TOTALLY REAL SURFACES OF THE SIX-DIMENSIONAL SPHERE

by M. A. BASHIR

(Received 9 August, 1989; revised 25 October, 1989)

1. Introduction. An almost Hermitian manifold (\overline{M}, J, g) with Riemannian connection $\overline{\nabla}$ is called *nearly Kaehlerian* if $(\overline{\nabla}_X J)X = 0$ for any $X \in \mathscr{X}(\overline{M})$. The typical example is the sphere S^6 . The nearly Kaehlerian structure J for S^6 is constructed in a natural way by making use of Cayley division algebra [3]. It is because of this nearly Kaehler, non-Kaehler, structure that S^6 has attracted attention. Different classes of submanifolds of S^6 have been considered by A. Gray [4], K. Sekigawa [5] and N. Ejiri [2]. In this paper we study 2-dimensional totally real submanifolds of S^6 . These are submanifolds with the property that for every $x \in M$, $J(T_x M)$ belongs to the normal bundle v. For this class we have obtained the following result.

THEOREM. Let M be a complete totally real 2-dimensional submanifold of S^6 . Then M is flat and minimal.

2. Preliminaries. Let C_+ be the set of all purely imaginary Cayley numbers. Then C_+ can be viewed as a 7-dimensional linear subspace \mathbb{R}^7 of \mathbb{R}^8 . Consider the unit hypersurface which is centred at the origin,

$$S^{6}(1) = \{ x \in C_{+} : \langle x, x \rangle = 1 \}.$$

The tangent space $T_x S^6$ of $S^6(1)$ at a point x may be identified with the affine subspace of C_+ which is orthogonal to x.

On $S^{6}(1)$ define a (1, 1)-tensor field J by putting

$$J_x U = x \times U,$$

where the above product is defined as in [2] for $x \in S^6(1)$ and $U \in T_x S^6$. This tensor field J determines an almost complex structure (i.e. $J^2 = -Id$) on $S^6(1)$. The compact simple Lie group of automorphisms G_2 acts transitively on $S^6(1)$ [3]. Now let G be the (2, 1)-tensor field on $S^6(1)$ defined by

$$G(X, Y) = (\bar{\nabla}_X J)Y \tag{2.1}$$

where $\overline{\nabla}$ is the Levi-Civita connection on $S^6(1)$ and $X, Y \in \mathscr{X}(S^6)$. The vector field G possesses the following properties ([5], [4]);

$$G(X, X) = 0,$$
 (2.2)

$$G(X, Y) = -G(Y, X),$$
 (2.3)

$$G(X, JY) = -JG(X, Y), \qquad (2.4)$$

$$g(G(X, Y), Z) = -g(G(X, Z), Y),$$

$$g(G(X, Y), G(Z, W)) = g(X, Z)g(Y, W) - g(X, W)g(Z, Y)$$
(2.5)

$$+g(JX, Z)g(Y, JW) - g(JX, W)g(Y, JZ)$$
 (2.6)

where X, Y, Z, $W \in \mathscr{X}(S^6)$ and g is the Hermitian metric on $S^6(1)$. Note that (2.2) means that S^6 is nearly Kaehler with respect to J.

Glasgow Math. J. 33 (1991) 83-87.

Let M be a submanifold of $S^6(1)$ and denote by ∇ , $\overline{\nabla}$ and ∇^{\perp} the Riemannian connections on M, S^6 and the normal bundle respectively. These Riemannian connections are related by the Gauss formula and Weingarten formula

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \qquad (2.7)$$

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \qquad (2.8)$$

where N is a local normal vector field on M in $S^{6}(1)$ and X, $Y \in \mathscr{X}(M)$, and where h(X, Y) and $A_{N}X$ are the second fundamental forms which are related by

 $g(h(X, Y), N) = g(A_N X, Y).$

For M in $S^{6}(1)$ the equation of Codazzi is given by

$$(\bar{\nabla}_X h)(Y, Z) = (\bar{\nabla}_Y h)(X, Z), \tag{2.9}$$

where $(\overline{\nabla}_X h)(Y, Z) = \overline{\nabla}_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z).$

3. Totally real submanifolds of $S^6(1)$. We consider 2-dimensional totally real submanifolds of $S^6(1)$; so in the following M always denotes a 2-dimensional totally real submanifold of $S^6(1)$. For M, equations (2.7), (2.8), and (2.9) hold. Assume that X and Y are unit tangent basis vectors for the tangent space $T_x M$. The normal bundle v splits as $v = \mu \oplus J(TM)$ where μ is an invariant subbundle of v i.e. $J\mu = \mu$. Therefore the normal bundle v is spanned by an orthonormal frame field of the form $\{JX, JY, N, JN\}$ for some unit vector field N in μ .

