
RINGS WITH INVOLUTION AND 
POLYNOMIAL IDENTITIES 

W. E. BAXTER AND W. S. MARTINDALE III 

An involution * of a ring A is a one-one additive mapping of A onto itself 
such that (xy)* = y*x* and x** = x for all x, y Ç A. If A is an algebra over a 
field <£, one makes the additional requirement that (Ax)* = Ax* for all A G $>, 
x Ç i . 5 will generally denote the set of symmetric elements s* = s, K the set 
of skew elements k* = — k, and Z the centre of A. 

The theory of simple rings with involution has been studied extensively by 
Herstein (1 ; 2). Our viewpoint in the present paper is to consider arbitrary 
rings with involution, and to study some specific problems in which the 
hypotheses (previously made on the whole ring) are only made on the sym
metric elements S. In §1 an easy but useful structure theory for arbitrary rings 
with involution is worked out. Section 3 culminates in Theorem 10: if A is an 
algebra with involution over $ such that S satisfies a polynomial identity over <ï> 
and is algebraic over <i>, then A is locally finite over <£. In §4 we initiate a study 
of rings in which sn(s) — s is central for all s £ S and obtain results for some 
special cases. 

1. Our purpose in this section is to indicate how the Jacobson structure 
theory for rings can be modified so as to provide a useful structure theory for 
rings with involution. To this end we make the following definitions. 

Let A be a ring with involution *. A right A -module M is *-faithful it, for 
r £ A, Mr = Mr* = 0 implies that r = 0. A is *-primitive if there exists an 
irreducible right ^4-module which is *-faithful. U is an *-ideal of A if U is an 
ideal of A such that U* = U. (We remark that if U is a *-ideal of A, then the 
involution induced in A/U will still be denoted by *.) U is a *-primitive ideal 
of A if U is a *-ideal of A such that A/U is *-primitive. 

Let / be the set of irreducible right A -modules, and denote by N the 
Jacobson radical of A. If M G / , we set R(M) = {a G A \ Ma = Ma* = 0}. 
It is clear that N and R{M) are *-ideals of A. We first establish 

THEOREM 1. If I is non-empty, then N = r\MÇIR(M). 

Proof. Set N = r\R(M) and let M £ I. Since^ N = TV*, we have 
MN = MN* = 0, and hence N C N. Now let x Ç N and let M Ç I. In 
particular Mx = 0 and so x G TV. 

It is also straightforward to verify 
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THEOREM 2. U is a ^-primitive ideal of A if and only if U = R(M) for some 
M € I. 

Proof. Suppose U = R(M) and set À = A/U. Then M is a well-defined, 
irreducible right JUmodule according to: mf = mr, m G M, r G A. If 
Mr = M(f*) = 0, then Mr = Mr* = 0, and so r € i?(M), or f = 0. Hence 
U = R(M) is a «-primitive ideal. 

Conversely, if U is a «-primitive ideal, Â = A/U is a «-primitive ring, with 
M an irreducible, *-faithful Â-module. By defining mr = mf, m ^ M, r G A, 
M becomes an irreducible right A -module. If x G U, then x* G U and thus 
Mx = Mx* = 0, whence x G R(M). For x G R(M), Mx = Mx* = 0, or 
Mx = Mx* = 0. Since i f is a «-faithful J!-module, x = 0 and hence x G £/. 
We have therefore shown that [7 = R(M). 

As a corollary to these first two theorems we have 

THEOREM 3. If A is a semi-simple ring with involution, then A is a subdirect 
sum of ^-primitive rings. 

The relation between «-primitive rings and primitive rings is indicated in 

THEOREM 4. If A is a ^-primitive ring, then A is either a primitive ring or 
there is a non-zero ideal U of A such that U C\ U* = 0, A/U is (right) primitive, 
and A/U* is (left) primitive. 

Proof. Let M be an irreducible, «-faithful right A -module. We may suppose 
that M is not faithful. Then U = [r G A \ Mr = 0} is a non-zero ideal of A, 
and M is an irreducible, faithful right (A/U)-module, that is, A/U is right 
primitive. Now M = A —J,Ja, maximal modular right ideal. Set M' = A —J*, 
J* a maximal modular left ideal. We now show that U* = {r G A \ rM* = 0}. 
Let xM' = 0, i.e., xA C J*. Then Ax* C J, that is, x* G U, or x G U*. Next 
let x G U*. Then x* G Z7 and ^4x* C / , or x^4 C J*, or x F = 0. Therefore 
ikf' is an irreducible faithful left (A/ U*)-module. Finally, let x G £/ C\ U*. This 
means that Mx = 0 and xikT = 0. The latter says that x^4 C J*, i.e., 
Ax* Ç J", orMx* = 0. Hence x = 0, since ikf is «-faithful. 

