic of the residue field of K, D a central division algebra over F' of period ¢ and
o the class of D in H?(F, jyn). Let A € F* with o~ (\) = 0 € H3(F, u53?). Let 2" be a normal
proper model of F' over the ring of integers in K and Xj its reduced special fiber. In §7 we
reduce the construction of (L, u) to the construction of local (L, u,) for all x € Xy with some
compatible conditions along the ‘branches’.

Further, assume that 2 is regular and ram 4 (a)) Usupp 4-(A) U Xy is a union of regular curves
with normal crossings. In § 8, we group the components of Xy into eight types depending on the
valuation of A, the index of D and the ramification type of D along those components. We call
some nodal points of X as special points depending on the type of components passing through
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the point. We also say that two components of Xy are type 2 connected if there is a sequence
of curves of type 2 connecting these two components. We prove that there is a regular proper
model of F' with no special points and no type 2 connection between certain types of components
(Proposition 8.6).

Starting with a model constructed in Proposition 8.6, in §9 we construct (Lp,up) for all
nodal points of Xy (Proposition 9.8) with the required properties. In § 10, using the class field
results of §3, we construct (L, ui,) for each of the components n of Xy which are compatible
with (Lp,pup) when P is in the component 7.

Finally, in § 11, we prove the main results by piecing together all the constructions of §§7, 9
and 10.

2. Preliminaries

In this section we recall a few definitions and facts about Brauer groups, Galois cohomology
groups, residue homomorphisms and unramified Galois cohomology groups. We refer the reader
to [Col95] and [GS06].

Let K be a field and n > 1. Let ,Br(K) be the n-torsion subgroup of the Brauer group
Br(K). Assume that n is coprime to the characteristic of K. Let u, be the group of nth roots
of unity. For d > 1 and m > 0, let H(K, ™) denote the dth Galois cohomology group of K
with values in u®™. We have HY (K, i) ~ K*/K*™ and H?(K, y,) ~ »,Br(K). For a € K*, let
(a), € HY(K, up,) denote the image of the class of @ in K*/K*". When there is no ambiguity
of n, we drop n and denote (a), by (a). If K is a product of finitely many fields K;, we denote
[THY (K, ui™) by HYE, pi™).

Let K, be a separable closure of K. Then H'(K,Z/nZ) = Homeon (Gal(Ks/K), Z/nZ). Let
X : Gal(Ks/K) — Z/nZ be a continuous homomorphism and E the fixed field of ker(x). Then
E/K is a cyclic extension of degree equal to the order of the image of x. Hence the degree of E
divides n. Let 0 € Gal(K,/K) with x(¢0) =n/[E : K] modulo nZ. Then y is uniquely determined
by the pair (E, ). Thus every element of H'(K,Z/nZ) is uniquely represented by a pair (E, o),
where E/K is a cyclic extension of degree ¢ dividing n and o a generator of Gal(E/K). Let
r > 1. Then (E,0)" € HY(K,Z/nZ) is represented by the pair (E’,o’), where E’ is the fixed
field of the subgroup of Gal(E/K) generated by o'/, where d = ged(t,r), and o’ = "', where
rr’ +tt’ = d. In particular, if r is coprime to n, then (F,0)" = (FE, a’”/) with 7/ = 1 modulo ¢. Let
(E,0) € HY(K,Z/nZ) and x : Gal(Ks/K) — Z/nZ be the associated homomorphism. Let L/K
be a field extension. Then we have the restriction homomorphism Gal(Ls/L) — Gal(Ks/K). Let
X1z be the composition of x with this restriction. Let Er /L be the fixed field of ker(xz) and o,
be the corresponding generator of Gal(Er/L). Then (Ep,or) is the image of (E, o) under the
restriction map H'(K,Z/nZ) — H'(L,Z/n7Z). Further, E ®x L ~[[ EL.

Let (E,0) € HY(K,Z/nZ) and X\ € K*. Let (E,0,)\) = (E/K,0,)) denote the cyclic algebra
over K,

(B,o,A\)=E®Ey®---®Ey" 1,

with y™ = X and ya = o(a)y. The cyclic algebra (E, 0, \) is a central simple algebra and its index is

the order of A in K*/Ng /i (E*) [Alb61, Theorem 18, p. 98]. The pair (£, o) represents an element

in HY(K,Z/nZ) and the element (E, o) - (\) € H*(K, i) is represented by the central simple

algebra (E, 0, A). In particular, (E, 0, \) ® E is a matrix algebra and hence ind(E, 0, \) < [E : K].
For A\, u € K* we have [Alb61, p. 97]

(E,0,\) + (E,o,p) = (E,0,\p) € H*(K, pi,).
In particular, (E,0, A7) = —(E, 0, \).
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Let (E, 0, \) be a cyclic algebra over a field K and L/K be a field extension. Then (E, 0, \)®L
is Brauer equivalent to (Fr,or,A). In particular, if L is a finite extension of K and EL is the
composite of E and L in an algebraic closure of K, then FL/L is cyclic with Galois group
isomorphic to a subgroup of the Galois group of E/K and (F,o0,\) ® L is Brauer equivalent to
(EL,or,\).

By an abuse of notation, when the role of ¢ is not important or is clear from the context, we
denote (E,0,\) by (E,\).

LEMMA 2.1. Let E/K be a cyclic extension of degree n, o a generator of Gal(E/K) and \ € K*.
Let m be a factor of n and d = n/m. Let M /K be the subextension of E/K with [M : K] =m
Then (E,\) @ K(V\) = (M(VX), V).

Proof. We have (E,0)? = (M,0) € H'(K,Z/nZ) and hence
(BN

= (E(A), (VN7
= ({ECV/N)}, (V)
= (MEN), V). O

(E,\) @ K(VA) = (EVX),\)

LEMMA 2.2. Let K be a complete discretely valued field and ¢ a prime. Let L/ K be a cyclic field
extension or the split extension of degree £ and y € L*. Then there exists 6 € L with Ny /i (0) =1
such that L = K(uf) and 0 is sufficiently close to 1.

Proof. Since [L : K] is a prime, if p ¢ K, then L = K(u). In this case # = 1 has the required
properties.

Suppose that u € K. If L = [[ K, let 6y € K*\{#1} be sufficiently close to 1 and = (6o, 6, *,
1,...,1). Suppose that L is a field. Let o be a generator of Gal(L/K). Suppose that char(K) # ¢
contains a primitive th root of unity. Since L/K is cyclic, we have L = K(/a) for some a € K*.
For any sufficiently large n, § = (1 4+ 7"a) o (1 + m"/a) € L has the required properties.

Suppose that char(K) = ¢ or K contains no primitive ¢th root of unity. Since L/K is
separable, we have L = K(«a) for some « € L*. Let § = (14 o(n"«))/(1 + n"). Then 6 # 1
and Ny (0) = 1. Suppose that § € K. Then 6t = Np/k(0) =1 and hence § = 1, leading to a
contradiction. Hence 6 ¢ K. Therefore for sufficiently large n, # has the required properties. O

LEMMA 2.3. Let K be a field and E/K be a finite extension of degree coprime to char(K). Let
L/K be a subextension of E/K and e = [E : L]. Suppose L/K is Galois and E = L(y/m) for
some m € L*. Then E/K is Galois if and only if E contains a primitive eth root of unity and,
for every T € Gal(L/K), 7(mw) € E*°.

Proof. Suppose that E/K is Galois. Let f(X) = X¢—7 € L[X]. Since [E : L] = e and E = L(/n),
f(X) is irreducible in L[X]. Since f(X) has one root in F and E/L is Galois, f(X) has all the
roots in E. Hence E contains a primitive eth root of unity. Let 7 € Gal(L/K). Then 7 can be
extended to an automorphism 7 of E. We have 7(7) = 7(7) = (7(¢/7))¢ € E*°.

Conversely, suppose that F contains a primitive eth root of unity and 7(7) € E*¢ for every

7 € Gal(L/K). Let
gx)= I & =)

reGal(L/K)
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Then g(X) € K[X] and ¢g(X) splits completely in E. Since e is coprime to char(K), the splitting
field Ey of g(X) over K is Galois. Since L/K is Galois and E is the composite of L and Ejp,
FE/K is Galois. O

The following lemma is well known.

LEMMA 2.4. Let K be a complete discretely valued field with residue field k and m € K a
parameter. Let e be a natural number coprime to the characteristic of k. If L/K is a totally
ramified extension of degree e, then L = K (y/vr) for some v € K which is a unit in the valuation
ring of K. Further, if e is a power of a prime ¢, § € K*, § ¢ +K*' and —0 is a norm from L,
then L = K(v/9).

Proof. Since K is a complete discretely valued field, there is a unique extension of the valuation
v on K to a valuation vz on L. Since L/K is totally ramified extension of degree e and e is
coprime to char(k), the residue field of L is k and v (7) = e. Let m, € L with v (7)) = 1. Then
7 = wrn§, for some w € L with vp(w) = 0. Since the residue field of L is same as the residue field
of K, there exists v € K with v(v) = 0 and the image of v~! is the same as the image of w in the
residue field k. Since L is complete and e is coprime to char(k), by Hensel’s lemma, there exists

u € L such that w = v~ 'u®. Thus 7 = wny =v 1ue7rL = v~ !(ury)¢. In particular, vr € L*¢ and

hence L = K (/o).

Suppose that § € K*, § ¢ £K* and —# is a norm from L. Let p € L with Npg(p) = —0.
Since L = K (y/vr) with v € K a unit in the valuation ring of K and m € K a parameter, /vm € L
is a parameter at the valuation of L. Write p = wq(¢/vm)® for some wy € L a unit at the valuation
of L and s € Z. As above, we have wg = viu{ for some v; € K and u; € L. Since v; € K, we
have

—0 = NL/K(M) = NL/K(@UO(W)S)
= Npk(viu§(vor)?)
= VPN (ur)*(=1) D (om)?
= a(=1)*(v)?,
where a = v1 Ny /g (u1)(—1)%. Hence § = (1) (vr)® € K*/K*¢. Since 0 ¢ +K* and e is
power of £, s is coprime to £. In particular, (—1)*T! € K¢ and hence K(vV0) = K(/(vn)$ ) =

K(yvr) = L. O
Throughout this paper by a local field we mean a non-archimedean local field.

LEMMA 2.5. Let k be a local field and ¢ a prime not equal to the characteristic of the residue
field of k. Let Lo/k be an extension of degree ¢ and 0y € k*. If Oy & +k* and —0y is a norm from

Lo, then Lo = k(%)

Proof. Suppose that Lo/k is ramified. Since 6y ¢ +k*¢, by Lemma 2.4, Ly = k(/8y).

Suppose that Ly/k is unramified. Let m be a parameter in k and write 6y = un” with u a
unit in the valuation ring of k. Since 6y is a norm from Lg, ¢ divides r and k(/8y) = k(/u) is an
unramified extension of k of degree £. Since k is a local field, there is only one unramified field

extension of k of degree ¢ and hence Lo = k(/0y). |

LEMMA 2.6. Suppose K is a complete discretely valued field with residue field x a local field.
Let ¢ be a prime not equal to the characteristic of the residue field of k. Let L/K be a field
extension of degree { and § € K*. If ¢ +K** and —0 is a norm from L, then L ~ K(v/6).
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Proof. If LK is a ramified extension, then by Lemma 2.4, L ~ K (v/f). Suppose that L/K is an
unramified extension. Since —@ is a norm from L/K, the valuation of 6 is divisible by ¢. Thus,
without loss of generality, we assume that 6 has valuation zero. Let Ly be the residue field of
L and 6 be the image of # in . Then Lg/k is a field extension of degree £ and —@ is a norm
from Lg. Since 6 ¢ +K**, 6 ¢ £x°. Since & is a local field, Lo ~ /1(\[75) (Lemma 2.5) and hence
L~ K{8). m

For L = Hﬁ K, let o be the automorphism of L given by o(aq,...,a;) = (az,...,as,a1). Set
Gal(L/K) ={0"|0<i<{—1}. Then any 0%, 1 <i < £— 1, is called a generator of Gal(L/K).

LEmMA 2.7. Let K be a field and ¢ a prime not equal to the characteristic of K. Let L be a
cyclic extension of K or the split extension of degree £ and o a generator of the Galois group of
L/K. Suppose that there exists an integer t > 1 such that K does not contain a primitive £‘th
root of unity. Let p € L with Np x(pu) =1 and m > t. If p € L**™ | then there exists b € L*
such that = b=""o(b'™").

Proof. Suppose L = [[K and p € L** for some s > 1 with Np/g(p) = 1. Then p =
(07,...,05) € L with 64 ---05 = 1. Without loss of generality we assume that o is given
by o(ai,...,a¢) = (ag,...,a¢,a1). Let b = (1,b1,...,bp—1) € L*, where b; = 601 ---6;. Then
p="0b""a(d").

Suppose L/K is a cyclic field extension. Write u = ,uﬁzm for some g € L. Let 1 = p§" . Then
p=pt". Let Oy = Np/k(po) and 61 = N g (p1). Then 6 = 65" . Since Npk(p) =1, we have
07" = NL/K(u{m) =1.1If #; # 1, then K contains a primitive £"'th root of unity. Since m > t and
K has no primitive ¢‘th root of unity, #; = 1. Hence Ny, /k(p1) = 1 and by Hilbert’s Theorem
90, 1 = b~'o(b) for some b € L. Thus pu = pf" = b= o(b""). O

We end this section with the following well-known fact.

LEMMA 2.8. Let k be a local field and ¢ a prime not equal to char(k). If 0 € k*, then there exist
a field extension L/k of degree { and y € L* such that Ny (1) = 6.

Proof. Let v be the discrete valuation on k and 6 € k*. Without loss of generality we assume
that 0 < v(#) < £. Suppose v(#) > 0. Let L = k(y/—0) and yp = —v/—0 € L. Then Ny, (1) = 6.
Suppose v(f) = 0. Then let L/k be the unramified extension of degree ¢. Then 6 is a norm from
L (cf. [Ser79, p. 82, Proposition 3 and Remark 1]). O

3. Global fields

In this section we prove a few technical results concerning Brauer groups of global fields and
reduced norms. We begin with the following lemma.

LEMMA 3.1. Let k be a global field, ¢ a prime not equal to char(k), n,d > 2 and r > 1 be integers.
Let Ey be a cyclic extension of k, og a generator of the Galois group of Ey/k and 6y € k*. Let
B € H?(k,upm) be such that rf3 = (Egy,00,00) € H?(k, ). Let S be a finite set of places of
k containing all the places of k with 8 ® k, # 0. For each v € S, let L, /k, be a cyclic field
extension of degree £ or L, be the split extension of k, of degree ¢ and p, € L. Suppose that:

(1) Np,/n, () = bo;
(2) ’I“B ® L, = (EO ® Ly,00® 17#1/);
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(3) ind(8 ® Ey® Ly) < d;

(4) k contains a primitive (th root of unity.

Then there exist a field extension Lo /k of degree ¢ and py € Ly such that:

1) Niy/k(po) = 0o

rf® Lo = (Ey ® Lo, 00 ® 1, po);
ind(ﬁ ® Fy® Lo) < d;
Lo®k,~L, forallv e S;

1o is close to p,, for allv € S.

Proof. Let € be the set of all places of k and
S"=SU{v e Q| b isnot a unit at v or Ey/k is ramified at v}.

Let v € S’\S. Then 8 ® k, = 0. Since k contains a primitive ¢th root of unity, there exists
a cyclic field extension L, of k, of degree ¢ such that 6y € N(L}) (cf. the proof of Lemma 2.8).
Let p, € L, with Np s (1) = 6o. Since f ® k, = 0, ind(8 ® Ep ® L,) = 1 < d. Since
the corestriction map cor : H2(Ly, pen) — H?(ky, ue) is injective (cf. [Lor08, Theorem 10,
p. 237]) and cor(Ey® L,,00 @ 1, ) = (Eg @ ky,00®1,6p) =Rk, =0, (Ey® Ly,00® 1, )
=0 =718 ® L,. Thus, if necessary, by enlarging S, we assume that S contains all those places
v of k with either 6y not a unit at v or Ey/k ramified at v and that there is at least one v € S
such that L, is a field extension of k, of degree /.

Let v € S. By Lemma 2.2, there exists 0, € L, such that Ny, (0,) =1, L, =k, (0,p,) and
0, is sufficiently close to 1. In particular, 6, € Lﬁn and hence rf® L, =(Ey® Ly,,00® 1, i1,)
= (Ey®Ly,00®1, p,0,). Thus, replacing u, by u,0,, we assume that L, = k,(u,). Let f,(X) =
Xt 4+ bg_Ll,XZ_l +o b, X + (—1)%0y € k,[X] be the minimal polynomial of u, over k,.

By Chebotarev’s density theorem [FJ08, Theorem 6.3.1], there exists vy € € \S such that
Eo ®ky, is the split extension of k,,. By the strong approximation theorem [CF67, p. 67], choose
bj € k, 1< j <{—1,such that each b; is sufficiently close to b;, for all v € S and each b; is an
integer at all v ¢ SU {1} Let Lo = k[X]/(X* + b1 X+ + 01X + (—1)%p) and po € Lo
be the image of X. We now show that Ly and g have the required properties.

Since each b; is sufficiently close to b;, at each v € S, it follows from Krasner’s lemma
that there exists an isomorphism Lo ® k, ~ L, with the image of po® 1 in L, close to u, for all
v e S (cf. [Ser79, ch. II, § 2]). Since L, is a field extension of k, of degree ¢ for at least one v € S,
Ly is a field extension of degree ¢ over k. Since X by X4+ 4 (—1)490 is the minimal
polynomial of pp, we have N (ug) = 6p.

To show that ind(8 ® Eq ® Lg) < d and 78 = (Eo, 00, o) € H?(Lg, jten), by the Hasse—
Brauer—Noether theorem (cf. [CF67, p. 187]), it is enough to show that for every place w of Ly,
ind(3® Fy® Ly) < d and r3® Ly, = (Eo, 00, ft0) @ Ly € H?(Ly, fign)-

Let w be a place of Ly and v a place of k lying below w. Suppose that v € S. Then Lo®k, ~ L,,.
By the assumption on L,, we have ind(8 ® Ey ® k,) < d. Since u, is close to pg, we have
rB® Ly, = (Eo ® Ly, 00, i) = (Eo ® L ® ky, 00, f10)-

Suppose that v ¢ S and v # vy. Then 6y is a unit at v, Ey/k is unramified at v and
B ® k, = 0. Since each b; is an integer at v and pyg is a root of the polynomial X4 by X1+
o4 b1 X 4 (—1)%, po is an integer at w. Since 6y is a unit at v, pg is a unit at w. In particular,

416

https://doi.org/10.1112/50010437X17007618 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007618

LOCAL-GLOBAL PRINCIPLE

(Eo ® Ly, 00, o) =0 =18 ® Ly,. If v = 1y, then by the choice of vy, 8 ® k, =0, Ey ® k,, is the
split extension of k, and hence (Ey, 00, f10) ® Ly =0 =178 & Ly,. a

COROLLARY 3.2. Let k be a global field, ¢ a prime not equal to char(k), n and r > 1 integers.
Suppose that either £ # 2 or k has no real place. Let 0y € k* and 8 € H?(k, jug). Suppose that
r¢B=0¢€ H*(k,um) and B # 0. Then there exist a field extension Lq/k of degree £ and g € Lo
such that Np,/i(p0) = 6o, 78 ® Lo = 0 and ind(8 ® Lo) < ind(8).

Proof. Let S be a finite set of places of k containing all the places v with 8 ® k, # 0. Let
v € S. Let L,/k, be a field extension of degree £ and y, € L, be such that Ny, (1) = 6o
(cf. Lemma 2.8).

Since L, /k, is a field extension of degree ¢, ¢ divides ind(8) and k, is a local field, we
have ind(f ® L,) < ind(8) [CF67, p. 131]. Since r¢5 = 0 and L, /k, is a field extension of degree
l,rB® L, =0.Let Ey = k. Then, by Lemma 3.1, there exist a field extension Ly/k of degree ¢
and p € Ly with required properties. O

We use the following notation for the rest of this section:
k a global field with no real places and 6y € k*;
¢ a prime not equal to char(k);
k contains a primitive ¢th root of unity;
Ey/k a cyclic extension of degree a power of ¢ and o a generator of Gal(Ey/k);
n>1;
B € H?(k, pyn) with r£3 = (Ey, 09, 0g) for some r > 1.

LEMMA 3.3. Suppose that r3® Ey # 0. If v is a place of k and L, /k,, a field extension of degree ¢
such that 6y € NL,,/kl, (L;j), then ind(ﬁ ® Fy® LV) < ind(ﬁ & Eo).

Proof. Write ¢ = m#¢ with m coprime to £. Then d > 1. Since ml3 = rf3 = (Eq, 00,6p), we
have ml? @ FEy = 0. Since m is coprime to ¢ and the period of 3 is a power of £, it follows that
(8 ® Ey = 0. Since r8 ® Ey # 0, £9713 ® Ey # 0 and per(f ® Ep) = £,

Let v be a place of k and L,/k, a field extension of degree £ such that 6o € Ny /i, (L}).
Suppose that L, is not contained in Ey®k,,. Then [Ey® L, : Eg®¥k,] = ¢ and hence ind(5® Ey®
L,) <ind(S® Ey) [CF67, p. 131]. Suppose that L, is contained in Ey®k,. Then Ey® L, = [[ E;
with each E; a cyclic field extension of k,. Since Ey/k is a Galois extension, E; ~ E; for all
i and j and ml?B @ k, = (Ey,00,00) ® k, = (E;, 04,00) for all i, for suitable generators o; of
Gal(E;/k,). Since L, is a field and contained in Fy ® k,, L, is contained in E; for all 4. Since 6y
is a norm from L,, HgEi:k”]/Z € Ng, /i, (E}). Since the period of (E;, 0, 6) is equal to the order of
the class of 0y in the group k;/Ng, /i, (E}) [AIb61, p. 75], per(Ey, 0, 00) < [E; : k] /0 < [E; : k).

