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Notes: (1) On a Geometrical Problem.

(2) On an Algebraical Equation of Professor
Cayley’s.

By Professor STEGGALL.

On the Fundamental Principles of Quaternions and other
Vector Analyses.

By Dr WiLLiam PEDDIE.

When s student of mathematics commences the study of a sub-
ject which involves the assimilation of what are, to him, fandamen-
tally new ideas, his progress is, as a rule, slow at first. And, even
after he has become accustomed to these ideas, he may still require
a long course of laborious practice, before he can attain to that
mastery of the method which would enable him to use it as a powerful
aid to research. Thus students, familiar with geometrical methods,
when first commencing the study of Cartesian analysis, require much
practice before they can call up mentally the geometrical figure
corresponding to a given equation, And, the more general the new
method is, the greater is the difficulty felt to be. So, in Hamilton’s
system of quaternions, the difficulty of assimilation is greater than
it is in the Cartesian analysis. And it seems as if it were for this
reason that, in recent years, attempts have been made, by men of
known mathematical ability, to smooth the paths.

Practically, all these attempts consist in using, instead of
Hamilton’s, another system of quaternions, cut up into parts; the
parts of that system being used because they are imagined to be
superior to the corresponding parts of Hamilton’s system in respect
of naturalness. Subsequently, I shall say somewhat regarding the
reasonableness (or unreasonableness) of this claim; but, whatever
conclusion be accepted on this point, M‘Auley’s appeal to the
spoon-feeders, to ‘“provide spoon-meat of the same X%ind as the
other physicians ” (Nature, Dec. 15, 1892), is most appropriate.

Some of the strictures recently passed on quaternions refer
rather to the way in which the subject is presented in the standard
treatises than to quaternions themselves. Heaviside (Electrician,
Nov. 18, 1892) refers to three special “sticking-points” in Tait’s
treatise, One of these is the investigation of Hamilton’s cubic
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in Chap. V. There is no special difficulty in the investigation,
though the process may have been difficult enough to discover;
and, curiously enough, when one turns with great expectations
to Heaviside’s alternative process, it is with genuine disappoint-
ment that it is found to be, stepfor-step, Hamilton’s with ¢'Vmn
written instead of VAg, and with other corresponding surface
changes. _

Another special “sticking-point” is said to be in Chap. IV.,
“where the reader may be puzzled to find out why the usual
simple notion of differentials is departed from, although the de-
parture is said to be obligatory.” Surely the fact that, in this
chapter, the usual notion is freely used, should produce reflection
rather than misconception.

Chief of all the “sticking-points” is ¢ the fundamental Chap. IT.,
wherein the rules for the multiplication of vectors are made to
depend upon the difficult mathematics of spherical conics, combined
with versors, quaternions, and metapbysics.” It is somewhat
puzzling to find Heaviside speaking of the mathematics of spherical
conics—at least so far as they are used there—as difficult. The
“metaphysios” evidently refers to Hamilton’s speculation, which
Tait takes care to call a gquasi-metaphysical speculation. His
conclusions are the necessary logical results of his postulates, which,
in so far as they refer to the nature of space, express the results of
experience, and cannot be called metaphysical. One of the chief merits
of this chapter, from a student’s point of view, lies in the wealth of
alternative proofs which it contains. Doubtless, by assuming the
fundamental rules of vector multiplication, the identification of
unit vectors and quadrantal versors might have been more directly
made. But it seems as if Heaviside had failed to notice that Tait’s
method shows that such sweeping assumptions are unnecessary—
that partial assumption of certain of the rules only is needed.

Another bone of contention is the minus sign which appears
in the square of a vector or in a scalar product. Gibbs says (Nature,
April 2, 1891), “ When we come to functions having an analogy to
multiplication, the product of the length of two vectors and the
cosine of the angle which they include, from any point of view
except that of the quaternionist, seems more simple than the same
quantity taken negatively.” Macfarlane (Proc. Amer. Ass., 1891)
says, that “a student of physics finds a difficulty in the principle
of quaternions which makes the square of a vector negative”; and
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Heaviside (Zlectrician, Dec. 9, 1892) writes, that ‘“the vector
having to submit to the quaternion, leads to the extraordinary
result that the square of every vector is a megative scalar. This
is merely because it is true for quadrantal versors, and the vector
has to follow suit. The reciprocal of a vector, too, goes the wrong
way, merely to accomodate versors and quaternions.”