Now using (2.5) and (2.2) we get

$$g(G(X, Y), X) = 0.$$
 (3.1)

Also, using (2.3), (2.5) and (2.2), we have

$$g(G(X, Y), Y) = 0.$$
 (3.2)

From (2.5), (2.4) and (2.2) we get

$$g(G(X, Y), JX) = 0.$$
 (3.3)

Switching the role of X and Y in (3.3) and using (2.3) we also get

$$g(G(X, Y), JY) = 0.$$
 (3.4)

Equations (3.1), (3.2), (3.3) and (3.4) imply that $G(X, Y) \in \mu$. From (2.8) with N = JY we have

$$J\bar{\nabla}_X Y + (\bar{\nabla}_X J)Y = -A_{JY}X + \nabla^{\perp}_X JY.$$
(3.5)

Using (2.7) and (2.1) in (3.5) we get

$$Jh(X, Y) = -A_{JY}X + \nabla_X^{\perp}JY - G(X, Y) - J\nabla_X Y.$$
(3.6)

Assume that the orthonormal frame field $\{X, Y\}$ for *TM* is chosen in such a way that $\nabla_X X = 0$. Such a choice is possible since *M* is complete and therefore such a frame exists [6, p. 456]. To choose the field *Y* orthonormal to *X* one can just apply the Gram-Schmidt

process to any frame field orthogonal to X. For the frame field $\{X, Y\}$ we have

$$g(\nabla_X^\perp JY, JY) = 0, \tag{3.7}$$

$$g(\nabla_X^\perp JY, JX) = 0. \tag{3.8}$$

(3.7) is trivial since the frame field is orthonormal; (3.8) follows from g(JX, JY) = 0, (2.8), (2.2), with the help of $\nabla_X X = 0$, and the fact that g is Hermitian.

From (3.7) and (3.8) we conclude that $\nabla_X^{\perp}JY$ belongs to μ . Since the normal bundle ν splits as $\nu = \mu \oplus J(TM)$, the vector $Jh(X, Y) \in \mu \oplus (TM)$. Hence the vector $-A_{JY}X + \nabla_X^{\perp}JY - G(X, Y) - J\nabla_X Y$ in the right hand side of (3.6) belongs to $\mu \oplus (TM)$. Since we have shown that both G(X, Y) and $\nabla_X^{\perp}JY$ belong to μ , it follows that

$$\nabla_X Y = 0. \tag{3.9}$$

Switching X and Y in (3.9) we also get

$$\nabla_Y X = 0. \tag{3.10}$$

Using (3.10) and the fact that the frame is orthonormal we get

$$\langle \nabla_Y Y, Y \rangle = 0 \tag{3.11}$$

and

$$\langle \nabla_Y Y, X \rangle = 0. \tag{3.12}$$

From (3.11) and (3.12) it follows that

$$\nabla_Y Y = 0. \tag{3.13}$$

Note that the sectional curvature K of M is given by

$$K(X, Y) = R(X, Y, Y, X) = g(\nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y - \nabla_{[X,Y]} Y, X).$$

Using (3.9), (3.10) and (3.13) in this equation we get K(X, Y) = 0 i.e. M is flat.

4. Proof of the theorem. In order to prove the theorem we need the following lemma.

LEMMA. Let $X, Y \in \mathscr{X}(M)$. Then $h(X, Y) \in J(TM)$.

Proof. For $Z \in \mathscr{X}(M)$ we have

$$2g(A_{JX}Y, Z) = g(h(Y, Z), JX) + g(h(Y, Z), JX)$$
$$= g(\bar{\nabla}_Y Z, JX) + g(\bar{\nabla}_Z Y, JX)$$
$$= -g(J(\bar{\nabla}_Y Z + \bar{\nabla}_Z Y), X).$$

Using (2.1) and (2.3) in the equation $\bar{\nabla}_Y J Z = J \bar{\nabla}_Y Z + (\bar{\nabla}_Y J) Z$ we have

$$J(\bar{\nabla}_Y Z + \bar{\nabla}_Z Y) = \bar{\nabla}_Y J Z + \bar{\nabla}_Z J Y.$$

Therefore,

$$2g(A_{JX}Y, Z) = -g(\bar{\nabla}_Y JZ, X) - g(\bar{\nabla}_Z JY, X)$$
$$= g(JZ, \bar{\nabla}_Y X) + g(A_{JY}Z, X)$$

i.e.

$$2g(A_{JX}Y, Z) = -g(J\bar{\nabla}_Y X, Z) + g(A_{JY}X, Z).$$

Since $Z \in \mathscr{X}(M)$ is arbitrary, we have

$$2A_{JX}Y = A_{JY}X - J\bar{\nabla}_Y X = A_{JY} - Jh(X, Y)$$
(4.1)

where we have used $\nabla_Y X = 0$ in the last equality. Similarly we have

$$2A_{JY}X = A_{JX}Y - Jh(Y, X).$$
(4.2)

Subtracting (4.2) from (4.1) we get

$$3(A_{JX}Y-A_{JY}X)=0.$$

Thus

$$A_{JX}Y = A_{JY}X. \tag{4.3}$$

Using (4.3) in (4.1) we have

$$A_{JX}Y = -Jh(X, Y). \tag{4.4}$$

It follows from (4.4) that $h(X, Y) \in J(TM)$.