Suppose that per(8 ® k,) < [E; : k,]. Since k, is a local field, per(8 ® E;) = 1. Thus
per(8 ® Ey @ k,) = per(8 @ E;) = 1 < £4 = per(8 @ Ey).

Suppose that per(8 ® k,) > [E; : k). Since m¢?8 @ k, = (E;, 04,6) and m is coprime to ¢,
we have per(3 ® k,) < ¢4 per(E;, 0;,6p). Since k, is a local field,

_per(B®ky) _ (Tper(E;, 01, 00)

Ey®k,) = E;) = < ¢4 = Ep).
per(8 ® Ey ® k,) = per(f ® E;) s ko s o) < per(8 ® Ep)
Since k,, is a local field, period equals index and hence the lemma follows. O
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PROPOSITION 3.4. Suppose that r3 ® Ey # 0. Then there exist a field extension Lg/k of degree
¢ and pg € Lg such that:

(1) Npgk(po) = Oo;
(2) ind(8® Ep ® Lo) < ind(8 ® Ep);
(3) r8® Lo = (Ep ® Lo,00 ® 1, po).

Proof. Let S be the finite set of places of k consisting of all those places v with § ® k, # 0.
Let v € S. By Lemma 2.8, we have a field extension L, /k, of degree ¢ and p, € L, such that
Ny, /i, () = 0 and, by Lemma 3.3, ind(8® Ey® L,) < ind(8® Ey). Since cory, sk, (rB® L) =
rlf = (Eo ® ky, 00,00) = corp, j, (Eo ® Ly, 00® 1, ) and the corestriction map here is injective
(cf. [Lor08, Theorem 10, p. 237]), we have rf ® L, = (Ep ® Ly, 00 ® 1, j1,).

By Lemma 3.1, we have the required Lg and uyg. |

PROPOSITION 3.5. Suppose that r3 ® Eg =0 and Ey # k. Let Ly be the unique subfield of Ej
of degree £ over k. Then there exists o € Lo such that:

(1) Nry/k(po) = Oo;
(2) rB® Lo = (Fo ® Lo, 00 ® 1, o).

Proof. Since rB®Ey =0 and Ey/k is a cyclic extension, we have r3 = (Ey, 0, i) for some p’ € k.
We have (Eo, 0o, ' £) = £r3 = (Eo, 00,00). Thus 6g = Ny /5 (y)p' L. Let po = Ng, /1, (y)p’ € Lo.
Since Lo C Ey, we have 73 @ Lo = (Eo/Lo, 06, 1') = (Eo/Lo, 0, Niy /o)1) = (Eo/Lo, 0§, 110)
(cf. §2) and

Nro/k(k0) = Nipo k(N o (9)) ' £ = 6o. m

COROLLARY 3.6. Suppose that r3 ® Ey = 0 and Ey # k. Let Ly be the unique subfield of Ej
of degree ¢ over k. Let S be a finite set of places of k. Suppose that for each v € S there exists
ty € Lo ® k,, such that:

* Niyok,/k, (1) = 0o;

o 18R Lo®k, = (Eo® Lo ® ky,00® 1, p1,).
Then there exists y € Ly such that:

(1) Nigw(p) = o;
(2) rB® Lo = (Eo ® Lo, 00 ® 1, p1);
(3) p is close to p, for allv € S.

Proof. By Proposition 3.5, there exists pug € Lo such that:

* Nposk(po) = bo;

e rf® Ly=(Ey® Lo,00®1, o).
Let v € S. Then we have:

® Nposk(po) =00 = Nrook, sk, (1v);

o (By®@Ly®@ky,00®1,10)=(Eo® Lo ® ky,00® 1, 11,).
Let b, = pop,; ! € Lo ® k. Then Nrowk, /k, (by) = 1 and (Ep ® Lo ® ky,00 ® 1,b,) = 0. Thus,
there exists a, € Ey ® Lo ® ky, with Ng groek, /Look, (av) = bu. We have Ng orook, /k, (av) =
Niosk, /k, (by) = 1. Since Ep/k is a cyclic extension with og a generator of Gal(Ey/k), for each
v € S, there exists ¢, € Eg ® Lo ® k,, such that a, = ¢, (0o ® 1)(¢,). By weak approximation,
there exists ¢ € Ey ® Lo such that c is close to ¢, forallv € S. Let a = ¢ (e ® 1)(c) € Ey ® Lo
and p1 = poNgywr,/1,(a) € Lo- Then p has all the required properties. O
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4. Complete discretely valued fields

Let F' be a field with a discrete valuation v, valuation ring R and residue field k. Suppose
that n is coprime to the characteristic of k. For any d > 1, we have the residue map Op :
HYF, 12" — H Yk, u®~1). We also denote dr by 0. An element a in H(F,u2?) is called
unramified at v or R if d(a) = 0. The subgroup of all unramified elements is denoted by H¢, (F/R,
p2?) or simply HZ.(F,u2%). Suppose that F is complete with respect to v. Then we have an
isomorphism H%(k, %) S HE (F,p®%) and the composition H%(k,u%) = HY (F,p®") —
HY(F, u®") is denoted by ¢, or simply .

Let F' be a complete discretely valued field with residue field k, v the discrete valuation
on F' and m € F* a parameter. Suppose that n is coprime to the characteristic of k. Let 0 :
H?(F,p,) — H'(k,7Z/nZ) be the residue homomorphism. Let E/F be a cyclic unramified
extension of degree n with residue field Ey and o a generator of Gal(E/F) with o¢ € Gal(Ey/k)
induced by o. Then (E, o, 7) is a division algebra over F' of degree n. For any A\ € F*, we have

O(E,o,\) = (Ep, O-O)l/()\)'
For A, u € F*, we have
O(B,0,\) - () = (Eo, 00) - ((=1) V1),

where 0 is the image of \” (“)/ ¥ in the residue field.

Suppose Ejy is a cyclic extension of k of degree n. Then there is a unique unramified cyclic
extension F of F' of degree n with residue field Ey. Let oy be a generator of Gal(FEy/x) and
o € Gal(E/F) be the lift of og. Then o is a generator of Gal(E/F'). We call the pair (E, o) the
lift of (Ev,00).

We use the following notation throughout this section:

(F, v) a complete discretely valued field;

k the residue field of F;

m € F* a parameter at v;

n > 2 an integer coprime to char(k);

D a central simple algebra over F' of period n;

o € H%(F, u,) the class representing D.
Let A € F*. In this section we analyze the condition « - (A) = 0 and we use this analysis in
the proof of our main result (§10). We also prove that if « is either a local field or a global field
and a - (\) = 0 in H3(F, u2?), then X is a reduced norm from D.

Let Ey be the cyclic extension of k and og € Gal(Ey/k) be such that d(«) = (Ey, 0p). Let
(E,o0) be the lift of (Ep,00). The pair (E,0) or E is called the lift of the residue of a. The
following lemma is well known.

LEMMA 4.1. Let o € H(F, u,), (E,o) the lift of the residue of . Then a = o + (E,0,7) for
some o € H2.(F, ). Further, o/ ® E = a ® E is independent of the choice of .

Proof. Since O(E,0,m) = d(a), o/ =a — (E,0,7) € H2,(F, ) and a = o' + (E, 0, 7). O

LEMMA 4.2. Let a € H*(F,uy,). If @ = o/ + (E,0,7) as in Lemma 4.1, then ind(a) =
ind(o/ ® E)[E : F] =ind(a® E)[E : F].

Proof. Cf. [FS39, Proposition 1(3)] and [JW90, 5.15]. O

LEMMA 4.3. Let E be the lift of the residue of .. Suppose there exists a totally ramified extension
M /F which splits a. Then a ® E = 0.
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Proof. Write a = o/ + (E, 0, 7) as in Lemma 4.1. Since &/ @ E = a® E, we have o/ @ E® M = 0.
Since E ® M/E is totally ramified, the residue field of £ ® M is the same as the residue field
of E. Since ¢/ ® E® M =0 and o/ ® E is unramified, it follows from [Ser03, 7.9 and 8.4] that
o' ® E =0 and hence a ® E = 0. O

For an element ¢ € H™(F, A) for any abelian group A, let per(¢) denote the order of ¢ in
the group H™(F, A).

LEMMA 4.4. Let a € H?(F, u,) and (E,0) be the lift of the residue of a. If « ® E = 0, then
a = (F,o0,ur) for some u € F* which is a unit at the discrete valuation, and per(a) = ind(«).

Proof. We have o = o + (E,o,7) as in Lemma 4.1. Since &/ ® E = o ® E = 0, we have
o = (E,o,u) for u € F*. Since E/F and o' are unramified at the discrete valuation of F, u
is a unit at the discrete valuation of F'. We have o« = (F,0,u) + (E,0,7) = (E, 0, ur). Since
E/F is an unramified extension and um is a parameter, (F,o,ur) is a division algebra and its
period is [E : F|. In particular, ind(«) = per(«). O

THEOREM 4.5. Let F' be a complete discretely valued field with residue field k. Suppose that k
is a local field. Let ¢ be a prime not equal to the characteristic of r, n = ¢% and o € H?(F, uy,).
Then per(a) = ind(«).

Proof. Write a« = o/ + (F,0,m) as in Lemma 4.1. Then F is an unramified cyclic extension of F’
with d(«) = (Ep, 00) and ' is unramified at the discrete valuation of F. Let @ be the image of
o in H%(k, jtn).
Suppose that per(d(a)) = per(a). Then per(d(a)) = [Ep : k]. Since F' is complete and E/F
is an unramified extension, we have [Ey : k] = [E : F|. Thus,
0 = per(a)a

= per(a)(a’ + (E,0,7))

= per(a)d’ + per(a)(E, o, 7)

= per(a)a +[E: F|(F,o,7)

(

= per(a)a’

In particular, per(a/) divides per(a) = [Eo, k] = [E : F]. Since & is a local field, @ @ Ej is

zero [CF67, p. 131] and hence o ® F is zero. By Lemma 4.4, we have o = (E, 0, 07) for some

6 € F which is a unit in the valuation ring. In particular, « is cyclic and ind(«) = per(a) = [E : F].
Suppose that per(d(«)) # per(«). Then per(d(«)) < per(«). Since per(d(«)) = per(E, o, ),

we have per(a) = per(a’). Since & is a local field, per(a@’) = ind(@’). Since per(@’) = per(«’) and

per(d(a)) = [Ep : k], we have [Ey : k] < per(@’). Since & is a local field,

per(a’)

[Eg : /i]

Since F is a complete discretely valued field with residue field Ey and o' is unramified at the
discrete valuation of E, we have ind(o/ ® F) = ind(@’ ® Ey). Thus, we have

ind(a) = ind(o¢/ ® E)[E : F] (by Lemma 4.2)
= ind(a’ X Eo)[EO : /i]

ind(a’ ® Ey) =

_ per(a) e
B A 0N
= per(a@’) = per(a). O
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PROPOSITION 4.6 [Kat79, Corollary 2, p. 331]. Suppose that « is a local field. If L/ F' is a finite
field extension, then the corestriction homomorphism H3(L, u$?) — H3(F, u®?) is bijective.

Proof. Let k’ be the residue field of L. Since x and &’ are local fields, H?(x, u®?) = H3(x/, u®?)
= 0 [Ser97, p. 86]. Since F and L are complete discretely valued fields, the residue

homomorphisms H?3(F, u$?) o g 2(k, ) and H3(L, u%?) o B 2(K', 1) are isomorphisms
(cf. [Ser03, 7.9]). The proposition follows from the commutative diagram

1o}
H3(L7:u'721) 41/) Hz(’%/v MTZ)

| |

0
H3(F7 M%Z) 4F>H2(/€a ,un)
where the vertical arrows are the corestriction maps [Ser03, 8.6]. O

LEMMA 4.7. Let ¢ be a prime not equal to char(k) and n = (¢ for some d > 1. Let o« € H*(F, j1,,)
and \ € F*. Write A = On" for some 0,7 € F with v(0) =0 and v(7) = 1. Let (E, o) be the lift
of the residue of « and a = o/ + (E,0,7) as in Lemma 4.1. Then

8(a . (—)\)) =0 < rd = (E,O', (_1)r+19) — ro = (E, o, (_1)1’—&-1)\)‘
In particular, if 9(a - (—=\)) = 0 and r = v() is coprime to £, then ind(a ® F(V/X)) < ind(a) and
Iy (@ (—VA) =0.

Proof. Since ra = ra + (E,o,7") and A = 07", ra = (E,0,(=1)""1)) if and only if ra’ =
(E7 g, (_1)T+10)‘
We have

- (X)) = 0(e/ + (B, 0,)) - (=07")) = 1@ + (Bo, 00, (—1)"*16 ),

where 9(«) = (Ey, 0p).

Thus d(cr - (—A)) = 0 if and only if 7@ + (Eo, 00, (—1)"+18~ ") = 0 if and only if ra’ =
(Eo, 00, (—1)"10) if and only if ra/ = (E, o, (—1)"*10) (F being complete).

Suppose 7 = v()\) is coprime to £ and d(a - (—\)) = 0. Clearly (—1)"*! is an £?th power in F.
Thus, we have ra = (E, 0, (—1)""'\) = (E, 0, \). Since r is coprime to ¢, we have

ind(a) = ind(ra) = ind(E,0,\) = [E : F]
and
ind(a ® F(WVA)) = ind(ra ® FVX)) = ind(EV/X), 0, \)
= [EWV/)) : FWN)]/¢ < [E: F] = ind(a).
Further, 8}7(%) (7“0( ’ (_\Z/X)) = aF(\lT)\)((Ea g, )‘) : (_w)) = (E()v UO) ’ ((_1)T2€+Tﬁ)‘ If £ is evel,

then (—1)’”2”’”5 = 1. If / is odd, then n is odd and —1 is an nth power. Thus, in either case,
(Eo,00) - (—1)"*70) = 0 € H%(k, ju,). Since 7 is coprime to £, 8F(%)(oc (=vA) =0. O

LEMMA 4.8. Let n > 2 be coprime to char(x) and ¢ a prime which divides n. Let o € H?(F, ji,),

A = 07" € F* with 0 a unit in the valuation ring of F, © a parameter and a = o/ + (E, o, ) be
as in Lemma 4.1. Let Lo/ be an extension of degree { and o € Lg. Suppose that:
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® Npy/w(po) =—0;
o 1a ® Lo = (Ey® Lo,00® 1, (—=1)" o).
Let L/F be the unramified extension of degree ¢ with residue field Ly. Then, there exists u € L
such that:
e . a unit in the valuation ring of L;
M= Ho;
Npyp(p) = —0;
a- (ur") € H3(L, u%?) is unramified.

Proof. Since / is a prime and [Lg : k] = £, Ly = s(uj) for any uf)y € Lo\x. Let g(X) = X! +
be1 X714+ b1 X +by € K[X] be the minimal polynomial of ug over k. Let a; be in the valuation
ring of F' mapping to b; and f(X) = X*+a,_1 X'+ -4a; X +ag € F[X]. Suppose pg ¢ x. Then
we take i = po. Since Ny /. (p0) = —0, we have by = —(=1)%. Let ap = —(—1)%6. Since g(X)
is irreducible in k[ X], f(X) € F[X] is irreducible. Then L = F[X]/(f). Let u € L be the class of
X. Then the image of y is pg and N p(u) = —6. Suppose pg € k. Then —0 = Ny /(o) = .
Since F is a complete discretely valued field and ¢ is coprime to char(x), there exists u € F
which is a unit in the valuation ring of F' which maps to uo and uf = —6.

Since L/F, E/F and o/ are unramified at the discrete valuation of F', we have 9, (a/-(un")) =
r@ @ Lo and 9L ((E,0,7) - (u7")) = (Fo® Lo, 00® 1, (—1)"g !). Since a = o/ + (E, 0, ), we have

O (ur")) = Op((o/ @ L) - (um")) + OL((E, 0,7) - (7))
=7r@ @ Lo+ (Eo ® Lo, o0 ® 1, (—1) g )
=0. O

LEMMA 4.9. Suppose that k is a local field. Let ¢ be a prime not equal to char(k) and n a power
of £. Let a € H*(F, ) with a # 0 and A € F*. Suppose A\ € +F*, a # 0 and o - (—)) = 0.
Then ind(a ® F(WV/))) < ind(a) and a - (—vV/A) =0 € H3(FV/)), u2?).

Proof. Since A ¢ F** and NF(%)/F(—\%\) = —\, we have corF(%)/F(a (=) =a-(=)\) =0.
Hence, by Proposition 4.6, a - (—v/\) = 0 € H}(FV/)), u2?).

Suppose 7 = v()) is coprime to £. Then, by Lemma 4.7, we have ind(a ® F(v/))) < ind(a).

Suppose that v(\) is divisible by £. Write A = 67%¢, with § € F a unit in the valuation ring
of F. Since A & £F*¢, § ¢ +£F*.

Write « = o/ + (E,0,7) as in Lemma 4.1. Then ind(«) = ind(¢/ ® E)[E : F] (cf. Lemma 4.2)
and ind(a ® F(v/0)) < ind(o/ ® EW0))[EWG) : F(/0)).

Suppose V0 € E. Then F(v/0) C E = E(/6). In particular, [E(V/0) : F/0)] = [E : F(V/0)] <
[E : F]. Since # is a unit in the valuation ring of F, F(v/)/F is unramified and hence =
is a parameter in F(v/f) and we have a ® FV0) = o/ @ FWV0) + (E/F{/0),0', 7). We have
(cf. Lemma 4.2), ind(a ® F(v/6)) = ind(¢/ ® E)[E : F(v/6)] = ind(¢/ ® E)[E : F]/{ < ind(a).

Suppose that ' @ E = 0. Then, by Lemma 4.4, o = (E, o, un) for some unit « in the valuation
ring of F'. Since a- (—A) =0, (E,0,un) - (—A) = 0. Since E/F is unramified with residue field
Ey, u,0 are units in the valuation ring of F' and 7 is a parameter, by taking the residue of
a-(—A) =0, we see that (Ey, og, —(—1)“9_1#‘1) =0¢€ H?(k, ptn) (cf. Lemma 4.7). In particular,
—(=1)"gu=* is a norm from Ey. Since [Ey : x] is a power of £ and Ey/k is cyclic, there exists a
subextension Lo of Eg such that [Lg : ] = £. Then —(—1)*0u—‘ is a norm from Lo and hence
—0 is a norm from L. Since +0 is not in x*, by Lemma 2.5, Ly = Ii(\e/g) In particular, Vo e Ey
and hence v/ € E. Also ind(a ® F(/6)) < ind(a).
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Suppose that v ¢ E. Then, as above, o/ ® E # 0. Since E is an unramified extension of F
and 6 is a unit in the valuation ring of E, E(v/f) is an unramified extension of F with residue
field EO(%), where Ej is the residue field of E and 6 is the image of # in the residue field. Since
F is a complete discretely valued field and 6 is not an fth power in E, 6 is not an ¢th power in
FEo and [Ey(V/8) : Fy] = £. Since o/ ® E # 0, @ ® Ey # 0. Since Ej is a local field and ind(@) is a
power of ¢, ind(@ @ Ey(V0)) < ind(a ® Ey) [CF67, p. 131]. Hence ind(¢/ ® E(V/8)) < ind(o/ ® E)
and ind(a ® F(vV#)) < ind(a) (cf. Lemma 4.2). O

LEMMA 4.10. Suppose & is a local field. Let £ be a prime not equal to char(x) and n = (. Let
a € H?(F, ) and A € F*. Suppose that x contains a primitive £th root of unity. If o # 0 and
a-(=)\) =0 € H3(F,u%?), then there exist a cyclic field extension L/F of degree ¢ and j € L*
such that Ny p(p) = —X, ind(e ® L) < ind(a) and o - (u) = 0 € H3(L, u$?). Further, if v()) is
divisible by ¢, then one can choose L/F unramified.

Proof. Suppose A\ & £F*. Let L = F(V/\) and y = —v/A. Then, by Lemma 4.9, ind(a ® L) <
ind() and - (1) = 0 € H*(L, pu3?). Clearly Ny, p(u) = =X, and if v()) is a multiple of ¢, then
L/F is unramified.

Suppose A € F*¢ or —\ € F*'. Write a = o/ + (F, 0, 7) as in Lemma 4.1.

Suppose that @/ ® E = 0. Then, by Lemma 4.4, a« = (E, o, urw) for some u € F* which is a
unit in the valuation ring of F'. Since a # 0, E # F. Let L be the unique subfield of E with L/F
of degree ¢. Then ind(a ® L) < ind(«).

Suppose —\ € F*¢. Then —\ = puf for some p € F* and Npp(p) = put = —\. Since
corp p(a- (1) = a- (1) = a - (—\) = 0, by Proposition 4.6, we have a - (u) = 0 in H3(L, u2?).

Suppose —A & F**. Then A € F**, { = 2 and —1 ¢ F*2. Write A\ = (#7")? for some 0 € F*
with v(f) = 0. Since a- (—A) = 0 and a = (E, 0, um), by taking the residue of o - (=), we see
that (Ey, 09) - (—ﬂ2rg_2) = 0. In particular, —u?"0~2 is a norm from E. Thus —1 is a norm from
L. Let v € L such that Ny /p(v) = —1 and p = v07". Then Ny, p(p) = Ny p(v)(077)? = =\
Since cor(a - (p)) = a- (=A) =0 € H3(F,u%?), a- () = 0 € H3(L, u®?) (cf. Proposition 4.6).