We remark that the structure theory as developed in this section for rings 
with involution carries over in the usual way to the theory of algebras with 
involution. 

2. Before proceeding to our main results, we shall find it convenient to 
list in this section several remarks which will be used in the following. We also 
take this opportunity to assert that for the remainder of this paper we shall assume 
that 2 A = A and that 2x = 0 implies x = 0. 

Remark 1. Let A be an algebra with involution over a field <£. The set 5 of 
symmetric elements of A is said to satisfy a polynomial identity of degree d 
over $ if there exists a non-zero element f(h, t2. . . , tn) of the free algebra over 
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$ freely generated by the tt such that / (s i , s2, . . . , sn) = 0 for all st £ S. The 
element/(^i, h, . . . , /n) is multilinear of degree n if and only if it is of the form 
]L<r a(<r)tffl t<r2 . . . ^„, a(o-) 6 $, some a(a) 5* 0, where a ranges over all permu
tations of (1, 2, . . . , n). If 5 satisfies a polynomial identity of degree n, then 5 
satisfies a multilinear identity of degree <w. (The proof of (5, p. 225, 
Proposition 1 ) carries over here.) 

Remark 2. Let A be an algebra over a field $ and suppose that a is a non-
nilpotent non-invertible algebraic element of A. Then there is an idempotent 
e = akp(a), where p(a) lies in the subalgebra formally generated by 1 and a, 
such that ake = ak, for some k > 1. (See, for example, the proof of (5, p. 210, 
Proposition 1 ).) 

Remark 3. Let A be a simple ring with involution * satisfying the minimum 
condition on right ideals. Then A can be written as a matrix ring Dk, where D 
has an involution X —» X. The involution * is given by 

where the yt = 7* are fixed invertible symmetric elements of D. D is either a 
division ring or is isomorphic to the matrix ring Z2, Z the centre of A, in which 
case X = o-_1XV, X' the transpose of X, 

' " L - Î oJ' 
and all the yt = 1 ; see (7, p. 311, Example A). 

Remark 4. Let A be a primitive algebra with involution over $ such that 5 
satisfies a polynomial identity of degree n. Then there are at most n non-zero 
orthogonal symmetric idempotents ; see (8, p. 1433, Theorem 2 ). 

Remark 5. Let A be a primitive ring with involution such that 5 C Z . Then 
[A : Z] < 4 ( (5, p. 226, Theorem 1 ) can be applied here). 

Remark 6 (Noether-Jacobson). Let D be a division ring with involution 
properly containing its centre Z and such that S is algebraic over Z. Then D 
contains an element x G S \J K,x $ Z, x separable over Z. 

Proof. If 5 Ç Z, then by Remark 5 [D : Z] = 4 and P is separable over Z, 
since the characteristic is unequal to 2. We may assume that the characteristic 
is p > 2 and that there is an element s £ S such that sp G Z but s & Z. The 
proof which appears in (5, pp. 180-181, Proposition 2) carries over to the 
point where there exists an element x £ D such that 5 = xs — sx. Setting 
x = / + k, t G S, k G i£, we see in fact that s = ks — skt or s - 1 ^ = k + 1. 
As & is algebraic, it follows that Z{k) contains a separable element x not 
belonging to Z. Then x* £ Z(&) is separable and so Z(x, x*) is separable over Z. 
In particular either x + x* or x — x* is a separable element not belonging to Z. 
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Remark 7. Let P b e a division ring with involution * such that 5 is algebraic 
over Z. Suppose the dimensions of all finite-dimensional separable subfields M 
containing Z for which M* = M are bounded. Then [D : Z] is finite and D has a 
maximal subfield P such that P* = P and P is separable over Z. 

Proof. Following the proof of (5, p. 181, Theorem 1 ), we let P = P* be such 
a separable subfield of maximum finite dimension. The centralizer C of P is a 
division ring with involution whose centre, in view of (5, p. 165, Corollary), is 
P. If C 9e P, by Remark 6 there is a symmetric or skew element x £ C, x £ P 
which is separable over P. Then Q = P{x) is finite-dimensional and separable 
over Z, and since Q* = Q and Q properly contains P , a contradiction results. 
Therefore C = P is a maximal subfield and .D is finite-dimensional over Z. 

3. We begin this section with 

LEMMA 1. Let A be a primitive ring with involution * and with an identity 
element. If S is a simple Jordan ring, then A is a simple ring. 