Now this point raises the whole question of the value of
quaternions as such. Given that the quaternion is useless, or
nearly so, in itself; and that scalar and vector products are only
of use separately; no one will quarrel greatly with the advocates
of the positive sign. Heaviside remarks that the physicist ““is very
much concerned with vectors, but not at all, or at any rate scarcely
at all, with quaternions”; that “if the usual investigations of
physical mathematics involved quaternions, then the physicist
would no doubt have to use them. But they do not. If you
translate physical investigations into vectorial language, you do
not get quaternions; you get vector algebra instead.” Gibbs
remarks, that *“ the question arises whether the quaternionic product
can claim a prominent and fundamental place in the system of
vector analysis. It certainly does not hold any such place among
the fundamental geometrical conceptions as the geometrical sum,
the scalar product, or the vector product. The geometrical sum
a+ [ represents the third side of a triangle as determined by the
sides « and B. Va@ represents in magnitude the area of the
parallelogram determined by the sides e and (3, and, in direction,
the normal to the plane of the parallelogram. SyVaf represents
the volume of the parallelopiped, determined by the edges a, 3, and y.
These conceptions are the very foundations of geometry.” “Ido ney,
know of anything which can be urged in favour of the quaternionic
product of two vectors as a fundamental notion in vector analysis,
which does not appear trivial or artificial in comparison with the
above considerations, The same is true of the quaternionic quotient,
and of the quaternion in general.”

‘Whatever be the case with regard to the mathematician, the
statement that the physicist is scarcely, if at all, concerned with
quaternions has surely been made without sufficient reflection.
‘We may observe the velocities of a planet at two distinct instants,
and merely describe the facts: or we may ask Aow the one became
the other. The answer may be given in two ways—either by stating
what vector quantity added to the one gives the other, or by
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stating what quantity acting upon the one gives the other. The
former corresponds to the methods of pure vector analysis; the
latter to those of quaternions, involving turning and lengthening.
Both methods are of importance to the physicist. He sometimes
wishes to consider the external addition to the changing quantity ;
sometimes to consider the internal changes as such. And one might
just as rationally assert that he has to do only with quaternions
as that he has to do only with vectors, since it is easy to use a
notation expressing a vector in terms of a quaternion. The so-called
vector analyst really uses a notation which expresses a quaternion
in terms of vectors, and so his analysis simply bristles with quater-
nions : the quantity is none the less a quaternion because he chooses
to shut his eyes to the fact, or at least not to use it as such. When
he deals with Vaf, the quantity a8 is the thing which turns the
unit vector [ into the unit vector +a, or into — a, according as we
define the square of a unit vector to be equal to positive, or to
negative unity, respectively—if we operate from right to left. But
the vector analyst refuses to take advantage of what is in his
power. Surely Heaviside would not have spoken of * wrong ways”
if he had observed that, while in the quaternionic system af turns
B into -« and a/B turns B into +a; in a similar system, in
which the square of a unit vector is positive unity, of8 would
simply do what the quaternionic o/8 does: and, if no fancied
metaphysical necessity made the analyst regard the reciprocal of
a direction as identical with the direction itself, a/8 would do
what the quaternionic af does. The one method is as *“natural ”
as the other. The choice of one must be ruled by expediency ;
the test of expediency being chiefly generality and applicability.

I believe most distinctly that students will prefer quater-
nion methods to those by which it is proposed to supersede them.
The former develope a system naturally without any assumptions
beyond those made fundamentally. In the latter, new definitions
take the place of connecting links—as in the case of a working
hypothesis which does not work well. An almost endless series
of examples might be given of the singular inapplicability of the
non-quaternionic systems to physical and other problems. Macfarlane
is practically the only recent writer on the subject who does not
arbitrarily exclude the quaternion from his system, which differs
from ordinary quaternions in that the square of a unit vector is
positive unity, and that he chooses to operate from left to right.
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The quaternionic aspect of his system may be seen thus. Let a be
any vector whatsoever, and let 7 be any unit vector. In Macfarlane’s
system ait represents a vector got by rotating o rigid-body-wise
through two right angles round the axis of 4: the corresponding
vector in quaternions is —tat or sail. In Macfarlane’s system
—1(az) [or i-az7), if he did not fancy that the direction reciprocal to
a given direction should be that direction itself] is the vector —a:
in quaternions this is asz. Certain results have been interchanged,
and that is all.

It might not have appeared a priori that this was all, for in this
system a restriction, which holds in quaternions, disappears. The
associative law does not apply, and in this respect the new algebra
might have been more general; for, as Kelland points out in the
Preface to Kelland and Tait’s Introduction to Quaternions, generality
is attained by the removal of restrictions. In arithmetic, the
treatment of fractions was impossible until multiplication ceased
to be regarded as a series of additions ; and algebra became possible
when negative quantities were recognised. But, in algebra, the
commutative law holds. Quaternions—the self-contained algebraic
gystem most suitable to tri-dimensional space—became possible
when it was denied. But, in quaternions, the associative law
holds. Tt may be that, in some system free from this restriction,
greater generality will be reached. But the essential identity,
pair by pair, of the results of the two systems under consideration,
precludes the idea in this case. And so, the new system being no
more general than quaternions, and being distinctly less workable
(for no one will maintain that a non-associative algebra is so work-
able as an associative algebra), expediency decides in favour of
quaternions,

Macfarlane asks, “ What reason do writers on quaternions give
for taking zx'+yy' +22’ negatively in the case of the product of
two vectors?” and asserts that ‘“the true reason for taking the
expression negatively is to satisfy the rule of association.” This
is not so: for it is easy to prove that we may take the square of a
unit vector as positive unity, and yet get the associative law;
provided only that we take 4= J—:_lk, etc., where 4, 4, and %, are
unit rectangular vectors, and i or ,/— 1k is the quadrantal versor
whose axis is £. But, in this case, the product of an even number
of vectors is a linear function of the three unit rectangular versors,
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while the product of an odd number is linear in 4, j, . Thus odd
and even products are fundamentally distinct, and simplicity is lost.

Another point, in regard to which quaternions have been
attacked, is that of applicability to space of n-dimensions. Hyde
(Directional Calculus, Preface), speaking of Grassmann’s method,
says, ‘It seems scarcely possible that any method can be devised,
comparable with this, for investigating n-dimensional space;” and
Macfarlane asserts that *the method of Hamilton appears to be
restricted to space of three dimensions.” Gibbs speaks more
strongly. ‘“As a contribution to analysis in general, I suppose
that there is no question that Grassmann’s system is of indefinitely
greater extension [than Hamilton’s] having no limitation to any
particular number of dimensions” (Nature, May 28, 1891). “How
much more deeply noted in the nature of things are the functions
Sef and Vef than any which depend on the definition of a quater-
nion, will appear in a strong light if we try to extend our formule
to space of four or more dimensions. It will not be claimed that
the notions of quaternions will apply to such a space, except,
indeed, in such a limited and artificial manner as to rob them of
their value as a system of geometrical algebra. But vectors exist
in such a space, and there must be a vector analysis for such a
space. The notions of geometrical addition and the scalar product
are evidently applicable in such a space. As we cannot define the
direction of a vector, in space of four or more dimensions, by the
condition of perpendicularity to two given vectors, the definition
of Vap, as given above, will not apply fotidem verbis to space of
four or more dimensions. But a little change in the definition,
which would make no essential difference in three dimensions, would
enable us to apply the idea at once to space of any number of
dimensions ” (Nature, April 2, 1891),

Fortunately, the “strong light” of which Gibbs speaks shines
the other way. The notions of quaternions are applicable to space
of four or any number of dimensions. The general system should
give a definition of Vaf3, perfectly definite in space of any dimen-
gions, and reducing to the usual one when the dimensions are limited
to three. And it does.

The problem is to find a general system involving quantities
whok il ... . , Which represent unit rectangular vectors in cyclical
order, and obey the laws #=7=......= -1; 4= —ji, ... ; and
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also the associative Jaw. And the system must reduce to quater-
nions when only three of these vectors exist.

This problem has been worked out by Clifford in a paper On the
Classification of Geometric Algebras. He makes the above assump-
tions, and then seeks to find what assumption must be made
analogous to the Hamilton law 3k= —1. The following method
of procedure is perhaps more in accordance with Hamiltonian ideas.

In three dimensions, the product of two unit rectangular vectors
is the remaining rectangular unit vector. Assume generally that
the product of » — 1 such units, in cyclical order, is a vector quantity
representable by the remaining rectangular vector ; so that

where — i, is the operator which transforms » into ¥k...... m, and
we get

and, if we put ¥, ¢, =y, W, =1, we get

1=y, k... n.
Also ny, =nijk...... n=+yk...... m, according as n is even or odd ;
that is, ny,, = + Y, m according as nisodd oreven. And n= +y,ny, "
according as 7 is odd or even. In this way we see that, quite
generally, ¥, and ¢, are symbols commutative with vectors if =
is odd, but non-commutative if % is even.

Whatever be the sign of .2 the sign of y,,.? must be similar
or dissimilar according as = is odd or even: for y,,,? is reduced to
+¢,2 by n interchanges of the vector (r+1) with other vectors,
together with the substitution of —1 for (n+1)%. It follows that,
in the case of even values alone, y? is positive and negative unity
alternately ; and the same rule holds in the case of odd values alone,
In the special case of three dimensions, ¥*= —1, from which all
other cases may be deduced

In an odd space of n-dimensions, we may put

n+l
‘)Ln —w 2 ?
where w is a quantity whose square is negative unity. And, in an
even space of n-dimensions, we may put

Yu=o®
where « is also negative unity.
Except in the cases in which = is divisible by 4, we may
suppose @ to be the imaginary of ordinary algebra; in these cases
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Y would be positive or negative unity, so that the more general
symbol should be retained because of the non-commutative nature
of ¢ in spaces of even dimensions.

In particular, in two dimensions, ij= ,/-1. Hence we get
J=—iJ-1= /-1 and i= - /= 1j. Tf a=wi+yj, the operator
= 1(=y,) gives /- la=zj-yi. 1n this case there is no need to
retain the symbols %, j; for a=xi+yj=(x+y J—_l )i, and ¢ denotes
a given direction, so that a may be completely denoted by #+y ,/— L.
It appears; therefore, that complex algebra is a special case of this
generalised quaternionic system. Ordinary arithmetic may be re-
garded as the special case ;= 1.

Thus, in respect of generality, as well as of simplicity, the
quaternionic method has the advantage.

In four dimensions, from 4jkl=1y, we get yjk= — i, jki=11,
kli= —j, lij=+k. It does not follow that the space is non-
symmetrical, or that, as the condition of symmetry, we should
have ijk= —yl, jkl= —yi, ete. For we have seen that, in the
symmetrical two-dimensional space, wehave i= — ,\/—_lj, Jj= J~—li,
not j= — ,/— 1i, as a necessary condition for symmetry.

In any space Vaf represents a directed area in the plane of o, .

In three dimensions, it happens to be representable by a linear
vector.

Fifth Meeting, March 10, 1893.

JorN AvrisoN, Esq., MLA., F.R.8.E., President, in the Chair.

Early History of the Symmedian Point.
By J. 8. Macgay, M.A,, LL.D.
In 1873, at the Lyons meeting of the French Association for the
Advancement of the Sciences, Monsieur Emile Lemoine called

attention to a particular point within a plane triangle which he
called the centre of antiparallel medians. Since that time the
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