Suppose that o/ @ E # 0. Let Ej be the residue field of E. Then Ey/k is a cyclic field extension
of K of degree equal to the degree of E/F. Let @ be the image of o/ in H?(k, t,,). Since A € F*¢
or —\ € F* —\ = ef'n" with e = 1 and # € F* a unit at v. Since F is a complete discretely
valued field, @ ® Ey # 0. Since k is a local field and contains a primitive /th root of unity,
there exist a cyclic extension Lo/k of degree £ and po € Lo such that Ny /(o) = d" (cf. the
proof of Lemma 2.8). Let L/F be the unramified extension of degree ¢ with residue field L.
Since F is complete, €f¢ € Np/p(L*). Let y’ € L* such that Ny p(u') = €0’ and p = /7", Then
N p(i) = —A. Suppose that Lo ¢ Ey. Since  is a local field, ind(@’ ® Ey ® Lo) < ind(a @ Ejp).
Since F is a complete discretely valued field with residue field Ep, ind(a® E® L) < ind(a ® E).
Suppose that Ly C Ey. Then L C E. Since L/F is unramified, d(a ® L) = 0(«a) ® Lo (cf. [Col95,
Proposition 3.3.1]) and hence the decomposition « ® L = o/ ® L + (E ® L,oc ® 1,7) is as in
Lemma 4.1. Thus, by Lemma 4.2, ind(a ® L) < ind(a). Since =\ = N,/ (1), as above, we have
a-(p) =0¢e H(L, u5?). O

LEMMA 4.11. Suppose that r is a global field. Let ¢ be a prime not equal to char(k) and n = ¢%.
Suppose that either n is odd or k has no real places. Let o € H?*(F, ju,) and A € F*. If a # 0
and o - (=) = 0 € H3(F,u®?), then there exist a field extension L/F of degree { and y € L*
such that Ny p(p) = =\, ind(a ® L) < ind(a) and o - (1) =0 € H3(L, u®?).
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Proof. Suppose that v()) is coprime to £. Then, by Lemma 4.7, L = F(v/A) and g = —v/X has
the required properties.

Suppose that v()) is divisible by £. Let m be a parameter in F. Then A = 67" with v(6) = 0.
Write a = o’ + (F,0,7) as in Lemma 4.1. Let @ be the image of o/ in H?(k, u,) and 6y the
image of 6 in k. Since a - (—A) = 0, by Lemma 4.7, we have rfa@ = (Eg, 00, (—1)""6y), where
E)y is the residue field of E' and o¢ induced by o.

Suppose that ra’ ® Ey # 0. Then, by Proposition 3.4, there exist an extension Lg/k of
degree ¢ and g € Lo such that Ny /. (p0) = (—1)" 16, ind(@ ® Eo ® Lo) < ind(@ ® Ep) and
re ® Lo = (Eg ® Lo, 00, o).

Suppose that ra’ ® Fy = 0. Suppose that Ey # k. Let Lo be the unique subfield of Ej of
degree ¢ over k. Then, by Proposition 3.5, there exists pg € Lo such that Ny /,.(10) = (—1)r+1g,
and ra’ ® Ly = (Fo, 00, to). Suppose that Ey = k. Then, by Corollary 3.2, there exist a field
extension Lo/ of degree ¢ and pg € Lo such that Ny x(p0) = (—1)"6p and ind(e ® Lg) <
ind(a'). Let pu1 = (—1)"po. Then Ny, (p1) = (‘UMNLO/H(#O) = (=1)"(=1)"* 19y = —6y. Since
(—=1)"p1 = po, we have ra’ ® Lo = (Eo, 00, (—1)"p11).

Let L be the unramified extension of F' of degree ¢ with residue field Ly. Then, as in the last
paragraph of the proof of Lemma 4.10, ind(a ® L) < ind(«). By Lemma 4.8, there exists u € L
with the required properties. |

THEOREM 4.12. Let F' be a complete discretely valued field with residue field k. Suppose that k
is a local field or a global field. Suppose that either n is odd or k has no real places. Let D
be a central simple algebra over F of period n. Suppose that n is coprime to char(k). Let
o € H?(F, uy,) be the class of D and A € F*. If a- (\) = 0 € H3(F, u%?), then \ is a reduced
norm from D.

Proof. Write n = Eclll - -Eff, l; distinct primes, d; > 0, D = D1 ® --- ® D, with each D; a
central simple algebra over F' of period power of ¢; [Alb61, ch. V, Theorem 18]. Let «; be the
corresponding cohomology class of D;. Since the ¢; are distinct primes, a - (A\) = 0 if and only if
a; - (A) =0 and A is a reduced norm from D if and only if A is a reduced norm from each D;.
Thus without loss of generality we assume that per(D) = ¢¢ for some prime .

We prove the theorem by induction on the index of D. Suppose that ind(D) = 1. Then every
element of F* is a reduced norm from D. We assume that ind(D) = n = ¢4 > 2.

Let A € F* with a - (\) = 0 € H3(F, u%?). Let p be a primitive fth root of unity. Since
[F'(p) : F] is coprime to n, A is a reduced norm from F if and only if A is a reduced norm from
D ® F(p). Thus, replacing F' by F(p), we assume that p € F.

Since k is either a local field or a global field, by Lemmas 4.10 and 4.11, there exist an
extension L/F of degree £ and p € L* such that N ,p(u) = A, a-(p) = 0 and ind(a® L) < ind(a).
Thus, by induction,  is a reduced norm from D ® L. Since N7,/ () = A, Ais a reduced norm
from D. O

The following technical lemma is used in § 6.

LEMMA 4.13. Let x be a finite field and K a function field of a curve over k. Let u,v,w € k*
and A\ € K*. Let { be a prime not equal to char(k) and 6 = wul. If k contains a primitive {th
root of unity and w ¢ k**, then for r > 1, the element (v, %/0), in H*(K(%/0), p¢) is trivial over

K(V0,v +ul).

Proof. Let L = K([\T/é, Vv +ul) and B = (v, Z:/@)g. Since L is a global field, to show that 8 ® L
is trivial, it is enough to show that S® L, is trivial for every discrete valuation v of L. Let v be a
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discrete valuation of L. Since v € k*, v is a unit at v. If § is a unit at v, then 8 ® L is unramified
at v and hence 8 ® L, is trivial. Suppose that 6 is not a unit at v. Since v and w are units at
v, A is not a unit. Suppose that v(\) > 0. Then v € L** and hence § ® L, is trivial. Suppose
that v(A) < 0. Then Vul € L,. Sincer > 1, 0 = uwA and [C/@ € L,, we have VO = Ywu € L,.
Hence \/w € L,,. Since w € x*\k*, v € * and & is a finite field, /v € k(Yw). Since K(\/w) C L,,
0 ® L, is trivial. O

We end this section with the following well-known fact.

LEMMA 4.14. Let L/F be a cyclic extension of degree n, T a generator of Gal(L/F') and 6 € F™*.
If v(0) is coprime to n and ind(L/F,T,0) = [L : F], then [L : F| = per(0(L/F,,0)).

Proof. Let 8 = (L/F,7,0) and m = per(9(f)). Since n = [L : F| = ind(f), m divides n. Since
v(6) is coprime to n, F(%/#)/F is a totally ramified extension of degree m with residue field
equal to the residue field & of F. Since d(8 ® F(¥/0)) = md(B), B ® F(%/0) is unramified. Since
F(¥/0)/F(%/0) is totally ramified and f® F(¥/0) is trivial, 8 ® F(%/6) is trivial (cf. Lemma 4.3).

Hence n = m. O

5. Brauer group: complete two-dimensional regular local rings

Let X be an integral regular scheme with function field F'. For every point = of X, let Ox , be
the regular local ring at x and k(z) the residue field at x. Let é’X@ be the completion of Ox , at
its maximal ideal m, and F, the field of fractions of & x,z- Then every codimension one point x
of X gives a discrete valuation v, on F. Let n > 1 be an integer which is a unit on X. For any
d > 1, the residue homomorphism HY(F, 43?) — HY 1 (k(z), & U _1)) at the discrete valuation
v, is denoted by 9,. An element o € H(F, u¥™) is said to be ramified at x if 9,(a)) # 0 and
unramified at x if 0,(a) = 0. If X = Spec(A) and x is a point of X given by (7), 7 a prime
element, we also denote F, by F and x(z) by ().

Throughout this section A denotes a complete regular local ring of dimension 2 with residue
field x and F its field of fractions. Let ¢ be a prime not equal to the characteristic of x and
n = ¢4 for some d > 1. Let m = (7, §) be the maximal ideal of A. For any prime p € A, let F, be
the completion of the field of fractions of the completion of the local ring A,y at p and x(p) the
residue field at p.

LEMMA 5.1. Let E be an unramified Galois extension of Fy of degree coprime to char(k). Then
there exists a Galois extension E of F of degree [E, : F;] which is unramified on A, except
possibly at 0 and Gal(E/F) ~ Gal(E,/Fy). Further, if the residue field of E, is unramified over
k(m), then E/F can be chosen to be unramified on A.

Proof. Since A is complete and m = (7,9), k(7) is a complete discretely valued field with residue
field k and the image § of § as a parameter. Let Ey be the residue field of E,. Then Ey/k(7)
is a Galois extension with Gal(Ey/k(m)) ~ Gal(E;/Fy). Let Ly be the maximal unramified
extension of k() contained in Ey. Then Lg is also a complete discretely valued field with § as a
parameter and Lo/k(m) is Galois. Since Ey/Ly is a totally ramified extension of degree coprime
to char(k), we have Ey = Lo(Vvd) for some v € Lo which is a unit at the discrete valuation of
Ly (cf. Lemma 2.4).

Since Ey/rk() is a Galois extension, Ey/Lg is a Galois extension. Let kg be the residue field of
Ey. Then the residue field of Lg is also kg. Since kg is a Galois extension of x and A is complete,
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there exists a Galois extension L of F' which is unramified on A with residue field xg. Let B be
the integral closure of A in L. Then B is a regular local ring with residue field k¢ (cf. [PS14,
Lemma 3.1]). Let u € B be a lift of 7 in k.

Let E = L(v/ud). Since L/ F is unramified on A, E/F is unramified on A, except possibly at 4.
In particular, F'/F is unramified at 7 with residue field Ey. By construction, [E : F| = [Ey : k(7)].
Hence F ® F; ~ E,.

Since L/ F is a Galois extension which is unramified at 7, we have Gal(L/F') ~ Gal(Lo/k(m)).
Let 7 € Gal(L/F) and T € Gal(Lg/k(m)) be the image of 7. Since Fy/k(m) is Galois and Ey =
Ly (\e/ﬁ ), by Lemma 2.3, Ej contains a primitive eth root of unity p and 7(vd) € E§. In particular,
p € Ko. Since B is complete with residue field g, p € B and hence p € L C E. Since 7(v8) = 7(v)d
and v6, 7(vd) € ES, T(v) /v € E§. Since 7(v) and v are units at the discrete valuation of Ly and
Ey/Ly is totally ramified, 7(v)/v € L§. Since B is complete and the image of 7(u)/u in Lg is
7(v) /v, T(u)/u € L¢. Since E = L(¥/ud), T(ud) € E°. Thus, by Lemma 2.3, E/F is Galois. Since
E® Fy ~ E,, Gal(E/F) ~ Gal(E,/Fy).

Further, if the residue field Fy of E, is unramified, then Fy = Ly and hence £ = L is
unramified on A. O

Since A is complete and (m,d) is the maximal ideal of A, A/(7) is a complete discrete
valuation ring with  as a parameter and A/(d) is a complete discrete valuation ring with 7 as
a parameter. The next lemma follows from [Kat86, Proposition 1.7].

LEMMA 5.2 [Kat86, Proposition 1.7]. Let m > 1 and o € H™(F, u%(m_l)). Suppose that « is
unramified on A, except possibly at m and §. Then

95(0x () = =07 (95()).

Let H)'(F, ,u? (m_l)) be the intersection of the kernels of the residue homomorphisms 0y :

H™(F, ,ﬁ(m‘l)) — H™ 1(k(0), ,u??(m_m) for all primes 6 € A. The next lemma follows from the
purity theorem of Gabber.

®(m—1) ®(m—1)

LEMMA 5.3. For m = 1,2, we have H]""(F, ur, ) >~ H™ (K, pn ). For m > 3, we have a
surjection Hm(m,ug(m_l)) — H(F, M%(m_l)). In particular, if k is a finite field and m > 2,

then H™(F, 1™ V) = 0.

Proof. For m > 1, by the purity theorem of Gabber (cf. [Riol4, ch. XVI]), we have a
surjection HJ (A, ug(mfl)) — H"(F, ,uf?(mfl)). Since A is complete, we have HZ'(A, uf?(mfl)) o~
H™ (K, ,uf?(mfl)) (cf. [Mil80, Corollary 2.7, p. 224]). Thus we have a surjection H™ (k, ,u%(mfl)) —
H(F, ug(m_l)). For m =1 and 2, since the map H} (A, ug(m_l)) — H"(F, ,u%(m_l)) is injective
(cf. [MOG60, Theorem 7.2]), we have H)J.(F, ,uf?(mfl)) ~ H™(k, ug(mfl)).

Suppose  is a finite field and m > 2. Since Hm(/ﬁ,uf?(m_l)) =0 (cf. [Ser79, §3.3 p. 80]), we
have H™(F,uS™ 1) = 0. O

LEMMA 54. Let 1 < m < 3 and o € H™(F, /ﬁ(m‘”). Suppose that « is unramified, except
possibly at w. Then there exist ag € H™(F, ,ug(m_l)) and B € H™ Y(F, ,uf?(m_m) which are
unramified on A such that

a=aoy+ [ (m).
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Proof. Let 3y = Or(a). By Lemma 5.2, 8y € H™ ! (k(n), m‘?(m‘”) is unramified on A/(m). Since
®(m—2)
Hn ) =

A/(r) is a complete discrete valuation ring with residue field x, we have H™ ! (k(r),
H™ 1(k, ug(md)) (cf. Lemma 5.3). Since A is complete, we have H™ 1(F, ,uf?(mfl)) o~
H™ 1k, MS(’”‘”) (cf. Lemma 5.3). Thus, there exists 8 € H™ ' (F, u®™=1) which is the lift

of By. Then g = v — B - () is unramified on A. Hence o = ag + 3 - (). O
COROLLARY 5.5. Let 1 < m < 3 and o € H™(F, m‘?(’”*”) is unramified on A, except possibly

at m and §. If « ® Fy = 0, then a = 0. In particular, if oy, 0 € H™(F, ug(m_l)) unramified on
A, except possibly at m and § and o ® Fs = as ® Fy, then ap = ao.

Proof. Since a® F5 =0, « is unramified at . Thus « is unramified on A, except possibly at 7. By
Lemma 5.4, we have a = ag + (- (7) for some ag € H™(F, M?“”‘”) and B € H™ (F, u%(m_Q))
which are unramified on A. Since a ® Fs = 0, we have (3 - (1)) ® F5 = —ag ® Fs. Since 3 - ()
and o are unramified at ¢, we have - (T) = —aj, where the bar denotes the image over (J).
Since k() is a complete discretely valued field with 7 as a parameter, by taking the residues,
we see that the image of 3 is zero in H™ !(x, ,uf? (m72)). Since A is a complete regular local
ring, 8 = 0 (cf. Lemma 5.3). Hence a = «y is unramified on A. Let o/ € H™(k, u®™~1) which
maps to a (cf. Lemma 5.3). Let A be the completion of the localization of A at (d). Since Ay
is a complete discrete valuation ring, the natural map Hg?(fl((;), ,uf?(m_l)) — H™(Fs,p&m-1
injective [Col95, §3.6]. Thus, since a® F5 =0, o/ ® /1(5) =0¢€ Hg’tl(A((;),u;?(mfl)). In particular,
o ®A/(6) =0¢€ Hgf(A/(é),m?(m_l)) and hence o/ ® Kk =0 € Hm(/i,u;?(m_l)). Since A is a
complete regular local ring, o/ = 0 (cf. [Mil80, Corollary 2.7, p. 224]) and hence « = 0. m

) is

If char(F') = char(k), the above corollary follows from [Hul7, Lemma 2.2].

COROLLARY 5.6. Let 1 < m <3 and o € H™(F, u1). If a is unramified on A, except possibly
at m and 0, then per(a) = per(a ® F;) = per(a ® Fy).

Proof. Suppose t = per(a ® Fs). Then ta ® Fs = 0 and hence, by Corollary 5.5, ta = 0. Since
per(a ® Fs) < per(a), it follows that per(a) = per(a ® Fy). Similarly, per(a) = per(a® Fy). O

COROLLARY 5.7. Suppose that k is a finite field. Let o € H*(F, uy,). If o is unramified, except
at m and ¢, then there exist a cyclic extension E/F and o € Gal(E/F) a generator, u € A a
unit, and 0 < 4,5 < n such that a = (F,o,ur'$?) with E/F unramified on A, except at § and
i =1, or E/F unramified on A, except at m and j = 1.

Proof. Since n is a power of the prime ¢ and na = 0, per(d,(«)) and per(ds(a)) are powers
of £. Let d’ be the maximum of per(d;(«)) and per(ds(«)). Then Or(d'a) = d'0x(a) = 0 and
Os(d'a) = d'0s(a) = 0. In particular, d’« is unramified on A. Since & is a finite field, d'a = 0.
Hence per(«) divides d’ and d’ = per(«). Thus per(a) = per(9x(«a)) or per(ds(a)).

Suppose that per(a) = per(d;(a)). Since Or(a @ Fr) = O0z(a), we have per(dr(a)) <
per(a ® Fr) < per(a). Thus per(a ® Fr) = per(O(a ® Fr)). Let (Eg,00) = 0x(a ® Fr) and
(Ex/Fr,0) be the lift of (Ey,0¢). Then [E; : Fr| = [Ep : k()] = per(O-(a® F;)) = per(a® Fy).
Write a ® Fr = &/ + (Er,0,7) as in Lemma 4.1. Let @ be the image of o’ over k(). Since k()
is a local field and per(@’) divides per(a ® Fy) = [Ep : k(m)], we have @ ® Ey = 0 and hence
o ® E; =0. Since a® E; = o ® E; =0, by Lemma 4.4, we have a ® F; = (E;/Fy,0,0n) for
some cyclic unramified extension E;/F; and 6 € F;; a unit in the valuation ring of Fi.
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By Lemma 5.1, there exists a Galois extension E/F which is unramified on A, except possibly
at (9), such that £ ® F; ~ Er. Since E/F; is cyclic, E/F is cyclic. Since § € Fy is a unit in
the valuation ring of Fy; and the residue field of Fy is a complete discretely valued field with §
as parameter, we can write § = ué’6? for some unit u € A, §; € F; and 0 < j < n — 1. Then
a® Fy ~ (E,0,uén) ® Fy. Thus, by Corollary 5.5, we have a = (E, o, ué’n).

If per(a) = per(9s(a)), then, as above, we get a = (E, o, un'd) for some cyclic extension E/F
which is unramified on A, except possibly at 7. O

The following proposition is proved in [RS13, 2.4] under the assumption that F' contains a
primitive nth root of unity.

PROPOSITION 5.8. Suppose that & is a finite field. Let o € H?(F, ). If o is unramified on A,
except possibly at (m) and (9), then ind(a) = ind(a ® Fr) = ind(a ® Fy).

Proof. Suppose that a is unramified on A, except possibly at () and (¢). Then, by Corollary 5.7,
we assume without loss of generality that o = (E/F, 0, m§’) with E/F unramified on A, except
possibly at . Then ind(«) < [E : F). Since E/F is unramified on A except possibly at d, we
have [E : F| = [E; : Fr] and ind(a® F;) = [Er : Fr]. Thus [E: F] = [E; : Fr] =ind(a® F;) <
ind(a) < [E: F] and hence [E : F| = ind(a ® F;) = ind(«a). 0

COROLLARY 5.9. Suppose that k is a finite field. Let o € H*(F, uy,). If o is unramified on A,
except possibly at (m) and (§), then ind(«) = per(a).

Proof. By Corollary 5.6, per(a)) = per(a® Fy), and by Theorem 4.5, ind(a ® Fy) = per(a® Fy).
Thus per(a) = ind(a ® F). By Proposition 5.8), we have ind(«) = per(«). O

Let 2 be an integral regular two-dimensional scheme with field of fractions F. For each
x € 2, let F, denote the field of fractions of the completion of the local ring at x. The following
proposition follows from [HHK15b].

PROPOSITION 5.10. Let o € H?(F, ). Let ¢ : 2 — Spec(A) be a sequence of blow-ups and
V = ¢ 1(m). Then ind(a) = l.c.m.{ind(a ® F,) |z € V}.

Proof. Let n be the generic point of an irreducible component of an exceptional curves in 2.
Then, arguing as in [HHK15a, Theorems 9.2 and 9.12], we get that ind(a ® F;)) = ind(a ® Fyr)
for some nonempty open set U of the closure of 7. Since A is a complete regular local ring of
dimension 2, the proposition follows by [HHK15b, Lemma 4.6 and Example 4.16]. O

We end this section with the following well-known results.