We now start the proof of the theorem. In Section 3 we proved that M is flat. We know from the above lemma that $h \in J(TM)$. Considering $\{X, Y\}$ as an orthonormal frame field on M, we can write

$$h(X, X) \oplus aJX + bJY$$
 and $h(Y, Y) = cJX + dJY$ (4.5)

for some smooth functions a, b, c, d on M. Using (4.3) we have

 $g(A_{JX}Y, X) = g(A_{JY}X, X)$ and $g(A_{JY}X, Y) = g(A_{JX}Y, Y)$

which imply that

$$g(h(X, Y), JX) = g(h(X, X), JY)$$
 and $g(h(X, Y), JY) = g(h(Y, Y), JX)$. (4.6)

From equations (4.5) and (4.6) we can write

$$h(X, Y) = bJX + cJY.$$
(4.7)

Since M is flat and the ambient space is of constant curvature, then the Codazzi equation (2.9) becomes

$$\nabla_X^{\perp} h(Y, X) = \nabla_Y^{\perp} h(X, X) \tag{4.8}$$

and

$$\nabla_Y^{\perp} h(X, Y) = \nabla_X^{\perp} h(Y, Y). \tag{4.9}$$

Using (3.9) in (3.6) we have

$$Jh(X, Y) = -A_{JY}X + \nabla_{X}^{\perp}JY - G(X, Y), \qquad (4.10)$$

and using (4.4) in (4.10) we get

$$\nabla_X^{\perp} JY = G(X, Y). \tag{4.11}$$

We know that $G(X, Y) \in \mu$ and, from (2.6), ||G(X, Y)|| = 1. Therefore $\{JX, JY, G(X, Y), JG(X, Y)\}$ is an orthonormal frame field for the normal bundle v. Then, using (4.5), (4.7) and (4.11) in (4.8), the G(X, Y)-component gives c = -a. Also using (4.5), (4.7) and (4.11) in (4.9), the G(X, Y)-component gives b = -d. Hence h(X, X) = -h(Y, Y); i.e. M is minimal.

86

EXAMPLE. Let $M = S\left(\frac{1}{\sqrt{2}}\right) \times S\left(\frac{1}{\sqrt{2}}\right)$ be the clifford torus. M can be imbedded in $S^{3}(1)$ as follows. Let (X_{1}, X_{2}) be a point of M where X_{1} and X_{2} are vectors in E^{2} each of length $\frac{1}{\sqrt{2}}$. Then M is a flat minimal surface of $S^{3}(1)$. Since $S^{3}(1)$ is totally geodesic in $S^{6}(1)$, M would be flat and minimal in $S^{6}(1)$. M is also totally real in $S^{6}(1)$. To see this first note that $S^{3}(1)$ can be isometrically immersed in $S^{6}(1)$ as a totally real and totally geodesic submanifold [1]. Now write $TS^{6}(1)|_{S^{3}(1)} = TS^{3}(1) \oplus v_{1}$ and $TS^{3}(1)|_{M} = TM \oplus v_{2}$ where v_{1} is the normal bundle of $S^{3}(1)$ in $S^{6}(1)$ and v_{2} is the normal bundle of M in $S^{3}(1)$. For any P in M let $X \in TM$. Then $X \in TS^{3}(1)$. Since $S^{3}(1)$ is totally real in $S^{6}(1)$, $JX \in v_{1}$. But $TS^{6}(1)|_{M} = TM \oplus v_{2}$. Therefore JX belongs to the normal bundle of M in $S^{6}(1)$ and it follows that M is totally real in $S^{6}(1)$.

REFERENCES

1. F. Dillen, L. Verstraelen and L. Vrancken, Classification of totally real 3-dimensional submanifolds of $S^{6}(1)$ with $K \ge \frac{1}{16}$, preprint.

2. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.

3. T. Fukami and S. Ishihara, Almost Hermitian structure on S⁶, Tohoku Math. J. 7 (1955), 151–156.

4. A. Gray, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.

5. K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J. 6 (1983), 174-185.

6. M. Spivak, A comprehensive introduction to differential geometry (Publish or Perish Inc., 1979).

DEPARTMENT OF MATHEMATICS College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia