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1. Introduction. An almost Hermitian manifold (M, J, g) with Riemannian connec-
tion V is called nearly Kaehlerian if (VXJ)X = 0 for any X e $£{M). The typical example is
the sphere S6. The nearly Kaehlerian structure J for S6 is constructed in a natural way by
making use of Cayley division algebra [3]. It is because of this nearly Kaehler,
non-Kaehler, structure that S6 has attracted attention. Different classes of submanifolds
of S6 have been considered by A. Gray [4], K. Sekigawa [5] and N. Ejiri [2]. In this paper
we study 2-dimensional totally real submanifolds of S6. These are submanifolds with the
property that for every x e M, J(TXM) belongs to the normal bundle v. For this class we
have obtained the following result.

THEOREM. Let M be a complete totally real 2-dimensional submanifold of S6. Then M
is flat and minimal.

2. Preliminaries. Let C+ be the set of all purely imaginary Cayley numbers. Then
C+ can be viewed as a 7-dimensional linear subspace IR7 of IR8. Consider the unit
hypersurface which is centred at the origin,

The tangent space TXS6 of S6(l) at a point x may be identified with the affine subspace of
C+ which is orthogonal to x.

On S6(l) define a (1, l)-tensor field / by putting

where the above product is defined as in [2] for x e S6(l) and U e TXS6. This tensor field /
determines an almost complex structure (i.e. J2 = —Id) on S6(l). The compact simple Lie
group of automorphisms G2 acts transitively on S6(l) [3]. Now let G be the (2, l)-tensor
field on 56(1) defined by

(2.1)

where V is the Levi-Civita connection on S6(l) and X, Ye%(S6). The vector field G
possesses the following properties ([5], [4]);

G(X,X) = 0, (2.2)

G(X, Y) = -G(Y, X), (2.3)

G(X, JY) = -JG(X, Y), (2.4)

g(G(X, Y), Z) = -g(G(X, Z), Y), (2.5)
g(G(X, Y), G(Z, W)) = g(X, Z)g(Y, W)-g(X, W)g(Z, Y)

+ g{JX, Z)g(Y, JW) - g(JX, W)g(Y, JZ) (2.6)

where X, Y,Z,We #?(S6) and g is the Hermitian metric on 56(1). Note that (2.2) means
that S6 is nearly Kaehler with respect to /.
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Let M be a submanifold of 56(1) and denote by V, V and Vx the Riemannian
connections on M, S6 and the normal bundle respectively. These Riemannian connections
are related by the Gauss formula and Weingarten formula

VxY = VxY + h(X,Y), (2.7)

VXN = -ANX + VXN, (2.8)

where N is a local normal vector field on M in S6(l) and X, Y e S£{M), and where
h(X, Y) and ANX are the second fundamental forms which are related by

g(h(X,Y),N)=g(ANX,Y).

For M in S6(l) the equation of Codazzi is given by

(Vxh)(Y,Z) = (VYh)(X,Z), (2.9)

where (Vxh)(Y, Z) = Vxh{Y, Z) - h(VxY, Z) - h(Y, VXZ).

3. Totally real submanifolds of S6(l). We consider 2-dimensional totally real
submanifolds of S6(l); so in the following M always denotes a 2-dimensional totally real
submanifold of 56(1). For M, equations (2.7), (2.8), and (2.9) hold. Assume that X and Y
are unit tangent basis vectors for the tangent space TXM. The normal bundle v splits as
v = fi @J{TM) where n is an invariant subbundle of v i.e. Jfi = ft. Therefore the normal
bundle v is spanned by an orthonormal frame field of the form {JX, JY, N, JN} for some
unit vector field N in /i.

Now using (2.5) and (2.2) we get

g(G(X,Y),X) = 0. (3.1)

Also, using (2.3), (2.5) and (2.2), we have

g(G(X, Y),Y) = 0. (3.2)

From (2.5), (2.4) and (2.2) we get

g(G{X, Y),JX) = 0. (3.3)

Switching the role of X and Y in (3.3) and using (2.3) we also get

g(G(X,Y),JY) = 0. (3.4)

Equations (3.1), (3.2), (3.3) and (3.4) imply that G(X, Y) e p.
From (2.8) with N = JYwe have

JVXY + (VXJ)Y = -AJYX + VXJY. (3.5)

Using (2.7) and (2.1) in (3.5) we get

Jh(X, Y) = -AjyX + VXJY - G(X, Y) - JVXY. (3.6)

Assume that the orthonormal frame field {X, Y} for TM is chosen in such a way that
VXX = 0. Such a choice is possible since M is complete and therefore such a frame exists
[6, p. 456]. To choose the field Y orthonormal to X one can just apply the Gram-Schmidt
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process to any frame field orthogonal to X. For the frame field {X, Y) we have

g(VxJY,JY) = 0, (3.7)

g(yxJY,JX) = 0. (3.8)

(3.7) is trivial since the frame field is orthonormal; (3.8) follows from g(JX, JY) = 0,
(2.8), (2.2), with the help of V ^ = 0, and the fact that g is Hermitian.

From (3.7) and (3.8) we conclude that VXJY belongs to ju. Since the normal bundle v
splits as v = fi(BJ(TM), the vector Jh(X, Y)en®(TM). Hence the vector -A]YX +
VXJY-G(X, Y) -JVXY in the right hand side of (3.6) belongs to n © (TM). Since we
have shown that both G(X, Y) and VXJY belong to fi, it follows that

V*y = 0. (3.9)

Switching X and Y in (3.9) we also get

VYX = 0. (3.10)

Using (3.10) and the fact that the frame is orthonormal we get

(VYY, Y)=0 (3.11)
and

{VYY,X)=0. (3.12)

From (3.11) and (3.12) it follows that

VYY = Q. (3.13)

Note that the sectional curvature K of M is given by

K(X, Y) = R(X, Y, Y, X) = g(VxVYY - VyV^Y - V[X,Y]Y, X).

Using (3.9), (3.10) and (3.13) in this equation we get K(X, Y) = 0 i.e. M is flat.

4. Proof of the theorem. In order to prove the theorem we need the following
lemma.

LEMMA. Let X, Ye%(M). Then h(X, Y)eJ(TM).

Proof. For Z e %(M) we have

2g(AJXY, Z) = g(h(Y, Z), JX) + g{h(Y, Z), JX)

Using (2.1) and (2.3) in the equation VYJZ =JVYZ + (VYJ)Z we have

7(VyZ + VZY) = VyJZ + iz]Y.
Therefore,

2g(AJXY, Z) = -g(VYJZ, X)-g(VzJY, X)

= g(JZ,VYX) + g(AJYZ,X)
i.e.

2g(AJXY, Z) = -g(JVYX, Z) + g(AJYX, Z).
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Since Z e St(M) is arbitrary, we have

2AJXY = AJYX - JVYX = AJY - Jh(X, Y) (4.1)

where we have used VYX = 0 in the last equality. Similarly we have

2AjYX = AJXY-Jh(Y, X). (4.2)

Subtracting (4.2) from (4.1) we get

3(AJXY-AJYX) = 0.
Thus

AjXY = AJYX. (4.3)

Using (4.3) in (4.1) we have
AJXY=-Jh(X,Y). (4.4)

It follows from (4.4) that h(X, Y)eJ(TM).

We now start the proof of the theorem. In Section 3 we proved that M is flat. We
know from the above lemma that heJ(TM). Considering {X, Y} as an orthonormal
frame field on M, we can write

h(X,X)®aJX + bJY and h{Y, Y) = cJX + dJY (4.5)

for some smooth functions a, b, c, d on M. Using (4.3) we have

g(AjXY,X) = g(AJYX,X) and g(AJYX, Y)= g(AJXY, Y)

which imply that

g(h{X,Y),JX)=g{h(X,X),JY) and g(h(X, Y), JY) = g(h(Y, Y), JX). (4.6)

From equations (4.5) and (4.6) we can write

h(X, Y) = bJX + cJY. (4.7)
Since M is flat and the ambient space is of constant curvature, then the Codazzi equation
(2.9) becomes

Vxh(Y,X) = VYh(X,X) (4.8)
and

VYh(X,Y) = Vxh(Y,Y). (4.9)

Using (3.9) in (3.6) we have

Jh(X, Y) = -AjyX + VXJY - G(X, Y), (4.10)

and using (4.4) in (4.10) we get

VXJY = G(X,Y). (4.11)

We know that G(X,Y)e[i and, from (2.6), \\G(X, Y)\\ = l. Therefore
{JX, JY, G(X, Y), JG(X, Y)} is an orthonormal frame field for the normal bundle v.
Then, using (4.5), (4.7) and (4.11) in (4.8), the G(X, Y)-component gives c = -a. Also
using (4.5), (4.7) and (4.11) in (4.9), the G(X, y)-component gives b = -d. Hence
h(X, X) = -h(Y, Y); i.e. M is minimal.

https://doi.org/10.1017/S0017089500008065 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008065


THE SIX-DIMENSIONAL SPHERE 87

EXAMPLE. Let M = s(-j~) x S(-T?) be the Clifford torus. M can be imbedded in

53(1) as follows. Let (Xu X2) be a point of M where A", and X2 are vectors in E2 each of

length —r=. Then M is a flat minimal surface of S3(l). Since S3(l) is totally geodesic in

S6(l), M would be flat and minimal in 56(1). M is also totally real in 56(1). To see this
first note that 53(1) can be isometrically immersed in 56(1) as a totally real and totally
geodesic submanifold [1]. Now write rS6(l)|S3(1) = TS3(l) © v, and TS3(l)\M= TM © v2

where v, is the normal bundle of S3(l) in 56(1) and v2 is the normal bundle of M in S3(l).
For any P in M let X e TM. Then X e TS\l). Since S3(l) is totally real in 56(1), JX e v,.
But r56(l)|M = TM © v, © v2. Therefore /A' belongs to the normal bundle of M in 56(1)
and it follows that M is totally real in 56(1).
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