LEMMA 5.11. Let E/F be a cyclic extension of degree {? for some d > 1. If E/F is unramified on
A, except possibly at §, then there exist a subextension E,, of E/F and w € E,, which is a unit
in the integral closure of A in E,, such that E,,/F is unramified on A and E = Em(ém) for
some e > 0. Further, if k is a finite field containing a primitive ¢th root of unity and 0 < e < d,
then NE/F([W) = w6 with wy € A a unit and not an (th power in A.

Proof. Let E(r) be the residue field of E at 7. Since E/F is unramified at A, except possibly

at ¢, by Corollary 5.6 (with m = 1), [E(m) : k(7)] = [E : F]. Since E/F is cyclic, E(n)/k(7) is
cyclic. As in the proof of Lemma 5.1, there exist a cyclic extension Ey/F unramified on A and a
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unit w in the integral closure of A in Ey such that the residue field of Eo(Vwd) at « is E(r). By
Corollary 5.5 (with m = 1), we have E ~ Eo(em). Let E,, = Ey. Then E,, has the required
properties. Since [E : F] = ¢ and [E : E,,] = (¢, we have [E,, : F| = ¢/, where f =d —e.

Suppose that « is a finite field and contains a primitive fth root of unity. Let B be the
integral closure of A in E,,. Then B is a complete regular local ring with residue field " a finite
extension of k.

Let wo = Ng,,/p(w) € A* and Wy € k*. Suppose that wy € A*¢. Then w, € x*. Since &
contains a primitive fth root of unity, we have |s*/k*| = |k*/k*| = (. Since it is surjective
from #’ to x, the norm map induces an isomorphism from x’*/x"*¢ to x*/x**. Thus the image of
w in £’ is an fth power. Since B is a complete regular local ring, w € B*¢. Suppose 0 < e < d.
Then v/d € E. Since E,,/F is a nontrivial unramified extension and F(v/3)/F is a nontrivial
extension of F' which is totally ramified at J, we have two distinct subextensions of E/F of
degree /£, in contradiction to the fact that E/F is cyclic. Hence wy ¢ A*‘. Further, we have
Ny p(Vwd) = Ng,, /p((—1) T wd) = (—1)E D6t Since f > 0, wy = (—1)E D g is
not an /th power in A. a

LEMMA 5.12. Suppose k is a perfect field. Let L. /F; be an unramified field extension of degree
N. Then there exists a field extension L/F of degree N such that L ® F; ~ L, and the integral
closure of A in L is regular.

Proof. Let L() be the residue field of L,. Suppose that L(7)/k(m) is unramified at the discrete
valuation of A/(w). Let &’ be the residue field of L(w). Then «'/k is an extension of degree N.
Write ' = k[T]/(f(T)) for some monic polynomial. Let g(7T') € A[T] be a monic polynomial
which is a lift of f(T"). Then clearly L = F[T]/(g(T)) has the required properties.

Suppose L(m)/k(m) is ramified. Let L(7),, be the maximal unramified extension of ()
contained in L(). Let Ly be the subextension of L, with residue field L(7),,. Then, as above,
there exists a field extension L/F such that L ® Fy ~ L,. Let A be the integral closure of A
in L. Then A is a regular local ring with (m,0) as the maximal ideal. Thus, replacing F' by
Lr, we assume that L(m)/k(n) is totally ramified. Hence L(w) = x(m)[T]/(f(T)) with f(T) =
TN +an_ 16TV +.. . 4+a,0T + 06 for some a; € A and a unit v € A, where the bar denotes the
image in A/(7). Let g(T) = TN + any_10TV "1 + -+ + a16T + v € A[T]. Let L = F[T/(g(T))
and B = A[T]/(g(T)). Let m be a maximal ideal of B. Let ¢ be the image of T" in B. We have
t(tN 1 tan_10tN 24 - 4a18) = —vé. Since § € m C 1, it follows that ¢ € . Since B/(7,t) ~ k,
m = (m,t) is the unique maximal ideal of B and hence B is a regular local ring. In particular, B
is integrally closed and hence B is the integral closure of A in L. O

Remark 5.13. Let L,/F; be an unramified extension of degree N and L/F be the extension of
degree N as in the proof of Lemma 5.12. Let B be the integral closure of A in L. Then, by the
construction of L, (,d’) is the maximal ideal of B for some ¢’ € B such that ¢’ is the only prime
in B lying over ¢ and Ny ,p(d') = vé! for some unit v € A and f > 1.

6. Reduced norms: complete two-dimensional regular local rings

Throughout this section we fix the following notation:
e A a complete two-dimensional regular local ring;
e [ the field of fractions of A;
e m = (m,0) the maximal ideal of A;

429

https://doi.org/10.1112/50010437X17007618 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007618

R. PARIMALA, R. PREETI AND V. SURESH

k= A/m a finite field;

¢ a prime not equal to char(k);

n = (%

o € H?(F, j1,) is unramified on A, except possibly at (7) and (6);

A =wr*dt, w € A aunit and s,t € Z with 1 < s,t < n.
The aim of this section is to prove that if o # 0 and «- (A) = 0, then there exist an extension
L/F of degree £ and p € L such that ind(a ® L) < ind(a) and N p(p) = A. We assume that:

e F contains a primitive £th root of unity.

We begin with the following lemma.

LEMMA 6.1. If a - (—=\) = 0, then sa = (E,o0,(—1)*t'\) for some cyclic extension E of F
which is unramified on A, except possibly at §. In particular, if s is coprime to ¢, then o =
(E',d', (—1)*TI\) for some cyclic extension E' of F' which is unramified on A, except possibly
at é.

Proof. By Lemma 4.7, there exists an unramified cyclic extension E; of F} such that sa® F =
(Ex,0,(—1)*T\). By Lemma 5.1, there exists a cyclic extension E of F' which is unramified on
A, except possibly at § with F® F ~ E,. Since E/F is unramified on A, except possibly at § and
A = wn*6t with w a unit in A4, (E, o, (—1)**1)) is unramified on A, except possibly at () and (§).
Since « is unramified on A, except possibly at (7) and (§), sa — (E, o, (—1)*T!)\) is unramified
on A, except possibly at (7) and (9). Since sa® Fy = (Er, 0, (—1)*t1\) = (E, 0, (—1)*"'\) ® Fy,
by Corollary 5.5, sae = (E, o, (—1)5T1\). 0

LEMMA 6.2. Suppose that - (=\) = 0 and A ¢ +F*. If « # 0, then ind(a ® F(V))) < ind()
and o - (—vV\) =0 € H}(FWVN), u%?).

Proof. Suppose that s is coprime to £. Then, by Lemma 6.1, o = (E’,0’, (—1)*1)) for some
cyclic extension E’ of F' which is unramified on A, except possibly at §. Since v;(\) = s is
coprime to ¢ and E'/F is unramified at , it follows that ind(a) = [E’ : F]. In particular,
ind(a ® FR/(—1)*+1\)) < [E' : F]/¢ < ind(c). Since s is coprime to ¢, we have (—1)* = —(¢)*
for some € = 41 and hence F({/(—1)sT1\) = F(v/)). Similarly, if ¢ is coprime to £, then
ind(a ® F(V)) < ind(a). Further, a.- (=v/A) = (E', ', \) - (=v/A) = 0.

Suppose that s and ¢ are divisible by ¢. Since A = wn®6t, we have F(VA) = F(Yw). Let
L = F(\/w) and B be the integral closure of A in L. Since w is a unit in A, by [PS14, Lemma 3.1],
B is a complete regular local ring with maximal ideal generated by m and 8. Since A & +F*’ and
A is a complete regular local ring, the images of £w in A/m are not fth powers. Since A/(m)
is also a complete regular local ring with residue field A/m, the images of +w in A/(7) are not
fth powers. Since F}; is a complete discretely valued field with residue field the field of fractions
of A/(m), +w are not £th powers in F. Since a - (—A\) = 0 and the residue field of F} is a local
field, by Lemma 4.9, ind(a ® L) < ind(«). Hence, by Proposition 5.8, ind(a ® L) < ind(«).

Since L, = LR F; and Ls = LR F}s are field extensions of degree £ over F; and Fj respectively,
and cores(a-(—v/\)) = a-(=\) = 0, by Proposition 4.6, (a-(—v/A))® Ly = 0 and (a-(—=v/\))® Ls
= 0. Hence, by Corollary 5.5, a - (—v/A) = 0. O

LEMMA 6.3. Suppose a = (E/F, o, uné"™) for some m > 0, u a unit in A, E/F a cyclic extension
of degree % which is unramified on A, except possibly at §, and o a generator of Gal(E/F). Let £¢
be the ramification index of E/F at 6 and f = d—e. Let i > 1 be such that £/ +£% > ¢m. Let v € A

be a unit which is not in F** and L = F(\/v6 +H"—tm 4 ym) If f > 0, then ind(a® L) < ind(a).
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Proof. Let B be the integral closure of A in L and r = ¢/ + ¢ — ¢m. Since ¢/ + (¥ > ¢m,
L = F(y/vé" + um) and vd" + u is a regular prime in A. Thus B is a complete regular local ring
(cf. [PS14, Lemma 3.2]) and 7, ¢ remain primes in B. Note that 7 and J may not generate the
maximal ideal of B. Let L, and Ls be the completions of L at the discrete valuations given by
7 and 6, respectively. Since v ¢ F*!, F({/v) is the unique extension of F of degree £, which is
unramified on A. Since f > 0, there is a subextension of E of degree ¢ over F' which is unramified
on A and hence F(/v) C E.

Since E/F is unramified on A, except possibly at 0, [E : F| = [E; : F;] and hence ind(a) =
per(a) = [E : F| (Proposition 5.8).

Since 7 is divisible by ¢, L; ~ F;(\/v) and hence L, C E. Thus ind(a® L,) < ind(«). Since
r > 0, Ls ~ Fs(/ur). Since a = (E/F,0,uné™), ind(a ® Ls) < [E® Ls : Ls] < [E : F]. In
particular, per(a ® L) < ind(a) and per(a ® Ls) < ind(«). Since o ® L is unramified on B,
except possibly at m and §, and H?(B, uy) = 0, per(a® L) < ind(«). If d = 1, then per(a® L) <
ind(a) = ¢ and hence per(a ® L) = ind(a ® L) = 1 < ind(«). Suppose that d > 2.

Let ¢ : 2 — Spec(B) be a sequence of blow-ups such that the ramification locus of
a ® L is a union of regular curves with normal crossings. Let V = ¢~!(P). To show that
ind(a® L) < ind(«), by Proposition 5.10, it is enough to show that for every point = of V,
ind(a ® L) < ind(c).

Let © € V be a closed point. Then, by Corollary 5.9, ind(a ® L,) = per(a ® L,). Since
per(a® L;) < ind(a), ind(a ® Ly) < ind(«).

Let x € V be a codimension zero point. Then ¢(z) is the closed point of Spec(B). Let 7 be
the discrete valuation of L given by z. Then k(r) ~ /(t) for some finite extension k' over x and
a variable ¢ over . Let v be the restriction of  to F.

Suppose that v(6") < v(n). Then L ® F, = F,(v/vé7). Since ¢ divides r, L ® F, = F,(/v).
Since F({/v) C E, ind(a® L® F,)) < ind(«). Suppose that v(6") > v(r). Then L® F,, = F,({/ur)
and, as above, ind(a ® L ® F,)) < ind(«). Suppose that v(6") = v(w). Let g = 7/6". Then g is a
unit at v and Ly = F, (/v + ug). We have und™ = ugd™m = ugd® " and

OZ®F = (E®FV/FV70'®1,U7T(S€m) = (E®FI//F1/,O'®]_,Ug5£f+€di),

Since [E : F] = ?, a®F, = (E®F,/F,,0®1,ugd"). Suppose that f = d. Then E/F is
unramified and hence every element of A* is a norm from E. Thus a ® F, = (E ® F,/F,,
o ® 1,woug) for any wy € A*. Suppose that f < d. Then e = d — f > 0 and hence, by
Lemma 5.11, we have F = Em,(em), for some unit w in the integral closure of A in F,,,
with NE/F(E\E/%) = wi6Y with w; € A*\A*. Thus

a® F :(E®FV/FV70'®17U.95N):(E®FV/FV7U®17wOug)’

with wg = wfl. Hence, in either case, we have a ® F, = (E® F,/F,, 0 ® 1, woug) with wg ¢ A*..

If E® F), is not a field, then ind(a® F,) < [E : F]. Suppose E® F), is a field. Let 6 = woug.

. . . pd—1 pd—1
Since a®F, = (E®F,/F,,0®1,0), ind(a®L®F,) <indla® L& F,(° V0))-[Lo F,(" Vo) :
L®F,]. Since [L®Fy(£d7\1/§) . L®F,] <44 ! < [E: FJ, it is enough to show that a®L®Fy(4d7\1/§)
is trivial.

Since F(\/v)/F is the unique subextension of E/F of degree ¢ and [E : F] = ¢¢, we have
a@F,(“ V) = (F,(* V8, ¥0)/F,(“ V0),0, ““V/8) (cf. Lemma 2.1). Let M = F,(** /). Since
K contains a primitive ¢th root of unity, we have o ® M = (v, ed_\l/g)g. Then M is a complete
discretely valued field. Since ¢ is a unit at v, 8 is a unit at v. Hence the residue field of M
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. d=1 = . . ed—1 . . .
is k(v)(" V). Since # and v are units at v, « ® M = (v, “ /@) is unramified at the discrete
valuation of M. Hence it is enough to show that the specialization 8 of a ® M is trivial over

K(V)(Ed_\l/g) ® Lo, where Lg is the residue field of L ® F,, at v.
Suppose that Ly/F, is ramified. Since Ly = F,(\/v + ug), v + ug is not a unit at v. Thus
v = —ug modulo Flffd and 0 = woug = —wov modulo Fjed. In particular, edi\l/g = "'df\l/Tov
modulo M**. Since v,y € x and & a finite field, 8 = (7, Zd_\l/é) = (7, éd_\l/ToW) is trivial.
Suppose that Ly/F, is unramified. Then Ly = x(v)(y/U +ug). Since k(v) is a global field of
positive characteristic and d — 1 > 1, by Lemma 4.13, 8 ® Lo(zd_\l/g) =0. O

LEMMA 6.4. Suppose L;/Fy and Ls/Fys are unramified cyclic field extensions of degree ¢ and
tr € Ly, us € Ls such that:
o —A=Nr /p (tx) and =X\ = Np,/r;(16);
o a-(ur) =06 H*(Ly, %), a- (us) =0 € H*(Ls, u7?);
e a=0o0ra#0,indla® Ly) < ind(a) and ind(a ® Ls) < ind(c).
Then there exist a cyclic extension L/F of degree { and y € L such that:
—A= Np/r(p);
a-(u) =0€ H(L,p3?);
L®F,~L;and L ® Fs >~ Ls;
if « # 0, then ind(a ® L) < ind().

Proof. Since a - (pirx) = 0 € H*(Lr, u$?) and —X = Ny, (jix), by taking the corestriction, we
see that a - (—\) = 0 € H3(Fy, u%?). Since o - (—\) is unramified on A, except possibly at 7 and
d, by Corollary 5.5, a - (—A) = 0.

Suppose that A ¢ £F**. Then, by Lemmas 2.6 and 6.2, L = F(V/A) and u = —v/X have the
required properties.

Suppose that A € F** or —\ € F**. Let L(r) and L(5) be the residue fields of L, and Lg,
respectively. Since L /F; and Ls/Fs are unramified cyclic extensions of degree ¢, L(m)/x(m) and
L(6)/k(0) are cyclic extensions of degree ¢. Since F' contains a primitive ¢th root of unity, we
have L(r) = x(m)[X]/(X? — a) and L(8) = k(8)[X]/(X! — b) for some a € k(m) and b € k().
Since k(7) is a complete discretely valued field with & a parameter, without loss of generality we
assume that a = lege for some unit u; € A and € = 0 or 1. Similarly, we have b = WEI for some
unit us € A and € =0 or 1.

Suppose a = 0. If =\ € F*, then L = F({/u16 + ugn?+%) and p = /=X € F C L have
the required properties. Suppose —A ¢ F**. Then A\ € F*! and hence £ = 2 and —1 ¢ F*?. In
particular, —1 & x(7)*? and —1 ¢ k(8)*2. Since —\ is a norm from L, and Ls, —1 is a norm from
L, and Ls. Thus —1 is a norm from the extensions L(7)/k(m) and L(0)/k(0). Hence L(7)/k(m)
and L(0)/k(0) are unramified and hence e = ¢ = 0. Let L be the degree two extension of F' which
is unramified on A. Then —1 is a norm from L. Hence there exists y € L such that N p (1) = —A
and L, p have the required properties.

Suppose that o # 0. Then ind(a ® L) < ind(«) and ind(a ® Ls) < ind(«).

By Corollary 5.7, we assume that a = (E/F, o,umd’) for some cyclic extension E/F which
is unramified on A, except possibly at d, v a unit in A and j > 0. Then ind(a) = [E : F].
Let Ey be the residue field of E at 7. Then [E : F| = [Ey : k(7)]. Since 0 (a)) = (Eo/k(7),7),
per(Or(a)) = [E : F] = ind(«). Since L;/F; is an unramified extension of degree ¢, 7 is a
parameter in L, and hence ind(aw ® L) = [EL; : Lr|. Since ind(a ® L) < ind(a) = [Ey : Fy],
[ELy : L;] < [E; : Fy| and hence L, C E;. Thus the residue field L(7) of L, is the unique
subextension of Ey/k(m) of degree /.
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Suppose that e = ¢ = 0. Since L, and L; are fields, u; and us are not ¢th powers. Let L/F
be the unique cyclic field extension of degree ¢ which is unramified on A. Then L ® F ~ L,
and L ® F5 ~ Ls. Let B be the integral closure of A in L. Then B is a regular local ring with
maximal ideal (7, d) and hence, by Proposition 5.8, ind(a ® L) < ind(«).

Suppose € = 1. Then L, = Fy(/u1d) and L(r) = r(m)({/u1d). Since Ey/k(r) is a cyclic
extension containing a totally ramified extension, Fy/k(7) is a totally ramified cyclic extension.
Thus (7)) contains a primitive £4th root of unity and Ey = /@(77)(4/17?) (cf. Lemmas 2.3
and 2.4). In particular, F contains a primitive ¢th root of unity and a = (u1d,urd’) =

(u1d,u'm). Then O5(a) = m(é)(ed (u/m)). Since Lg/Fs is an unramified extension of degree £

with ind(a ® Ls) < ind(«), the residue field L(d) of L is the unique subfield of m(&)(zd u'T)
of degree ¢ over k(5). Hence L(8) = k(8)(Vu/w). Since L(6) = r(8)(Vuzm® ), we have ¢ = 1
and u' = up modulo F**. Hence o = (u16, upm). Let L = F(\/u16 + upm). Then L ® Fy ~ L, and
L®Fjs =~ Ls. Since for any a,b € F*, (a,b) = (a+b, —a~'b), we have o = (u16+ugm, —u; 6 Lugr).
In particular, ind(a ® L) < ind(«).

Suppose that e = 0 and ¢ = 1. Suppose j is coprime to ¢. Then, by Lemma 4.14, ind(«) =
per(ds(c)), and, as in the proof of Corollary 5.7, we have o = (E'/F, o', vén?") for some cyclic
extension E’/F which is unramified on A, except possibly at m. Thus, we have the required
extension as in the case e = 1.

Suppose j is divisible by £. Since € = 0, Ly = Fr(Yu1). Since the residue field L(7) of L is
contained in the residue field Ey of E at 7, F(J/u1) C E and hence E/F is not totally ramified
at §. Since F/F is unramified on A, except possibly at §, by Lemma 5.11, E = Enr(em)
for some unit w in the integral closure of A in E,,. Suppose ¢ = 0. Then E = E,,/F is
unramified on A. Since k is a finite field and A is complete, every unit in A is a norm from
E/F. Thus, multiplying umd’ by a norm from E/F, we assume that a = (E/F, o, usmd?).
Suppose that e > 0. Then, by Lemma 5.11, NE/F(ZW) = w6 with wy € A*\ A**. Since
A* /A*fd is a cyclic group of order dividing ¢%, we have u™luy = w{l modulo A**. In particular,
NE/F((Zm)j/) = w{éﬁj’ = uwlups?9" modulo A*’. Hence, we have a = (E/F,o, u27r6j+j’£f)
for some j’. Since j is divisible by £ and f > 1, j+"¢f is divisible by £. Hence, we assume that o =
(E/F,0,usm6"™) for some m. Thus, by Lemma 6.3, there exists i > 0 such that ind(a ® L) <
ind(a) for L = F(/u 64+ 4 ugmstm).

By choice, we have that L/F is the unique unramified extension or L = F(\/u1d + uam) or
L = F/u 07+ 4+ upmé®™) with ¢/ 4 ¢% > ¢m. Let B be the integral closure of A in L. Then
B is a complete regular local ring with m and ¢ remain prime in B.

Suppose —\ € F*£. Since —\ = —wn®§t, we have —\ = wgwésléétl for some unit wg € A. Let
p = wom*1 0" € F. Then Ny p(p) = pt = —\. Since a - (—\) = 0, by Proposition 4.6, a - (1) = 0
in H3(Lr, p©?%) and H3(Ls, p®?). Hence - (1) is unramified at all height one prime ideals of B.
Since B is a complete regular local ring with residue field finite, - (1) = 0 (Lemma 5.3).

Suppose that —\ & F**. Then A € F*/, { =2 and —1 ¢ F*. Hence —1 ¢ F? and —1 ¢ F2
In particular, —1 ¢ k(7)*2, —1 ¢ x(5)*2. Since A € F*? and —)\ is a norm from L, and Lg, —1
is a norm from L, and Ls. Hence —1 is a norm from L(w) and L(d). Since x(m) and () are
local fields with residue fields of characteristic not equal to 2, we have L(w) ~ x(7)(y/—1) and
L(0) ~ k(6)(/—1). Let L = F(/—1). Since & is a finite field of characteristic not equal to 2, —1
is a norm from L. Since A € F*2, there exists u € L such that Np/p(p) = —A. Further, L and p
have the required properties. u
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LEMMA 6.5. Suppose that v, (\) is divisible by ¢, « is unramified on A, except possibly at m and
d, and o - (—A) = 0. Let L, be a finite product of unramified finite field extensions of F with
dimp (Lz) =4, pur € Ly and dy > 2 such that:
 Np .k (x) ==X
o ind(a® Lr) < do;
o - (ur)=0in H*(Lx, u}?).
Then there exist an étale algebra L over F' of degree ¢ and y € L such that:
o Npp(p)=—X\
ind(a® L) < do;
a-(u)=0¢€ H3L, u%?); and
there is an isomorphism ¢ : Ly — L ® F with

Sux) (o)™ e (Lo F)™

for all m > 1.
Further, if L;/F; is a field extension with the residue field of L, unramified over r(m), then L
can be chosen to be a field extension with L/F unramified on A.

Proof. Since v,()\) is divisible by ¢, A = wr*1*§* for some w € A a unit. Write L, = [T Lr
with Ly ;/F; a finite unramified extension and pir = (@1, ..., ftq) with p; € Ly ;. Since L ;/Fx
is unramified, 7 is a parameter in L ; for all i. Write p; = ;7" for some 0; € L ; a unit at 7.
Let 0 = (61,...,04) € Lx. Since Np,_/p (fz) = A = w146t we have Ni,/F, (0) = wd'.

For each i, let L;/F be a field extension with L; ® Fr o~ Lr; as in Lemma 5.12. Let B; be
the integral closure of A in L;. Then each B; is regular local ring with maximal ideal (7, d;) for
some prime &; with Ny, /¢(d;) = v;07i for some unit v; € A and f; > 1 (Remark 5.13). Then the
residue field L;(m) of L; at the discrete valuation given by  is the field of fractions of B; /(). In
particular, L;(7) is a complete discrete valued field with §; € B;/(7) as a parameter. We identify
Ly ; with L; ® Fr and assume that p; € L; ® Fr.

For 1 < i < ¢, let 6; be the image of 6; in L;(w). Then 6; = Eg' for some unit w; €
B; and t; € Z. Since Ny, g, (0) = wé* and Ny, /p (5;) = v;6/, we have T Np,(n)/n(m) (0i) =

I Ny, (x) /() (i) T4 (vit 5l ") = wé'. Hence

q

q
Zfz i =1 and NLl( )/I{ﬂ' H )/ k() wz) IHrlTiiti‘
2

1

Since A is complete, there exists w] € By such that w'y = w, € By/(r) and Ny, /p(w)) =
w4 N,/ (wi) 1Y v; . Let L= Li and pu = (w} o} 71, wadi2 o1, . .. wqé(tfﬂsl) € L. Then
we claim that L and p have the required properties.

By the choice of w}, we have Ny p(u) = A. Since L; ® Fr =~ Ly ;, we have L ® Fr ~ L. Since
w'y =W € By/(r), we have p~Lpu, = 1 € B/(n). Since B is complete, we have =y, € (L F, )"
for all m > 1.

Since « is unramified on A, except possibly at m and §, o ® L; is unramified on B;, except
possibly at 7 and ¢; for each 7. Since ind(a ® Ly;) < do, by Proposition 5.8, ind(a ® L;) =
ind(a ® Ly ;) < do. Hence ind(a ® L) < do.

Since pulpyr € (L@ E)" forallm > 1, a- (u) = a - (pr) = 0 € H3 (L, p£?). Since « is
unramified on A, except possibly at 7 and J, and g = (wi&ilﬂsl,wgéégﬂsl, ces ,wqééqwsl) with w]
and w; units in B, by Corollary 5.5, we have a - (1) = 0 in H3(L, u®?). Thus L and p have the
required properties.

434

https://doi.org/10.1112/50010437X17007618 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007618

LOCAL-GLOBAL PRINCIPLE

Further, if L, /F; is a field extension such that the residue field L (7) of L, is an unramified
extension of k(7), then by the choice of L, L/F is a field extension with L/F unramified on A
(see the proof of Lemma 5.12). O

LEMMA 6.6. Suppose that a = (E/F, o, und™) for some cyclic extension E /F which is unramified
on A, except possibly at §. Let Es be the lift of the residue of o at §. If t1a ® Es = 0 for some
t1, then there exists an integer r1 > 0 such that w16™* " is a norm from the extension E/F
for some unit wy € A.

Proof. Write a ® F5 = o' + (Es/Fs,05,0) as in Lemma 4.1. Suppose that t;a ® Es = 0. Since
a® Es =d ® Ej, t10/ ® E5 = 0. Hence t1¢/ = (Eg,04,0) for some 0 € Fy. Since o and Ej/F;s
are unramified at J, we assume that 6 € Fy is a unit at . Since the residue field x(6) of Fs is a
complete discretely valued field with the image of 7 as a parameter, without loss of generality we
assume that 6 = won™ for unit wg € A and r; > 0. Let A\ = won" 6", Since t1o’ = (Ejs,04,0),
by Lemma 4.7, 9s(a - (A\1)) = 0. Since x(6) is a local field, o - (A1) = 0 € H3(Fs, u?) (cf. the
proof of Proposition 4.6). Since « is unramified on A , except possibly at 7, § and A\ = w15
with wg € A a unit, a - (A1) is unramified in A, except possibly at © and §. Hence, by Corollary
5.5, a-(\1) =0¢€ H3F,u%?). We have

0=0r(a-(\1)) = 0x((E/F,0,urd™) - (wor"6")) = (E(n)/k(m),7, (—1)Tlﬂ”@algmm_tl).

Since (E/F, o, (—1)”1u”w51(5m”_t1) is unramified on A, except possibly at 7 and ¢, by Corollary
5.5, (B/F,0,(—1)"u 1wy 6™ ~4) = 0. In particular, (—1)"u" 1wy 16" 74 is a norm from the
extension F/F. O

LEMMA 6.7. Suppose that a-(—)\) = 0 and A = wr*6'¢ for some unit w € A and s coprime to (.
Let Es be the lift of the residue of o at §. If t1a¢ ® E5 = 0, then there exists 8 € A such that:

e a-(0)=0;
e 1:(0)=0;
[ J 1/5(9) == tl.

Proof. Since s is coprime to £, by Lemma 6.1, a = (E/F, o, (—1)*T!)) for some cyclic extension
E/F which is unramified on A, except possibly at §. Let r = [E : F. Since r is a power of ¢ and
s is coprime to £, there exists an integer s’ > 1 such that ss’ = 1 modulo r. We have

a=a* = (E/F,o,(—1)* T wrs§ht)s
= (B/F.0)* - (-1 gty
= (B/F.0) - ((-1) w' w570,

Since s is coprime to ¢, we also have (E/F,0)® = (E/F,0%) (cf. §2) and hence a =
(E/F,0%,((=1)* w®76*'"1%)). Thus, by Lemma 6.6, there exist a unit w; € A and r; > 0 such
that w6541~ is a norm from E/F. Since s'fr; — 1 is coprime to ¢, s’fry — 1 is coprime to
r and hence there exists an integer ro > 0 such that (s¢r; — 1)ro = 1 modulo r. In particular,
w26t = (w651 —1)r2 modulo F* and hence w(26% is a norm from E/F. Thus § = w[?6"
has the required properties. O

—1
—1

LEMMA 6.8. Let E, and Es be the lift of the residues of o at w and d, respectively. Suppose that
A = w1461 for some unit w € A. If - (—=\) = 0, s5a ® Er = 0 and t;a ® E5 = 0, then there
exists 0 € A such that:
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o «-(0)=0;
o ve(0) =51,
o v5(0) =t

Proof. By Corollary 5.7, we assume that a = (E/F,o,und™) for some extension E/F
which is unramified on A, except possibly at § and m > 0. Without loss of generality, we assume
that 0 < m < [E : F]. By Lemma 6.6, there exist an integer 7 > 0 and a unit w; € A such that
w18™1 74 is a norm from E/F. Let r = [E : F] and 0 = (—um + ") =St (—u) 175150,
Since r —m > 0, we have v, (0) = s1 and v5(0) = t;.

Now we show that a - () = 0. Let y be a prime in A with () # (7) and (y) # (9). Since o
is unramified on A, except possibly at 7 and 0, if v does not divide 6, then « - (6) is unramified
at . Suppose «y divides 6. Then v = —um 46" ~™. Thus umd™ = §" modulo . Since 9y (a - (0)) =
(E(y),7,umd )%, where E(v) is the residue field of E at v and bar denotes the image
modulo 7, we have 8, (a - (0)) = (E(y),7,@wd )"~ = (E(v),7,d )"~ = 0. Hence a - (0)
is unramified on A, except possibly at 7 and §.

We have (—um + §7~")r1—s1 = §7(ri—si)+m(s1—m1) modulo 7 and hence

0= 5T(T1781)+m(817”)wf1(—u)slwslétl = (—umd™)® (w1 6™ 1)1 modulo F".
Since w16™"1 1 is a norm from E/F and r = [E : F], we have

(- (0)) ® Fr = (E/F,0,und™) - ((—umd™)* (w 6™~ 1)"1) @ F,
= (E/Fv g, UW(Sm) : ((_UW(sm)sl) ® Fr=0.

Thus, by Corollary 5.5, we have « - (6) = 0. O

7. Patching

We fix the following data:

e R a complete discrete valuation ring;

K the field of fractions of R;

k the residue field of R;

¢ a prime not equal to char(x) and n = £¢ for some d > 1;

X a smooth projective geometrically integral curve over K;

F the function field of X;

a € HX(F,uy,), a # 0;

A€ F* with a- (=) =0;

Z  a normal proper model of X over R and X the reduced special fiber of Z7;

Py the finite set of closed points of Xy consisting of all the points of intersection of

irreducible components of Xj.
We recall the following notation from [HH10, §6] and [HHKO09, §3.3]. For z € 2, let A,
be the completion of the local ring A, at  on 27, F, the field of fractions of A, and k(zx) the
residue field at . Let n be a codimension zero point of Xy and U C 7 be a nonempty open
subset. Let Ay be the ring of all those functions in F' which are regular at every closed point
of U. Let t be a parameter in R. Then t € Ay. Let Ay be the (t)-adic completion of Ay and Fyy
be the field of fractions of AU. Then F' C Fy C F,.

Let n € X be a codimension zero point and P € X be a closed point such that P is in the

closure of n. By an abuse of notation, we denote the closure of by 1 and say that P is a point
of n. A branch is a height one prime ideal g of Ap containing ¢. Let © be a branch. Let Ap be
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the completion of the localization of Ap at o and F|, the field of fractions of /1@. The contraction
PN Ap of p to Ap is a height one prime ideal and hence a branch p uniquely determines an
irreducible component 7 of Xy containing P.

Suppose further that 2 is a regular proper model of X over R and X is a union of regular
curves with normal crossings. Then A, A, are regular local rings. Every branch g is uniquely
determined by a pair (P,7n) where 1 is a codimension zero point of Xy and P € 7 is a closed
point. In this case, F|, is the completion of Fpp at the discrete valuation of Fp given by n. We
also denote F|, by Fp,. Note that the residue field x(n)p of flp is the completion of the residue
field k(n) at the discrete valuation given by P.

We begin with the following result, which follows from [HHK15a, Theorem 9.11] (cf. the
proof of [PS15, Theorem 2.4]).

PROPOSITION 7.1. For each irreducible component X, of Xg, let U, be a nonempty proper open
subset of X,, and & = Xo\ U, U, where 1) runs over the codimension zero points of Xq. Suppose
that Py C ZP. Let L be a finite extension of F'. Suppose that there exists N > 1 such that for
each codimension zero point 1 of Xo, ind(a ® L ® Fy,) < N, and for every closed point P € &,
indla® L ® Fp) < N. Then ind(a ® L) < N.

Proof. Let % be the integral closure of 2" in L and ¢ : % — 2  be the induced map. Let &’ be a
finite set of closed points of % containing the inverse image of &2 under ¢. Let U be an irreducible
component of Yp\&'. Then ¢(U) C U, for some U,, and there is a homomorphism of algebras
from L® Fy, to Ly. (Note that L ® Fy, may be a product of fields.) Since ind(a® L® Fy,)) < N,
we have ind(a® Ly) < N. Let Q € &'. Suppose ¢(Q) = P € &. Then there is a homomorphism
of algebras from L ® Fp to Lg. (Once again note that L ® Fp may be a product of fields.) Since
ind(a ® L ® Fp) < N, ind(a ® Lg) < N. Suppose that ¢(Q) € U, for some U,,. Then there is a
homomorphism of algebras from L® Fy;, to Lg. Thus ind(a® Lg) < N. Therefore, by [HHK15a,
Theorem 9.11], ind(a ® L) < N. O

LEMMA 7.2. Let i be a codimension zero point of Xg. Suppose there exist a field extension or
split extension L, /F, of degree { and i, € L, such that:

(1) Np,/r,(1g) = =X

(2) ind(e ® Ly) < ind(a);

(3) o () =0 € H3(Ly, u2?).

Then there exist a nonempty open subset U, of 1), a split or field extension Ly, /Fy, of degree {
and py, € Ly, such that:

(1) Ny, /ry, (Ho,) = =A;

(2) ind(a® Ly,) < ind(a);

(3) a-(uv,) =0€ H*(Lu,, u5?);

(4) there is an isomorphism ¢y, : Ly, ® Fy, — Ly with ¢y, (py, ® 1);1;1 € L;;em for all m > 1.
Further, if Ly/F, is cyclic, then Ly, /Fy, is cyclic.

Proof. Suppose L, = [[ F;, is the split extension of degree £. Write p, = (p1, ..., pe) with p; € F,.
Then —A\ = Np, /p, (y) = p1 -+ - pe- Since ind(a ® Ly) = ind(a ® F;) < ind(a), by [HHK15a,

Proposition 5.8], [KMRT98, Proposition 1.17], there exists a nonempty open subset U, of 1 such
that ind(a ® Fy,) < ind(a). Since F;, is the completion of F' at the discrete valuation given
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by n, there exist 6; € F*, 1 < ¢ < £, such that Gi,u;l = 1 modulo the maximal ideal of Rn. Let
LUn = H FUn and MU, = (—)\(02 e 96)—1’ fo, ... ,eg) S LUW' Then NLUn/FUn (NUT,) = —\. Since
o (6;) € H3(Fy,,p3?) and « - (6;) = 0 € H3(F,, u$?), by [HHK14, Proposition 3.2.2], there
exists a nonempty open subset V,, C U, such that o- (§;) =0 € H 3(Fvn, 2). By replacing Uy
by Vi), we have the required Ly, and py, € Ly, .

Suppose that L, /F), is a field extension of degree ¢. Let F# be the henselization of F' at the
discrete valuation 7. Then there exists a field extension Lf; / F,? of degree £ with an isomorphism
¢+ Ly @pp Fyy — Ly. We identify L) with a subfield of L, through ¢} Further, if L,/F, is a
cyclic extension, then LZ / F# is also a cyclic extension. Let 7, € LZ be a parameter. Then 7, is
also a parameter in L,. Write u, = u,7; for some u, € L, a unit at n. Since N, /r, (fn) = =,
we have —\ = Ny, _/p, (uy)Ny, /5, (7). Since u77 € L, is a unit at n, Ny /F (uy) € F,, is a unit
at 1. By [Art69, Theorem 1.10], there exists u € Lh such that NLh/Fh( ) N,/ (uy) and
ug = u, modulo the maximal ideal of the valuatlon ring of LZ. Let “n = uf;w; € L,};. Then

a-(u) = a-(py) = 0 € H3(Ly, p?) and hence a-(plt) = 0 € H3(LE, 4u$?) (cf. the proof of [HHK14,
Proposition 3.2.2]). Since F# is the filtered direct limit of the fields Fy,, where V' ranges over the
nonempty open subset of 7 [HHK14, Lemma 3.2.1], there exist a nonempty open subset Uy, of 1, a
field extension Ly, /Fy, of degree £ and uy, € Ly, such that N Ly, /Fu, (pv,) = —A and there is an

isomorphism qﬁ}(} : Ly, @F) ~ Lh with ¢}, (,uUn) = h . Since uf;’ = u,y modulo the maximal ideal of
the valuation ring of Ly, u; = u,7; and ,u = u77 1t follows that qSU (ho, @ 1), ~1c L*Z for all
> 1. By shrinking U;;, we assume that o (uy, ) = 0 € H3(Ly,, n3?) [HHK14 Prop031tlon 3.2.2].

Further if L,/ F;, is cyclic, by shrinking U,,, we can assume that LU77 / Fy, is cyclic. O

For the rest of this section we assume that for each point = of X, there exist an étale algebra
L, /F, of degree ¢ and p, € L, such that:

(1) Np,/p,(pz) = =X
(2) a: (/Lx) =0¢€ Hg(L:quu;?Q);

(3) ind(a® L;) < ind(«);

(4) for any branch (P,7n) there is an isomorphism ¢p, : L, ® Fp, - Lp ® Fp, such that
pa(pm)pp’ € (Lp @ Fpy)*™" for allm > 1;

(5) if x = n is a codimension zero point of Xy, then L, /F), is either a field or the split extension.

LEMMA 7.3. There exist:
e a field extension L/F of degree (;
e a nonempty open proper subset U, of n for every codimension zero point 7 of Xo and
'u,Un ceL® FUn;
o forevery Pe & = Xo\UU,, up € L® Fp,
such that:
(1) ind(ae® L) < ind(«);
(2) Nrery, /Fu, (M’Un) = —Xand a- (,uU ) =0¢€ H3(L® Fy,, u$?) for all codimension zero points
n of Xop;
(3) Nigrp/rp(Wp) ==X and a- (up) =0 € H3(L @ Fp, pu3?) for all P € 2;
(4) for any branch (P,n), M/Un:“/P € (Lp® Fpy)*" for all m > 1.

Further, if for each x € Xy, L, /F, is cyclic or split, then L/F is cyclic.
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Proof. Let n be a codimension zero point of Xy. By assumption, there exist a field or split
extension L,/F,; and u, € Ly such that Np /g (uy) = =\, a - (uy) =0 € H3(L,, u%?) and
ind(av ® Ly)) < ind(cr). By Lemma 7.2, there exist a nonempty open set U, of 7, a field or split
extension Ly, /Fy, of degree £ and uy, € Ly, such that Niy, /Fu, (ru,) = =\, a- (uy,) =0 €
H3(Ly,, p$?), ind(a® Ly, ) < ind(«), ¢, : Ly, @ F,) > L, an isomorphism ¢y, (ur, @1)u, ' € Lf;m
for all m > 1. By shrinking U, if necessary, we assume that %y N U, = §.

Let & = Xo\ U, U, and P € &. Then, by assumption, we have an étale algebra Lp/Fp
of degree ¢ and for every branch (P,n) there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp,.
Thus ¢py, = ¢py(dy®1): Ly, ® F;; ® Fpy — Lp ® Fpy, is an isomorphism. Thus, by [HH10,
Theorem 7.1}, there exists an extension L/F of degree ¢ with isomorphisms ¢y, : L® Fy, — Ly,
for all codimension zero points 1 of Xy and ¢p : L ® Fp — Lp for all P € & with the following
commutative diagram:

U, ®1
L®FUU®FP,77*>LU"®F77®FP,77

i le

®1
L®Fp® Fpy—22 s Lp® Fp,

where the vertical arrow on the left is the natural map. Further, if each L,/F is cyclic or split
for all z € Xy, then L/F is cyclic [HH10, Theorem 7.1].

Since ind(a® L ® Fy, ) < ind(a) for all codimension zero points of Xy and ind(a® L ® Fp) <
ind(a) for all P € &, by Proposition 7.1, ind(a ® L) < ind(«). In particular, L is a field.

For every codimension zero point 1 of Xy, let ,LL/Un = (¢v,) *(uu,) € L ® Fy,, and for every
Pe P let iy = (¢p) 1 (pp) € L& Fp. Since #u, and ¢p are isomorphisms, we have the required
properties. O

PROPOSITION 7.4. Suppose that for every branch o = (P,n), there exists t, > 0 such that Fp,,
has no primitive f'¢th root of unity. Let L/F be a cyclic field extension of degree (. Suppose
that:
e for every codimension zero point n of Xy, there exist a nonempty open proper subset U,, of
n and 'UIU,, € L®y,;
o forevery Pe & =Xo\UU,, up € L® Fp,
such that:

(1) NiLgFy, /Fu, (,u’Un) = —Xand a- (M,Un) =0¢€ H*(L® Fy,, n$?) for all codimension zero points
n of Xo;

(2) Nrgrp/rp(Wp) ==X and a- (up) =0 € H3(L @ Fp, pu3?) for all P € 2;

(3) for any branch (P,n), u’Unu'gl € (Lp® Fpy)"" for allm > 1.

Then there exists € L* such that:

® Np/p(p)=—X; and
o a-(u)=0¢c HL,u3?).

Proof. Let o be a generator of Gal(L/F). Let p = (P, n) be a branch. Since Nrgr,, /Fp, (//Un) =

: _ _yd d
Nrsrp.,/Fp., (#p), by Lemma 2.7, there exists 6p, € L ® Fp,, such that /‘/U,,/‘/P 1 9]{{7 0(9%”).
Applying [HHKO09, Theorem 3.6] for the rational group Ry /Gy, there exist 0y, € L @ Fy, and
fp € L ® Fp for every codimension zero point n of Xy and P € & such that for every branch
(P,n), 0py = 0u,0p.
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Let ,uU = MU 94 (Hafd) € L® Fy, and pp = uPGPZ 0(95 ) € L® Fp. If (P,n) is a branch,
then we have

d

H/lljn = N/Une (QUf )
_ d _pd
= H%epﬁ; U(‘gP,n)aénU(eUf )

_pd d
:NQDGPE a(0p)
=lp € L& Fpy.

Hence, by [HH10, Proposition 6.3], there exists p € L such that u = u'én and p = ,u’l’D for every
codimension zero point 1 of Xy and P € &2. Clearly, NL/F( ) = —Xover F. Let P € &. Since
a-(p) =0and a-(8%5) =0, a-(u) = 0 € H3 (L& Fp, u?). Similarly, a-(u) = 0 € H3(L® Fy, , n2?)
for every codimension zero point 1 of Xy. Let & be the normal closure of 2" in L and Y} the
reduced special fiber of #. Let 1 be a codimension zero point of Y. Then the image 7 of n’
in X is a codimension zero point. Since F;) C L,y, we have a map L ® Fy, — L, and hence
a- () =0€ H3(Ly, u$?). Let Q be a closed point of Yy and P its image in X,. Suppose P € U,
for some 7. Since Fy, C Fp C Lq, it follows that o - (1) = 0 € H*(Lg, u$?). Suppose P € 2.
Since Fp C Lg, we have a-(u) = 0 € H3(Lg, u?). Hence, by [HHK14, Theorem 3.2.3], a- (1) = 0
in H3(L, u%?). O

PROPOSITION 7.5. Suppose that for every branch o = (P,n), there exists t, > 0 such that Fp,,
has no primitive ¢'¢th root of unity. Let L/F be an extension of degree { as in Lemma 7.3. Then
there exist a field extension N/F of degree coprime to ¢ and p € (L @ N)* such that:

® Nrgn/n(p) = —A; and

e a-(p)=0¢€ H3(L® N, u?).

Proof. Let L/F, U,, 2, ,u’Un and /5 be as in Lemma 7.3. Since L/F is an extension of degree /,
there exists a field extension N/F' of degree coprime to ¢ such that L ® N is a cyclic extension
field extension N of degree /.

Let 2 be the integral closure of 2" in N and Yj the reduced special fiber of %. Let ¢ : Yy —
X be the induced morphism.

Let ' € Yy be a codimension zero point. Then n = ¢(n') € Xy is a codimension zero point.
Let Uy = ¢*1(Un) N1 € Yy. Then U,y is a proper open subset of 1’ and we have an inclusion
Fy, C Ny,,. Let M/Un’ € (L®r N)®n Ny,, be the image of M/Un under the natural map L ®p
Fy, - L®F Ny, =~ (L®pr N) @y Ny, ,. Then we have N(L®FN)®NNU7],/NU7], (M/Un’) = —)\ and
a- (,ugjn,) =0€ H3((L®r N)®Nn NUn,,u§2).

Let 2" =Yo\ Uy Uy. Let Q € &' and P = ¢(Q) € Xo. Then P € & and Fp C Ng. Let

€ (L®r N) @n Ng be the image of p/p under the natural map L ®p Fp — L ®p Ng =~
(L®F N) @N Ng. Then we have N1g, )@y No/No (i) =—A and a- () =0€ H3((L ®@F N)
®n No, u$?).

Let ¢’ = (Q,n') be a branch in Yy and P = ¢(Q), n = ¢(n). Then (P,n) is a branch in Xj.
Since py, iyt € (Lp® Fp,)"™ for all m > 1, it follows that ,u’Un///Q_l € (L®r N)®n No,)"
for all m > 1. Since there exists ¢, > 0, such that Fp, has no primitive ¢t¢th root of unity and
NgQ,y/Fpy is a finite extension, there exists ¢, > 0 such that Ng ,/ contains no primitive f''th
root of unity.
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Since L @ N is a cyclic extension of degree ¢, by Proposition 7.4, there exist /' € L @ p N
such that Npg, n/n(1/) = =X and o - (1) =0 € H3(L ®@p N, u$?). O

8. Types of points, special points and type 2 connections

Let F, a € H*(F, pin), X € F* with a - (—=\) =0 € H3(F, pu%?), 2 and Xy be as in § 7. Further,
assume that:
e k is a finite field;
e 2 isregular such that ram g (o) Usupp 4 (A) U Xy is a union of regular curves with normal
crossings;
e the intersection of any two distinct irreducible curves in Xg is at most one closed point.
We fix the following notation:
e 7 is the set of points of intersection of distinct irreducible curves in Xj;
e Oy » is the semi-local ring at the points of & on 2';
e if a codimension zero point 1 of Xy contains a closed point P € &, then 7, € Oy » is a
prime defining n on Oy ».
Let 1 be a codimension zero point of Xj. For the rest of this paper, let (E,,0,) denote the
lift of the residue of « at 7. Since o € H?(F, p,) with n a power of , [Ey, : Fy] is a power of .
If o is unramified at 7, then E, = F}, and let M, = F,,. If « is ramified at 7, then F;, # F,, and
there is a unique subextension of £, of degree ¢ and we denote it by M,,.

Remark 8.1. Let n be a codimension zero point of Xy. Suppose « is ramified at 7. Since
ind(a® F,) = ind(a® E,)[E, : )] (cf. Lemma 4.2) and M,, C E,, it follows that ind(a ® M,)) <
ind(«).

We divide the codimension zero points 1 of X as follows.
Type 1: v,(A) is coprime to £ and ind(a ® F,;) = ind(c).

Type 2: v,(A) is coprime to £ and ind(a ® F,;) < ind(c).

Type 3: vy(A) =14, ra ® E, # 0 and ind(a ® F;;) = ind(«).
Type 4: vy(A) =14, ra ® E, # 0 and ind(a ® F;) < ind().
Type 5: vy(A) =14, ra ® E, =0 and ind(a ® F;;) = ind(«).
Type 6: vy(A) =14, ra® E, =0 and ind(a ® F;;) < ind(«).

Let P be a closed point of 2. Suppose P is the point of intersection of two distinct
codimension zero points 71 and 79 of Xy. We say that the point P is a:

(1) special point of type I if n1 is of type 1 and 7y is of type 2;

(2) special point of type II if 1y is of type 1 and 79 is of type 4;
(3) special point of type III if ny is of type 3 or 5 and n; is of type 4;
(4) special point of type IV if 0y is of type 1, 3 or 5 and 72 is of type 5 with M,, ® Fp,, not a

field.
LEMMA 8.2. Suppose that n is a codimension zero point of Xg and P a point of . Suppose that
« is ramified at 1. Let (E,,o0,) be the lift of residue of o at n. If E;) ® Fp,, is not a field, then
ind(a ® Fp) < ind(a).
Proof. Suppose that E, ® Fp,, is not a field. Since E, /F), is a cyclic extension, E,®Fp, ~ [[ E, p
with [E, p : Fp,| < [E), : F;)]. We have (E,, oy, 7)) @ Fpy = (Ep p,oy,m,) (cf. §2).
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Write a ® F;, = o + (E,, 0y, ™) as in Lemma 4.1. Then a® Fp,, = a1 ® Fpy, + (Ey, p, 0y, Ty).
By Lemma 4.2, we have ind(a ® F})) = ind(oq ® Ey)[E), : F,]. We have

ind(a® Fpm) md(oq ® Ey p)[Eyp : Fpy
ind(a1 ® E )[ n.p i Fpy]
< 1nd(a1 ® Ep)[E, : Fy)
nd(a ® Fy).

Thus, by Proposition 5.8, ind(a ® Fp) < ind(«). O

LEMMA 8.3. Letn € Xy be a point of codimension zero and P a closed point onn. Let Zp — Z
be the blow-up at P and ~y the exceptional curve in Zp. If £, ® Fp,, is not a field or 0 is of type
2, 4 or 6, then ~ is of type 2, 4 or 6.

Proof. If E,, ® Fp,, is not a field, then by Lemma 8.2, ind(a ® Fp) < ind(«). If 7 is of type 2,
4 or 6, then ind(a ® F;) < ind(a) and hence, by Proposition 5.8, ind(a ® Fp) < ind(«). Since
Fp C F,, we have ind(a ® F,) < ind(a ® Fp) < ind(«). Hence v is of type 2, 4 or 6. O

LEMMA 8.4. Let i1 and 12 be two distinct codimension zero points of X intersecting at a closed
point P. Suppose that n; is of type 1 or 2 and 1 is of type 2. Then there exists a sequence of
blow-ups v : 4" — 2 such that if 1); are the strict transforms of n;, then:

(1) »: 2"\ 1 (P) — 2 \{P} is an isomorphism;

(2) »~Y(P) is the union of irreducible regular curves 1, ..., Ym;

3) MmNy ={Po}, i Nvix1 ={B}, ym N2 ={ P}, m Ny =0 for all i > 1, 7o N~; =@ for
alli <m, N =0, vNy; =P foralli <j#i+1;

(4) v and 7, are of type 6 and ~;, 1 < i < m, are of type 2, 4 or 6;

(5) ¥~ Y(P) has no special points.

Proof. Let Zp — 2 be the blow-up of 2" at P and + the exceptional curve in Zp. Let 7); be
the strict transform of 7;. Then 7; intersects v only at one point Py and 75 intersects v at only
one point P;. Since 7 is of type 2, by Lemma 8.3, v is of type 2, 4 or 6 and hence P; is not a
special point.

Let s1 = vy, (\), 82 = vy, (A). Then v()\) = 51+ s2. Suppose 51 + s2 = ¢4 1rq for some integer
o, where (¢ = ind(«). Since 0l = 0, t%a = 0. Thus, v is of type 6. Hence P, is not a special
point and Zp has all the required properties.

Suppose s1 + s = l'rg with t < d and 79 coprime to £. Then blow up the points Py and P;
and let 71 and 72 be the exceptional curves in this blow-up. Then we have v, () = 251 + s2 and
Vyo(A) = 814252, If 251 + 52 is not of the form 09+ for some 1 > 1, then blow up the point of
intersection of the strict transforms of n; and ~;. If s + 2s9 is not of the form 04+, for some
ro > 1, then blow up the point of intersection of the strict transforms of 7o and 2. Since s; and
s9 are coprime to £, there exist i and j such that is; + sy = 471y and s1 + jso = 411y for some
r,7’ > 1. Thus, we get the required finite sequence of blow-ups. O

PROPOSITION 8.5. There exists a regular proper model of F' with no special points.

Proof. Let P € &. Then there exist two codimension zero points 7; and 72 of Xy intersecting
at P.

Suppose that P is a special point of type I. Let 1 : 27/ — 2  be a sequence of blow-ups as
in Lemma 8.4. Then there are no special points in ©~1(P). Since there are only finitely many
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special points in 2, replacing 2 by a finite sequence of blow-ups at all special points of type I,
we assume that 2~ has no special points of type I.

Suppose P is a special point of type II. Without loss of generality we assume that 77 is of
type 1 and 7 is of type 4. Let Zp — 2 be the blow-up of 2" at P and - the exceptional curve
in Z’p. Since 73 is of type 4, by Lemma 8.3, «v is of type 2, 4 or 6. Since 7 is of type 1 and 79
is of type 4, vy, () is coprime to £ and v, () is divisible by £. Since v (A) = vy, (A) + vy, (),
vy(A) is coprime to £ and hence 7 is of type 2. Let 7; be the strict transform of 7; in Zp. Then
7; and 7y intersect at only one point @J);. Since « is of type 2, Q)1 is a special point of type I and
()2 is not a special point. Thus, as above, by replacing 2~ by a sequence of blow-ups of 2", we
assume that 2 has no special points of type I or II.

Suppose P is a special point of type III. Without loss of generality assume that 7; is of type
3 or 5 and 1y of type 4. Let Zp — 2 be the blow-up of £ at P, ~v, 7;, and Q; be as above.
Since 7y is of type 4, by Lemma 8.3, 7 is of type 2, 4 or 6. Since v, (A) and v,()) are divisible
by £, v (X) = vy, (X) + vy, (A) is divisible by . Thus ~ is of type 4 or 6. Hence ()2 is not a special
point. By Corollary 5.7, a ® Fp = (Ep, 0, uwgllwgg) for some cyclic extension Ep/Fp, u € Ap
a unit, and at least one of the d; is coprime to ¢ (in fact equal to 1). In particular, a ® Fp is

split by the extension Fp(%/un@n2), where m is the degree of Ep/Fp which is a power of /.

Suppose d; + da is coprime to ¢. Since I/y(ﬂgll ng) = di 4 dy, Fp(}/uriini2) is totally ramified

at . Thus, by Lemma 4.3, v is of type 6. Hence Q)1 is not a special point. Suppose that di + ds is
divisible by /. Let 7 be a prime defining y at Q1. Then we have u7rf7l11 7r,‘7i§ = wlﬂgll 7rfyl1+d2 for some
unit wy at Q1. Since one of d; is coprime to ¢ and d; 4 ds is divisible by ¢, the d; are not divisible
by ¢. In particular, 2d; + da is coprime to £. Let Z¢, be the blow-up of Zp at @ and + be the
generic point of the exceptional curve in Zg,. Then v,/ (u7rf7l11 7r7‘7122) =y (wmgll 7T,Cyl1+d2) = 2dy +da.
Since 2d; + ds is coprime to £, once again by Lemma 4.3, 7' is of type 6. In particular, no point
on the exceptional curve in 2, is a special point. Thus, replacing £~ by a sequence of blow-ups,
we assume that 2" has no special points of type I, II or III.

Suppose P is a special point of type IV. Without loss of generality assume that 7; is of type
1, 3 or 5 and 3 is of type 5, with M,, ® Fp,, not a field. Let Zp — 2 be the blow-up of 2~
at P and v, 7;, Q; be as above. Since M,, ® Fp,, is not a field, by Lemma 8.3, «y is of type 2, 4
or 6. If v is of type 6, then (; and Q2 are not special points. Suppose 7 is of type 2 or 4. Then
Q1 and Q9 are special points of type I, IT or III. Thus, as above, by replacing 2~ by a sequence

of blow-ups of 2, we assume that 2" has no special points. O

Let n and 1’ be two codimension zero points of X (need not be distinct). A type 2 connection
from n to ' is a sequence of distinct codimension zero points 7,...,n, of Xy of type 2 such
that n intersects 71, n intersects 7, 1; intersects n; 41 for all 1 < i < n — 1,  does not intersect
n; for i > 1, i’ does not intersect 7; for i < n, n; does not intersect n; for i < j # i+ 1 and if
n=rn', then n > 2.

We note that if 7 is a codimension zero point of X of type 2 and 7’ is any other codimension
zero point of X intersecting 7 at a closed point, then there is a type 2 connection from 7 to 7n'.
This can be seen by taking n =1 and 1 = 7.

PROPOSITION 8.6. There exists a regular proper model 2~ of F' such that:

(1) & has no special points;
(2) ifm and ng are two (not necessarily distinct) codimension zero points of X with 1, of type
3 or 5 and 1y of type 3, 4 or 5, then there is no type 2 connection between 1, and 1.
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Proof. Let 2" be a regular proper model with no special points (Proposition 8.5). Let m(Z") be
the number of type 2 connections between a point of type 3 or 5 and a point of type 3, 4 or 5.
We prove the proposition by induction on m(%2"). Suppose m(Z") > 1. We show that there is a
sequence of blow-ups 2" of 2" with no special points and m(2") < m(Z").

Let i be a codimension zero point of Xg of type 3 or 5 and 1’ a codimension zero point of X
of types 3, 4 or 5. Suppose there is a type 2 connection from 71 to n’. Then there exist distinct
codimension zero points 71, ...,n, of Xy of type 2 with 5 intersecting 7, 1’ intersecting 7, and
7n; intersecting 7,41 fori=1,...,n — 1.

Suppose n = 1. Let @ be the point of the intersection of n and 7. Let Zg — 2 be the
blow-up of 2" at @) and v the exceptional curve in Zq. Since 7 is of type 2, by Lemma 8.3, v
is of type 2, 4 or 6. Since 7 is of type 3 or 5 and 1 is of type 2, £ divides v,,(\) and ¢ does not
divide vy, (A). Since vy (X)) = v,(A) + vy, (A), v4(A) is not divisible by £ and hence v is of type 2.
Let 7 and 71 be the strict transform of 7 and 1; in 2. Since v is a point of type 2, the points of
intersection of 7 and 7; with  are not special points. Hence Z¢ has no special points. Replacing
Z by Zg, we assume that n > 2 and 2" has no special points.

Let P be the point of intersection of 7; and n2. Let 2" be as in Lemma 8.4. Then 2" has
no special points and all the exceptional curves in 2" are of type 2, 4 or 6 and the exceptional
curves which intersect the strict transforms of 77 and 72 are of type 6. In particular, the number
of type 2 connections between the strict transforms of n and 7’ is one less than the number of
type 2 connections between 1 and 7. Since all the exceptional curves in 2" are of type 2, 4 or
6, m(2”’) = m(2Z") — 1. Thus, by induction, we have a regular proper model with the required
properties. O

LEMMA 8.7. Let 4 be as in Proposition 8.6 and Xq the special fiber of 2 . Let n be
a codimension zero point of Xy of type 2 and ' a codimension zero point of Xy of type 3
or 5. Suppose there is a type 2 connection from n to 1. If there is a type 2 connection from n
to a type 3 or 5 point 1", then ' = n"". Further, if 1y, ...,n, are codimension zero points of X
of type 2 giving a type 2 connection from ) ton/ and 71, ...,vm codimension zero points of X of
type 2 giving another type 2 connection from 7 to n/, then n = m and n; = ; for all i.

Proof. Suppose 1" is a codimension zero point of Xy of type 3 or 5 with type 2 connection to
7. Since 7 is of type 2, there is a type 2 connection from 7’ to n”. Since no two points of type
3 or 5 have a type 2 connection (cf. Proposition 8.6), n = 1. Suppose 71, ...,vm is of type 2
connection from 7 to 1. If m # n or n; # 7; for some ¢, then we will have a type 2 connection
from 7’ to 1’ and hence a contradiction to the choice of 2" (cf. Proposition 8.6). Thus n = m
and n; = ; for all 4. O

Let 1 be a codimension zero point of X of type 2 and 1’ be a codimension zero point of X
of type 3 or 5. Suppose there is a type 2 connection 74, ...,n, from 7 to r’. Then, by Lemma 8.7,
7’ and 7, are uniquely defined by 7. We call this point of intersection of 1, with 1’ the point
of type 2 intersection of n and n'. Once again note that such a closed point is uniquely defined

by n.

9. Choice of Lp and up at closed points

Let F, a € H*(F, pin), X € F* with a - (=)\) = 0 € H3(F, u®?), 2" and X, be as in (§§7 and 8).
Throughout this section we assume that 2" has no special points and if 7; and 7y are two (not
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necessarily distinct) codimension zero points of Xy with 7; is of type 3 or 5 and 7 is of type 3,
4 or 5, then there is no type 2 connection between 7; and 7y. Further, assume that [’ contains
a primitive £th root of unity.

Let 1 be a codimension zero point of Xy of type 5. Then we call n of type 5a if « is unramified
at n and of type 5b if o is ramified at 7. Suppose 7 is of type 5b. Then « is ramified and hence
M,, is the unique subextension of E, of degree £, where (E,, 0y) is the lift of the residue of a.

LEMMA 9.1. Let ) be a codimension zero point of Xg of type 5b. Then ind(a ® M,) < ind(«)
and there exists pi; € M, such that Ny, /g, (4n) = —A and o - (uy) =0 € H3(M,, u?).

Proof. Since 1 is of type 5b, « is ramified at 7, v,(A\) = ¢ , ra® E, = 0 and E, # F,. Thus, as in
the proof of Lemma 4.11, there exists yi, € M, such that Ny, /r, (uy) = —A and a- (uy) =0. O

LEMMA 9.2. Let P € &2, and 11 and 12 be codimension zero points of Xy containing P. Suppose
that n1 and ng are of type 5. Then there exist a cyclic field extension Lp/Fp of degree ¢ and
up € Lp such that:

(1) Npp/pp(pp) = —X;

2) ind(a® Lp) < ind(«);

3) a-(up)=0¢€ H*(Lp,u3?);
4)

5)

if m; is of type ba, then Lp ® Fp,, /Fpy, is an unramified field extension;
if m; is of type 5b, then Lp ® Fp,, ~ M,, @ Fp,,.

~~ I~

Proof. Since 2 has no special points, P is not a special point of type IV. Since 7, and 7o are
of type 5 intersecting at P, M,, ® Fp,, and M,, ® Fp,, are fields. Suppose 7; is of type 5a.
If o ® Fpy, =0, then let Lp,,/Fp,, be any cyclic unramified field extension with —A a norm
and iy, € Lpy, with Ny, /g, (tn;) = =X If @ ® Fpy, # 0, then let Lpy, /Fpy, be a cyclic
unramified field extension of degree ¢ and pu,, be as in Lemma 4.10. Suppose 7; is of type 5b.
Let Lp,, = M,, ® Fp,y, and p,, € M, be as in Lemma 9.1. Then, by choice Lp,,/Fp,, are
unramified field extensions. By applying Lemma 6.4 to Lp,, and pu,,, there exist a cyclic field
extension Lp/Fp and up € Lp with the required properties. O

LEMMA 9.3. Let n be a codimension zero point of X with v,(\) a multiple of { and P a closed
point on 7. Then there exists a cyclic unramified field extension Lp,/Fp, of degree { and
ppyn € Lpy such that Ny, p, (kpy) = —A and o - (upy) = 0. Further, if 1 is of type 3 or 4,
then ind(a ® E, ® Lpy) < ind(a ® E;).

Proof. Since v,(\) is divisible by £, write A = 9#7’7’6 for some 6 € F; a unit at n and integer r.
Write a ® F, = o + (E,, 0y, ™) as in Lemma 4.1. Let @ be the image of o/ in H?(k(n), 1n) and
0o be the image of 0 in k(7). Since x(n)p is a local field containing a primitive ¢th root of unity,
there exists a cyclic field extension L(n)p/k(n)p of degree ¢ such that —6 is a norm from L(n)p
(cf. the proof of Lemma 2.8). Let Lp,/Fp, be the unramified extension of degree ¢ with residue
field L(n)p. Since —6 is a norm from L(n)p, —0 is a norm from Lp, and hence —\ = —077}"76 is
a norm from Lp,. Since Nr, /p,, (1Py) = —A, Lpy/Fpy is a field extension and a - (—A) = 0,
by Proposition 4.6, we have o - (upy) = 0.

Suppose 7 is of type 3 or 4. Then ro/ ® E, = ra ® E; # 0 and hence r@’ ® E(n) # 0.
Thus, by Lemma 3.3, ind(@ ® E(n) ® L(n)p) < ind(@ ® E(n)). Suppose a @ E, ® Fp,, # 0.
Since a ® E, = o/ ® Ey, o/ ® E,;) # 0 and hence @ ® E(n) # 0. Thus, by the choice of L(n)p,
ind(@ ® E(n)®L(n)p) < ind(&’® E(n)). In particular, ind(a® E,®Lp,) = ind(¢/ ® E,®@ Lp,) =
ind(@’ ® E(n) ® L(n)p) < ind(@ ® E(n)) = ind(¢/ ® E,) = ind(a ® E). O
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LEMMA 9.4. Let P € &, and 11 and 1y be codimension zero points of Xy containing P. Suppose
that 1y is of type 2 and 1o is of type 5 or 6. Then there exist u; € Fp, 1 <i < ¢, such that:

(1) preepe = =X

(2) v (1) = v (V) v i) = 0 for i > 2
(3) iy (pi) = vy (N) /€ for all i > 1;
(4) o (1) =0¢€ H*(Fp, u3?).

Proof. Since 1 is of type 2 and 7, is of type 5 or 6, we have A = wm! 7T,T72Z with r1 coprime to ¢
and roa® E,, = 0. Hence, by Lemma 6.7, there exists § € Fp such that a-(0) =0, v, () = 0 and
Uy (0) = ro. For i > 2, let p; = 6 and py = — M0t Then the p; have the required properties. O

LEMMA 9.5. Let P € &, and 1, and 12 be codimension zero points of Xo containing P. Suppose
that 1 and 19 are of type 5 or 6. Then there exist u; € Fp, 1 <14 < £, such that:

(1) pa-epe=—=X;
(2) vn; (i) = v; () /€ for alli > 0 and j = 1,2;
(3) a-(m)=0¢ H*(Fp,u3?).

Proof. Since n; and 19 are of type 5 or 6, by Lemma 6.8, there exists § € Fip such that a-(6) =0
and vy, (0) = vy, (A)/€ for i = 1,2. For i > 2, let y; = 0 € Fp and p1 = —\0' ¢ € Fp. Then the
1; have the required properties. O

LEMMA 9.6. Let P € &, m1 be a codimension zero point of X, of type 3 and 12 a codimension
zero point of Xy of type 5. Suppose n1 and 1y intersect at P. Then there exist a cyclic field
extension Lp/Fp of degree ¢ and pup € Lp such that:

(1) Npp/pp(pp) ==X

2) ind(a ® Lp) < ind(a);
3) o (up) =0¢€ H*(Lp,pu3?);
4

b}
6

if \ € Ff or —\ € F¥, then ind(a ® (Ey, ® Fpy,) @ (Lp ® Fpyy,)) < ind(a ® By, );

)
)
) Lp ® Fpy,/Fp,y, is an unramified field extension for i = 1,2;
)
) if o is of type 5b, then Lp ® Fpy, ~ M,, ® Fp,,.

(
(
(
(
(

Proof. Suppose A & £F}f. Let Lp = Fp(v/A) and pup = —v/A. Then Np,p/rp(pp) = =X and, by
Lemma 6.2, (2) and (3) are satisfied. Since 7; is of type 3 or 5, v, () is divisible by ¢ and hence
(4) is satisfied. Since A € F}f, case (5) does not arise. Suppose that 7, is of type 5b. Since 2~
has no special points, M,, ® Fp,, is a field. Since —A is a norm from M,, (Lemma 9.1), by
Lemma 2.6, we have Lp ® Fpy, ~ My, ® Fp,,.

Suppose that A € Fjf or —\ € F3f. Let Lpy, and ppy, € Lpy, be as in Lemma 9.3. Write
a® F, =ar+ (Ey,01,m,) as in Lemma 4.1. Then, by Lemma 4.2, we have ind(a ® F),,) =
ind(a ® Ey,)[Ey, : F,]. Since 7 is of type 3, by the choice of Lp,, (cf. Lemma 9.3), ind(a ®
E, ®Lpy,) <ind(a® E;, ). We have ind(a® Lpy, ) < ind(a® Ey, @ Lpy, )[Ey @ Lpy, : Lpy,] <
ind(a ® By, )[Ey, : Fy,] = ind(«).

Suppose that 73 is of type da. Let Lp,, and pp,, € Lpy,, be as in Lemma 9.3. Since 7; is of
type 5a, o is unramified at ny. Since Lp,, /Fpy, is an unramified field extension, ind(a® Lp,,) <
ind(a).
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Suppose 72 is of type 5b. Since 2" has no special points, M,, ® Fp,, is a field. Let Lp,, =
M, ® Fpy,. Then, by Lemma 9.1, there exists up,, € Lpy, such that NLP,nQ/FP,nZ (kPpy) = —A,
ind(a ® Lpy,) < ind(a) and o - (upy,) = 0.

Then, by Lemma 6.4, there exist Lp and pup with the required properties. O

LEMMA 9.7. Let P € &, and 11 and 1y be codimension zero points of Xy of type 3, 4 or 6.
Suppose 11 and ng intersect at P. Then there exist a cyclic field extension Lp/Fp of degree ¢
and up € Lp such that:

(1) Npp/rp(pp) = —=X;

(2) ind(a® Lp) < ind(w);

(3) o (up) =0¢€ H*(Lp, 1;%);

(4) Lp® Fpy,/Fpy, is an unramified field extension;

(5) ifn; isof type 3, A € Fjf or —\ € F}, then ind(a®(E,, @ Fp,, )@(Lp&Fp,,)) < ind(a® E,,).

Proof. Suppose A ¢ +F3¢. Then, as in the proof of Lemma 9.6, Lp = Fp(/)) and pup = —v/A
have the required properties.

Suppose that A € F]’E,z or —\ € F;;g. Fori=1,2,let Lp,, and up,, € Lpy,, be as in Lemma 9.3.
If n; is of type 3, then as in the proof of Lemma 9.6, ind(av ® Lp,,) < ind(c). Suppose 7; is of
type 4 or 6. Then ind(a ® F;,) < ind(«) and hence ind(a ® Lp,,) < ind(a).

Then, by Lemma 6.4, there exist Lp and pup with the required properties. O

PROPOSITION 9.8. Let P € &2. Then there exist a cyclic field extension or split extension Lp/Fp
of degree £ and up € Lp such that:

(1) Npp/pp(pp) ==X
(2) ind(a® Lp) < ind(«);
(3) a-(up) =0€ H*(Lp, u3?).
Further, suppose 1 is a codimension zero point of Xy containing P.
(4) Ifn is of type 1, then Lp = Fp(v/A) and pup = —v/\.

(5) Suppose 1 is of type 2 with a type 2 connection to a type 5 point 1. Let Q be the type
2 intersection point of n and 1. If M,y ® Fg,y is not a field, then Lp = [[ Fp and pp =
(91, Ce ,9@) with 0; € Fp, 1/77(91) = 1/77()\) and Vn((gz’) =0 fori>2.

(6) Suppose n is of type 2 with a type 2 connection to a type 5 point 1. Let QQ be the type 2
intersection point of n and n'. If M,y ® Fg ,/ is a field, then Lp = Fp(\ﬁ) and pup = —v/\.

(7) Suppose 1 is of type 2 and there is no type 2 connection from n to any type 5 point. Then
LP = FP(\%) and up = —\Iﬂ.

(8) Ifn is of type 3, then Lp ® Fp,/Fp, is an unramified field extension. Further, if A\ € F'
or —\ € F}¥, then ind(a ® (B, ® Fp,) ® (Lp ® Fp,)) < ind(a ® Ey).

(9) Ifn is of type 4, then Lp ® Fp,/Fp, is an unramified field extension.
(10) Ifn is of type 5a, then Lp @ Fp,/Fpy is an unramified field extension.

(11) Ifn is of type 5b, then Lp ® Fp, ~ M, ® Fp,, and if Lp =[] Fp, then pup = (01,...,6)
with vy(6;) = vy(N)/L.
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(12) Ifn is of type 6, then either Lp ® Fp,/Fp,, is an unramified field extension or Lp =[] Fp,
with pp = (61,...,0¢) and v, (0;) = vy(N\)/L.

Proof. Let n1 and 12 be two codimension zero points of X intersecting at P. By the choice of 2",
Xp is a union of regular curves with normal crossings and hence there are no other codimension
zero points of Xy passing through P.

Case I. Suppose that either 71 or 12, say 71, is of type 1. Then v, ()) is coprime to £ and hence
ANg +F Let Lp = Fp(v/\) and up = —v/\. Then, by Lemma 6.2, Lp and pp satisfy (1), (2)
and (3). By choice (4) is satisfied. Since 2" has no special points, 72 is not of type 2 or 4. Thus
(5), (6), (7) and (9) do not arise. Suppose 72 is of type 3, 5 or 6. Then v, () is divisible by ¢ and
hence Lp ® Fpy,/Fpy, is an unramified field extension. Thus (8), (10) and (12) are satisfied.
Suppose 73 is of type 5b. Since 2" has no special points and 7 is of type 1, M,, ® Fp,, is a field.
Since —A\ is a norm from the extension M,,/F),, (Lemma 9.1) and A ¢ :I:F]ifn2 (Corollary 5.6),

by (Lemma 2.6), My, ® Fp,, ~ Fp,,(¥'\) and hence (11) is satisfied.

Case II. Suppose neither 77 nor 72 is of type 1. Suppose either n; or 73 is of type 2, say n; is of
type 2. Then v, () is coprime to £ and hence A ¢ £F3.

Suppose that 77 has type 2 connection to a codimension zero point 1’ of Xy of type 5. Let
Q be the closed point on 1’ which is the type 2 intersection point of 17; and n’. By the choice of
2 (cf. Proposition 8.6), 2 is of type 2, 5 or 6. Note that if 7, is also of type 2, then @ is also
the point of type 2 intersection of 72 and n’. Thus if both 1; and 7y are of type 2,  and @ do
not depend on whether we start with 1, or ns.

Suppose that M, ® Fg, is not a field. Let Lp = [[ Fp. Suppose 7 is of type 2. Then
let up = (\,1,...,1) € Lp = [[ Fp. Suppose 12 is of type 5. Then by the assumption on 2,
ne =1, Q = P. Thus M,, ® Fpy, = M,y ® Fg, is not a field and hence 7, is of type 5b. Let
wi € Fp be as in Lemma 9.4, and pup = (u1, ..., f¢). Suppose 7 is of type 6. Let u; € Fp be as
in Lemma 9.4, and pp = (p1,...,p¢) € Lp. Then Lp and pp satisfy (1) and (3). Since n; is of
type 2, ind(a ® F;,) < ind(«) and hence, by Proposition 5.8, ind(a ® Fp) < ind(a) and (2) is
satisfied. Since neither 7, nor 7 is of type 1, case (4) does not arise. By choice Lp satisfies (5).
Since there is only one type 5 point with a type 2 connection to 71 or 72, case (6) does not arise.
Clearly case (7) does not arise. Since 72 is not of type 3, 4 or 5a, cases (8), (9) and (10) do not
arise. By the choice of Lp and pp, (11) and (12) are satisfied.

Suppose M,y ®@Fq ,y is a field. Let Lp = Fp(\eﬂ) and pup = —v/\. Since A & F, by Lemma 6.2,
Lp and pp satisfy (1), (2) and (3). As above, cases (4), (5), (7), (8) and (9) do not arise. By
choice (6) is satisfied. Suppose 7 is of type 5. Then 7 =1/, @ = P and v,()) is divisible by ¢
and hence (10) is satisfied. Suppose 73 is of type 5b. Since M,, ® Fp,, is a field, as in case I,
M, ® Fpy, ~ Lp ® Fp,, and hence (11) is satisfied. If 7, is of type 6, then v, ()) is divisible
by ¢ and Lp ® Fpy,/Fp,y, is an unramified field extension and hence (12) is satisfied.

Suppose that 77 has no type 2 connection to a point of type 5. In particular, 12 is not of
type 5. Then, let Lp = Fp(V/A) and pp = —v/A. Then, by Lemma 6.2, Lp and pp satisfy (1),
(2) and (3). Since neither n; nor 7 is of type 1, case (4) does not arise. Since neither 7; nor 72
has type 2 connection to a point of type 5, (5) and (6) do not arise. By the choice of Lp and up,
(7) is satisfied. If 7 is of type 3, 4 or 6, then v,,()) is divisible by ¢ and (8), (9) and (12) are
satisfied. Since neither 1, nor 7 is of type 5, (10) and (11) do not arise.

Case I1I. Suppose neither of 7; is of type 1 or 2. Suppose that one of the n;, say n1, is of type 3.
Since Z" has no special points, 79 is not of type 4 and hence 75 is of type 3, 5 or 6. If 7 is
of type 5, let Lp and pup be as in Lemma 9.6. If 79 is of type 3 or 6, let Lp and up be as
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in Lemma 9.7. Then, (1), (2), (3), (8), (9), (10), (11) and (12) are satisfied and the other cases
do not arise.

Case IV. Suppose neither of 7; is of type 1, 2 or 3. Suppose that one of the n;, say 11, is of type 4.
Since 2 has no special points, 13 is not of type 5. Hence s is of type 4 or 6. Let Lp and up be
as in Lemma 9.7. Then Lp and up have the required properties.

Case V. Suppose neither of 7; is of type 1, 2, 3 or 4. Suppose that one of the 7; is of type 5, say
11 is of type 5. Then 75 is of type 5 or 6. Suppose that 72 is of type 5. Since £  has no special
points, M,, ® Fp,, are fields for i = 1,2. Let Lp and pp be as in Lemma 9.2. Then Lp and up
have the required properties.

Suppose that 7y is of type 6. Suppose that 7, is of type 5a. Let Lp,, and up, be as in
Lemma 4.10. Since v;(\) is divisible by ¢, by the construction of Lp,,, Lp,,/Fp, are unramified.
Let Lp,up € Lp be as in Lemma 6.4. Then Lp, up have the required properties. Suppose that
m is of type 5b. Suppose M, ® Fp,, is a field with the residue field M (n)p of M, ® Fp,,
unramified over x(n1)p. Let Lpy, = My, ® Fpy, and py, € My, with Nyy, /g, () = —A (cf.
Lemma 9.1). Let Lp and pp be as in Lemma 6.5 with Lp® Fp,, ~ Lp,,. Then Lp is a field with
Lp/Fp unramified on Ap (cf. Lemma 6.5) and hence Lp and pup have the required properties.
Suppose that M, ® Fp,, is a field extension and the residue field M (n)p of M, ® Fp,, is
ramified over x(n1)p. Then M, ® Fp,, = Fpy, (YvpT,,) for some unit vp at P (cf. proof of
Lemma 6.4). Since A\ = pr;}ZW%Z for some unit wp at P and —A\ is a norm from M,, ® Fp,,,
it follows that the image —wp of wp in k(n1)p is a norm from M (n;)p. Since wp is a unit and
M(m)p/k(m)p is a ramified extension, it follows that —wp € Flé,m and hence —wp € F}f. Let
Lp = Fp({/vpmy, +my,) and up = V=X € Fp. Then NLP/FP(MP) = —\. Since 79 is of type 6,
ind(av ® F),) < ind(«) and hence, by Proposition 5.8, ind(a ® Fp) < ind(«). In particular,
ind(a ® Lp) < ind(«). Let Bp be the integral closure of the local ring Ap at P in Lp. Since
the maximal ideal mp at P is equal to (my,, 7y, ), vpmy, + 7y, is a regular prime and hence Bp
is a regular local ring. Since corp,gp,, /Fp,, (a- (up)) = - (=A) =0and Lpy,/Fp,, is a field
extension, by Proposition 4.6, a - (up) = 0 in H3(Lp ® Fp,,, po?) for i = 1,2. In particular,
a - (pp) is unramified on Bp and hence « - (up) = 0 (cf. Lemma 5.3). Thus Lp and pp satisfy
the required properties.

Suppose that M, ® Fp,, is not a field. Let Lp = [[ Fp and p; € Fp be as in Lemma 9.5,
and pup = (p1,...,u¢) € Lp. Then Lp and pp have the required properties.

Case VI. Suppose neither of 7; is of type 1, 2, 3, 4 or 5. Then, n; and 72 are of type 6. Let Lp
and pup be as in Lemma 9.7. Then Lp and pp have the required properties. O

10. Choice of L, and u, at codimension zero points

Let F,n=1/% a€ H*(F,u,), A € F* with a #0, a- (=\) =0 € H3(F,u%?), 2", Xy and &
be as in §§7—- 9). Assume that 2" has no special points and that there is no type 2 connection
between a codimension zero point of X of type 3 or 5 and a codimension zero point of Xy of
type 3, 4 or 5.

For a codimension zero point 1 of Xg, let &2, =nnN 2.

ProprosITION 10.1. Let n be a codimension zero point of Xy of type 1. For each P € &, let
(Lp, up) be chosen as in Proposition 9.8, and L, = F,(V/A) and j,, = —/A € L,. Then:

(1) Np, /5, (1g) = =X
(2) a- ('un) =0¢ H3(Ln7#§)2);
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(3) ind(a® L;) < ind(«);
(4) for P € &), there is an isomorphism ¢py, : L, ® Fp, — Lp ® Fp, and

Opy 1y @ (pp @ 1)~ = 1.

Proof. By choice, we have Ny, /p, (1) = —A. Since 7 is of type 1, v (A) is coprime to £ and hence
by Lemma 4.7, L, and u, satisfy (2) and (3). Let P € &2,. Since 7 is of type 1, by the choice
of Lp and pp (cf. Proposition 9.8(4)), we have Lp = Fp(V'A) and pup = —v/A. Hence L, and p,
satisfy (4). O

LeEMMA 10.2. Let n be a codimension zero point of Xgy. For each P € &, let §p € Fp with
a-(0p) =0 € H3(Fp,, n2?). Suppose v, (0p) = 0 for all P € &2,. Then there exists 0, € F, such
that:

(1) o (6y) =0 € H>(Fy, p?);
(2) for P € 2,, 05", c Fg’; for all m > 1.

Proof. Let m, € F;, be a parameter. Write a ® F,, = o/ + (E,, 0y, T,) as in Lemma 4.1. Let E(n)
be the residue field of E,. Since a - (0p) = 0 € H3(Fp,, u$?) and v,(6p) = 0, by Lemma 4.7,
we have (E(n) ® k(n)p,00,0p) = 0 € H*(k(n)p, in), Where Op is the image of 0p € k(n)p.
Hence fp is a norm from E(n) ® k(n)p for all P € &,. For P € &,, let p € E(n) ® x(n)p
with Ngyenn)p/s)e (6p) = Op. By weak approximation, there exists € F(n) ® x(n) which is
sufficiently close to fp for all P € 2, Let 6y = N E(n) /H(n)(é) € k(n). Then 6) is sufficiently close
to @p for all P € Z,. In particular, 90_1513 € m(n)fpm for all m > 1. Let 6, € F,, have image 6y
in k(7). Then (E,,0y,0,) =0 and hence, by Lemma 4.7, « - (6,)) = 0. Since 6, '0p € x(n)%" for
all m > 1 and Fp,, is a complete discretely valued field with residue field x(n)p, it follows that
9;10p6F1€Z for all m > 1. O

ProposiTION 10.3. Let n be a codimension zero point of Xg of type 2. Suppose there is a type
2 connection between n and a codimension zero point 1 of Xy of type 5. Let Q be the point of
type 2 intersection of  and n'. Suppose that M,y ® Fg, is not a field. For each P € 2, let
pp = (0F,...,0F) € Lp =[] Fp be as in Proposition 9.8(5). Let L, = [ F,,. Then there exists
pn = (07,...,67) € Ly such that:

1
2

3
4

NL,,/F,, (ﬂn) ==X\
— 3 ®2).
Q- (Hﬁ) =0eHd (anun )&
ind(a ® Ly) < ind(«);
pp iy € (Ly ® Fp,)t" for all P € 2, and m > 1.

(1)
(2)
(3)
(4)
Proof. Let i > 2. By choice (cf. Proposition 9.8(5)), we have v,(#7) =0 and o~ (07) =0 €
H3(Fp, pu$?) for all P € ,. By Lemma 10.2, there exists 0 € F, such that a - (6]) = 0 €
H3(F,, u%?%) and (07)7107 € Ff{; for all P € &, and m > 1. Let 6] = —\(0]---6])~'. Then
07 ---6] = —Xxand (6) 10 € Fp, for allm > 1. Since a- (=) = 0 and a-(6}') = 0 € H3(Fy, u?)

for i > 2, we have - (0)) = 0 € H3(F,, u3?). Let L, = [[ F,, and p, = (67,...,6]) € L,. Since
n is of type 2, ind(a ® F;) < ind(c) and hence L,), u,, have the required properties. O

PROPOSITION 10.4. Let n be a codimension zero point of Xq of type 2. For each P € &, let
(Lp,up) be chosen as in Proposition 9.8. Suppose one of the following holds:
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e there is a type 2 connection between n and codimension zero point ' of Xy of type 5 with
Q the point of type 2 intersection of n and 1, and M,y ® Fg,y is a field;
e there is no type 2 connection between n and any codimension zero point of Xg of type 5.
Let L, = F,(V\) and p,, = —v/\. Then:

(1) Np,/r,(1g) = =X

(2) a-(uy) =0€ H*(Ly, u?);

(3) ind(a ® Ly) < ind(a);

(4) for P € &), there is an isomorphism ¢p,, : Ly ® Fp, — Lp ® Fp,, and

Gy @ ) (up@1)~" = 1.

Proof. Since v;()) is coprime to £, by Lemma 4.7, a- () = 0 € H3(L,, p&?) and ind(a ® L) <
ind(«). Clearly, Ny, /p, (1) = A. By the choice of (Lp, up) (cf. Proposition 9.8), for P € &, we
have Lp = Fp(v/A) and pp = —v/\. Thus L, and p, have the required properties. O

LEMMA 10.5. Let n be a codimension zero point of Xy of type 3, 4 or 5a. Let P € n. Suppose
there exists Lp,/Fp, an unramified field extension of degree ¢ and pp, € Lp, such that:

(1) Nip,/rp,(Hpy) = —X;

(2) ind(a ® Lpy) < ind(a);

(3) o (upy) =0€ H*(Lpy, p?);

(4) ifn is of type 3, X € Fpf or —\ € F}, then ind(a ® (E, ® Fp,) ® (Lpy)) < ind(a ® E;).

Then ind(a ® (E, ® Fpy,) ® (Lpy)) < ind(a)/[E, : F,)].

Proof. Write a ® F,) = o/ + (E,, 0y, 7,;) as in Lemma 4.1. Then, by Lemma 4.2, ind(a ® F,) =
ind(¢/ ® Ep)[Ey, : F)) = ind(a ® Ey)[E, : F,]. Let t = [E, : F,)] and § be the image of ¢/ in
H?(k(n), fin)-

Suppose 7 is of type 4. Then ind(a ® F;)) < ind(c) and hence ind(a ® E;) = ind(a® F),)/t <
ind(a)/t. Thus ind(a ® (B, ® Fpy) ® (Lpy)) < ind(a ® E;) < ind(a)/t.

Suppose that 7 is of type 5a. Then « is unramified at n and hence E, = F;, and ¢t = 1. The
lemma is clear if o ® Fp, = 0. Suppose o ® Fp, # 0. Then 5 ® x(n)p # 0. Since Lp,, is an
unramified field extension, the residue field Lp(n) of Lp,, is a field extension of x(n)p of degree .
Since k(n)p is a local field and ind(/3) is divisible by ¢, ind(8 ® Lp(n)) < ind(8) [CF67, p. 131].
In particular, ind(a ® Lp,) < ind(a).

Suppose that n is of type 3. Then ra ® E; # 0 and hence 7o/ ® E, = ra ® E, # 0. In
particular, 78 ® E(n) # 0 and ind(a ® F,) > t. Suppose A € Fj;e or —\ € Fj_f,é. Then, by the
choice of Lp,, ind(a® (E,® Fp,)® (Lp,)) < ind(a® E,) = ind(a)/t. Suppose A & £F}. Then
A +LF I’Sﬁ]. Since Lp,, is a field extension of degree £ and —A is a norm from Lp,, by Lemma 2.6,
Lp, =~ Fp,(V)). Since 7 is of type 3, v,(\) = 7 and \ = Hnﬂflﬁ with 6, € F;, a unit at 7). Let
0, be the image of 6, in x(n). Then 0, & x(n)% and Lp(n) = /ﬁ(n)p(f/gj). Since - (=) =0,
by Lemma 4.7, réa/ = (E,, 0y, (—1)"*10,) and hence r¢8 = (E(n), 0o, (—1)"*16,). Since -0,
is a norm from Lp(n) and Lp(n)/k(n)p is an extension of degree ¢, (—1)"**16, is a norm from
Lp(n). Thus, by Lemma 3.3, ind(8® E(n)p ® Lp(n)) < ind(8 ® E(n)). Thus

ind(a @ (By ® Fpy) ® (Lpy)) = ind(a’ ® (B @ Fpy) © (Ley))
= ind(8 @ E(n)p @ Lp(n))
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< ind(8® E(n)) = ind(c’ ® E;)
=ind(a ® E,) = ind(a)/t. O

PROPOSITION 10.6. Let ) be a codimension zero point of X of type 3, 4 or 5a. For each P € &),
let (Lp, up) be chosen as in Proposition 9.8. Then there exist an unramified field extension L,/ F;,
of degree { and p, € L, such that:

(1) Np,/r,(1n) = =X;

(2) a-(uy) =0¢€ H3(LW7N§2)J

(3) ind(a ® Ly) < ind(a);

(4) for P € &, there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp, and

¢P,n(ﬂn ® 1)(up ® 1)_1 €(Lp® FPJ])Km’
for allm > 1.
Proof. Since 7 is of type 3, 4 or 5a, we have v,(\) = r¢ for some integer r and A = Hnwge
for some parameter m, at n and 6, € F;, a unit at 7. Write o ® F;, = o/ + (E,, 0y, m,) as in
Lemma 4.1. By Lemma 4.7, rla/ = (E,, 0y, (—=1)"716,)). Let 3 be the image of o in H?(k(7), i)
and E(n) the residue field of E,. Then r£3 = (E(n), 0o, (—1)"*16y) € H?(k(n), un), where g is
the automorphism of F(n) induced by o, and 6 is the image of 6, in x(n).

Let S be a finite set of places of k(7)) containing the places given by closed points of &7,
and places v of k() with 8 ® k(n), # 0. Let t = [E;, : F;]. For each v € S, we now give a
field extension L, /k(n), of degree ¢ and p, € L, satisfying the conditions of Lemma 3.1 with
Ey = E(n) and d = ind(«)/t.

Let v € S. Then v is given by a closed point P of n. If P € &, let Lp, = Lp® Fp, and
ppy = pp ® 1 € Lp,. Suppose that P ¢ &2. Suppose that A ¢ :l:FjSé. Then A ¢ :tFijn. Let
Lp, = pr(\ﬁ) and pp, = —+v/\. Suppose that \ € FI’SZ or —\ € Fj;e. Let Lp,/Fp, be a
cyclic unramified field extension of degree ¢ and up, € Lp,, as in Lemma 9.3. Since Lp,/Fp,,
is an unramified field extension of degree ¢, m, is a parameter in Lp, and the residue field
Lp(n) is a field extension of x(n)p of degree £. Let L, = Lp(n). Since N, /pp,, (1py) = =,
ppy = O0pym; for some 0p, € Lp, which is a unit at 7. Let 11, be the image of 0p, in L, = Lp(n).
Then Ny, /), (1) = —00. Since the corestriction map H?(Ly, pin) — H?(k(n)y, in) is injective,
rB®L, = (Ey®Ly,,00®1,(—1)"p,). By Lemma 10.5, we have ind(a ® (E, ® Fpy) ® Lpy) <
ind(a)/t. Since a ® E, = o ® E,, we have ind(¢/ ® (E, ® Fp,) ® Lpy,) < ind(a)/t. Since
ind(8 ® Ey ® L,) = ind(¢/ ®@ (B, @ Fpy) @ (Lpy)), ind(8 ® Ey ® L,) < ind(a)/t.

Since k(n) is a global field, by Lemma 3.1, there exist a field extension Lo/k(n) of degree £
and pg € Lo such that:

(1) Niok(po) = —bo;
(2) rB® Lo = (E(n) ® Lo, 00 ® 1, (=1)"po);
(3) ind(8® E(n) ® Lg) < ind(a)/t;
(4) Lo ® k(n)p ~ Lp(n) for all P € Z,;
(5) po is close to Op,, for all P € 2,
Then, by Lemma 4.8, there exist a field extension L, /F;, of degree ¢ and p € L, such that:

e the residue field of L, is Lo;
e 4 a unit in the valuation ring of Ly;
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® [ = fi0;

hd NLn/Fn(M) = _017§

o a-(um) € H3(L,, u%?) is unramified.
Since L, is a complete discretely valued field with residue field Ly a global field, H2,(Ly, u$?)
= 0 [Ser97, p. 85] and hence a - (um;) = 0. Since L, /[ is unramified and a ® L, = o/ ® Ly, +
(Ey® Ly, oy, ), ind(a® L,) <ind(¢/ @ B, ® Ly)[E, @ Ly, : Ly] = ind(8® E(n) ® Lo)t < ind(a).
Thus L, and py = pmy, € Ly have the required properties. O

PROPOSITION 10.7. Let 1 be a codimension zero point of Xq of type 5b. Let (E,, 0,) be the lift
of the residue of o at n and M, be the unique subfield of E, with M, /F, a cyclic extension of
degree (. For each P € &, let Lp and jp be as in Proposition 9.8. Then there exists pi,, € M,
such that:

(1) Nug,yr,(y) = —=A;

(2) - () = 0 € B3 (M, 15);

(3) ind(a ® M) < ind(«);

(4) for P € &), there is an isomorphism ¢p, : M, ® Fp,, — Lp ® Fp,, and

¢P,77(M77 ®1)(up ® 1)_1 €(Lp® FPm)ema

for all m > 1.

Proof. Let E(n) and M(n) be the residue fields of E, and M, at 7. Since n is of type 5b,
M(n) is the unique subfield of E(n) with M (n)/k(n) a cyclic field extension of degree ¢. Let
7, be a parameter at 7). Since 7 is of type 5, v,(\) = rf and X\ = ange for some 0, € F' a
unit at 7. Let 6, be the image of 6, in x(n). Let P € £,. Suppose M, @ Fp,, is a field. Since
NuyoFp, Fp,(BP) = =X = —an,’;g, we have pp = ppm) with pp € My ® Fpy a unit at 7
and Ny, wrp, /Fp, (Wp) = —0p. Suppose M, ® Fp, is not a field. Then, by the choice of up
(cf. Proposition 9.8(11)), we have up = ppm,, where up = (01,...,0;) € My ® Fp, = [[ Fpy,
with each 0] € Fp, a unit at 7. Let //p be the image of u/p in the residue field M(n) ® x(n)p
of M, ® Fp,, at n. Write a ® F,, = o + (E,, 0y, ;) as in Lemma 4.1. Let  be the image of o in
H?(k(n), ptn). Since a- (=) = 0, by Lemma 4.7, 73 = (E(n), oy, (—1)"*16,)). Since a-(up) = 0 in
H3(M,®Fp,, u&?), once again by Lemma 4.7, r8®£(n)p = (E(n)@M (n)®@K(n) p, oy, (—1)" 1/ p).
Since k(n) is a global field, by Corollary 3.6, there exists p; € M(n) such that:

(1) Nt /win) (Hy) =~

(2) rB® M(n) = (E(n) @ M(n), oy, (=1)"1t',);

(3) w'p is close to py, for all P € 27,

Since M,, is complete, there exists /;;7 € M, such that Ny, r, (,uN;?) = —0, and the image of
pz] in M(n) is p,. Let p, = ﬂ%w; Since M, /F, is of degree ¢, ind(av ® M,)) < ind(a ® F;)
(cf. Remark 8.1). Thus u, has the required properties. O

ProprosITION 10.8. Let n be a codimension zero point of X of type 6. For each P € &, let Lp
and pup be as in Proposition 9.8. Then there exist an unramified field extension L, /F), of degree
¢ and p,, € Ly, such that:

(1) Np, /5, (1g) = =X
(2) a- (Nn) =0¢ H3(Ln7#§)2);
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(3) ind(a® L;) < ind(«);
(4) for P € &), there is an isomorphism ¢py, : L, ® Fp, — Lp ® Fp, and

¢pa(pn @ 1) (np ® 1)7H € (Lp © Fpy)*",
for all m > 1.

Proof. Let P € &,. Suppose Lp ® Fp, is a field. Let Lp(n), Op, € Lp(n), 6o € £(n) and 3 be
as in the proof of Proposition 10.6. Then, as in the same proof, we have NLp(n)/n(n)p@P) = —t
and ind(f ® Ey ® Lp(n)) < ind(a)/[E, : Fy]. As in the proof of Proposition 10.7, we have
rB® Lp(n) = (Eo® Lp(n),00®1,(=1)"0p).

If Lp/Fp is not a field, by choice (cf. Proposition 9.8(12)), we have pp = (0177, ..., 07;).
Since a - (up) = 0 in H*(Lp, i) = [T H*(Fp, pg;?), we have a - (7)) = 0 € H*(Fp, pg;?). Thus,
by Lemma 4.7, we have r3 ® x(n)p = (Eo, 00 ® 1, (—1)"6;) for all i. Since Lp(n) = [[#(n)p and
Op = (01,...,0;), we have r3® Lp(n) = (Eg ® Lp(n),00 ® 1,(—1)"0p).

As in the proof of Proposition 10.6, we construct L, and u, with the required properties. O

LEMMA 10.9. Let n be a codimension zero point of Xg and P a closed point on 7. Suppose
there exist 0, € F, such that a - (6,) = 0 € H3(F,, u2?). Then there exists 0p € Fp such that
a-(0p) =0¢€ H3(Fp, u®?), v, (0p) = v,(6,) and 0,0, € Ff;;), for allm > 1.

Proof. Let 7 be a prime representing n at P. Since Xy U ramg (o) has normal crossings, there
exists a prime § at P such that the maximal ideal at P is generated by 7 and 4, and « is
unramified at P, except possibly at m and d. Since Fp,, is a complete discretely valued field with
7 as a parameter, 0, = wr® for some w € F; unit at 7. Since the residue field x(n)p of Fp, is a
complete discretely valued field with & as a parameter, we have W = ud for some u € Fp unit
at P. Let 0p = ud"m°. Then clearly v;,(6,) = v,(0p) and 0,0, € Fﬁ:;, for all m > 1. Since a- (6p)
is unramified at P, except possibly at 7 and 4, and a - (6p) = a - (6,) = 0 € H3(Fp,, u$?), by
Corollary 5.5, - (0p) = 0 € H3(Fp, u2?). 0

11. The main theorem

THEOREM 11.1. Let K be a local field with residue field k and F the function field of a curve
over K. Let D be a central simple algebra over F of period n, o its class in H?*(F, u,), and
A€ F*. Ifa-(—A) =0 and n is coprime to char(k), then —\ is a reduced norm from D*.

Proof. As in the proof of Theorem 4.12, we assume that n = £ for prime £ with ¢ # char(x) and
F contains a primitive ¢th root of unity. We prove the theorem by induction on ind(D).

The case ind(D) =1 is clear. Assume that ind(D) > 1.

Without loss of generality we assume that K is algebraically closed in F'. Let X be a regular
projective geometrically irreducible curve over K with K(X) = F. Let R be the ring of integers
in K and k its residue field. Let 2™ be a regular proper model of F' over R such that the union
of ramy (), supp 4-(A) and the special fiber X of 2 is a union of regular curves with normal
crossings. By Proposition 8.6, we assume that 2~ has no special points, and there is no type 2
connection between codimension zero points of Xg of type 3 or 5, and codimension zero points
of Xg of type 3, 4 or 5.

Let & be the set of nodal points of Xy. For each P € &2, let Lp and pup be as in
Proposition 9.8. Let n be a codimension zero point of Xg and &7, = & Nn. Let L, and pu,
be as in Propositions 10.1, 10.3, 10.4, 10.6, 10.7 or 10.8 depending on the type of . Then L, /F;,
is a field or the split extension of degree ¢ and u,, € L, such that:

454

https://doi.org/10.1112/50010437X17007618 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007618

LOCAL-GLOBAL PRINCIPLE

(1) Np,/r,(1y) ==X\

(2) a-(uy) =0€ H?(Ly, p3?);
(3) ind(a® Ly) < ind(a);

(4)

4) for P € &, there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp, and

$pa(pin @ 1)(up ©1)7" € (Lp ® Fp,)™",
for all m > 1.

Let P € 2 be a closed point with P ¢ 2. Then there is a unique codimension zero point
n of Xo with P € n. We give a choice of an étale algebra Lp/Fp of degree ¢ and pp € L} such
that:

(1) Npp/pp(pp) = =X

(2) ind(a® Lp) < ind(a);

(3) a-(up)=0€ H*(Lp,u3?);

(4) there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp, and

Opn(py @ 1)(np @ 1) € (Lp @ Fpy)™",
for all m > 1.

Suppose that 7 is of type 1. Let Lp = Fp(v/A) and pp = —v/X. Then, by Lemma 6.2 and
Proposition 10.1, Lp and pp have the required properties.

Suppose that n is of type 2. Suppose that there is a type 2 connection to a codimension
zero point 1’ of Xy of type 5. Let Q be the point of type 2 intersection 1 and 7’. Suppose
that M,» ® Fg,y not a field. Then, by choice (cf. Proposition 10.3), we have L, = [[ F;,, and
g = (01,...,0¢). Since « - (u,;) = 0, we have « - (¢;) = 0. For each 7, 2 < i < ¢, by Lemma 10.9,
there exists 0" € Fp such that a - (07) =0 € H3(Fp, u®?) and 0; '6F Fp,, for all m > 1. Let
0F = —\(0L---0F)7L. Then Lp = [[ Fp and up = (67,...,0F) have the required properties.
Suppose that M,y ® Fg , is a field or there is no type 2 connection from 7 to any point of type 5.
Then, by choice (Proposition 10.4), we have L, = F,(vV'A) and , = —v/\. Hence Lp = Fp(\/)\)
and pp = —v/A € Lp have the required properties (cf. Lemma 6.2).

Suppose that 7 is not of type 1 or 2. Then, by choice, L, /F; is an unramified field extension
of degree ¢ or the split extension of degree £. Let Ap be the completion of the local ring at P
and 7 a prime in Ap defining 7 at P. Since P ¢ & and ram (cv) is union of regular curves with
normal crossings, there exists a prime § € Ap such that « is unramified on Ap, except possibly
at m and 8. Further, A = wx”é* for some unit w € Ap. Since 7 is not of type 1 or 2, vn(X) =ris
divisible by ¢. Thus, by Lemma 6.5, there exist an étale algebra Lp/Fp and pup € Lp such that:

(1) LP®FP77 ZLW(X)FPT];
(2) ind(a ® Lp) < ind(«);
(3) a-(up) =0¢€ H*(Lp, u?);
(4) there is an isomorphism ¢p,, : L, ® Fp, — Lp ® Fp,, and
Gpn(pn @ 1)(up @ 1)_1 €(Lp® FP,n)£m>
for all m > 1.

Thus for every x € X, we have chosen an étale algebra L, /F, of degree ¢ and p, € L, such
that:
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N, p, (Hz) = =X

- (tz) =0 € H*(Lo, pi?);

ind(a ® Ly) < ind(«);

for any branch (P,7n), there is an isomorphism ¢p, : L, ® Fp, — Lp ® Fp, and
Py ® VD)(up ® 1)~ € (Lp ® Fpm)zm, for all m > 1. Further, if n is a codimension
zero point of Xo, then L, /F, is field or the split extension.

A~ N /N
[\

=~
S— N N N

Let (P,n) be a branch. Since x(P) is a finite field, there exists ¢p such that x(P) has no
('Pth primitive root of unity. Since x(n)p is a complete discretely valued field with residue field
k(P), k(n)p has no ¢'7th primitive root of unity. Since Fp,, is a complete discretely valued field
with residue field x(n)p, Fp, has no £7th primitive root of unity.

Let L/F be a degree ¢ extension as in Lemma 7.3. Then ind(a ® L) < ind(«). Note that for
every closed point P of Xy, the residue field x(P) at P is a finite field. Thus, for every closed
point P of Xy, there exists tp > d such that there is no primitive ¢/Pth root of unity in x(P).
Thus, by Proposition 7.5), there exist a field extension N/F of degree coprime to £ and y € LQN
such that:

® Npgn/n(p) = —A; and

e a-(u)=0¢€ H3(L® N, u?).
Since L ® N is also a function field of a curve over a local field, by induction hypotheses, pu
is a reduced norm from D ® L @ N and hence —\ = Npgn/n(pt) is a reduced norm from D.
Since Ny p(—A) = (=N)INFL (X IVFT s a norm from D. Since [N : F] is coprime to £, —\ is
a reduced norm from D. O

COROLLARY 11.2. Let K be a local field with residue field k and F' the function field of a curve
over K. Let § be the set of divisorial discrete valuations of F. Let D be a central simple algebra
over F' of period coprime to char(k) and A € F. If X is a reduced norm from D® F), for allv € Q,
then X is a reduced norm from D.

Proof. Let n be the period of D and o € H?(F, ju,,) be the class of D. Since \ is a reduced norm
from F, for all v € Qp, a-(\) = 0 in H3(F,, u®?) for all v € . Thus, by [Kat86, Proposition 5.2],
a-(\) =0in H3(F, u®?) and by Theorem 11.1, ) is a reduced norm from D. O
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