Proof. Let U be a non-zero ideal of A. Then V = [/£/* is a non-zero *-ideal 
of A since 4̂ is primitive. Suppose F H 5 ^ 0 . Then F H 5 = 5 and 1 Ç 7, 
forcing £/ = A Suppose 7 0 5 = 0. Then V Q K and in particular z>2 = 0 for 
all v G F. But this contradicts the primitivity of A. 

THEOREM 5. Let A be a primitive algebra with involution * over a field $. 
Suppose S is algebraic over $ and contains no non-trivial idempotents. Then A is 
either a quaternion algebra over its centre or A is a division algebra. 

Proof. Suppose 5 has no non-zero nilpotent elements. Then by Remark 2 
every non-zero element of S is invertible, since 5 is algebraic and contains no 
non-trivial idempotents. In particular, 5 is a simple Jordan algebra, and by 
Lemma 1 A must be simple. The conclusion then follows from a theorem of 
Osborn (6, p. 249, Lemma 4). 

Therefore we may suppose that s2 = 0 for some s 9^ 0 G 5. From 

m 

£ \i(sx + x*s)i = 0, X, e $, 
i=0 

we obtain 
m 

£ \t(sx)i+1 = 0 
by multiplying on the right by sx. In other words, s A is algebraic over $ and so 
must contain a non-zero idempotent e = sa (since ^̂ 4 cannot be nil). Since 
e*e = 0, e + e* — ee* is a non-zero symmetric idempotent, which therefore 
must equal 1. Suppose eAe is not a division algebra. Choose g £ eAe such that g 
is an idempotent different from 0 and e. This can be done since eAe (QsA) is an 
algebraic primitive algebra over $. Then g + g* — gg* is a non-zero sym
metric idempotent, which must be equal to 1. But then 

e = (g + g*-- gg*)e = g, 
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a contradiction. Hence eAe is a division algebra. Now consider 1 — e. Since 
(1 — e)e* = e* — ee* = 1 — e, it follows that 1 — e Ç Ae* Q As, which is 
algebraic. By the same argument as before, (1 — e)A(l — e) is a division 
algebra. Therefore A = A2, A a division ring, and since 5 has no non-trivial 
idempotents, A must actually be a quaternion algebra Z2 according to 
Remark 3. 

THEOREM 6. Let D be a division algebra with involution * over <ï>, and suppose S 
satisfies a polynomial identity of degree n over $ and is algebraic over $>. Then D 
is finite-dimensional over its centre Z, where [D : Z] < 4?z2. 

Proof. By Remark 1 let/(/i , /2, . . . , tn) be a multilinear identity satisfied 
by S. 

If * is of the second kind, then/(xi, x2, . . . , xn) = 0 for all xt £ D ; see, e.g., 
(8, p. 1433, Theorem 1). By a theorem of Kaplansky (5, p. 226, Theorem 1), 
[D : Z] < \n2 < 4^2. Therefore we may assume that Z ^ S. 

Suppose the dimensions of all finite-dimensional separable subfields M 
containing Z for which M* = M are bounded. By Remark 7, D is finite-
dimensional over Z with maximal subfield P. D ® z P = Pa ls again a ring 
with involution induced by * whose symmetric elements also satisfy 

/(/i , tif . . . , tH) = 0. 

In view of Remark 3, Pq has at least r orthogonal symmetric idempotents, 
where a < 2r. But r < n by Remark 4 and so g < 2r < 2w, whence 

[D : Z] = g2 < 4rc2. 

We may assume, then, that D contains a separable element x of degree /, 
where / > 2n. Set E = Z{x). As in the proof of (8, p. 1439, Theorem 6), we see 
that D ® z E = Cm, C a division ring, is a ring with involution for which 
/ < m, a contradiction to Remark 4. 

THEOREM 7. Let A be a primitive algebra with involution * over a field 3>. 
Suppose S satisfies a polynomial identity of degree n over $ and is algebraic over 3>. 
Then A is a finite-dimensional simple algebra over its centre Z, with [A : Z] < 4w2. 

Proof. As in the first part of the proof of Theorem 6, if Z $£ S, then 
[̂ 4: Z] < 4n2. Thus we may assume that Z Q S. Let £ = {ei, £2, . . . , ek], 
k < n, by Remark 4, be a maximal set of orthogonal symmetric idempotents. 
By Theorem 5, eiAei is either a quaternion algebra or a division algebra, and 
by Theorem 6, eiAe± is finite-dimensional over its centre. It follows that 
[A : Z] < 00. According to Remark 3, 4̂ = Dqj where either D ^ Z2 or D is a 
division algebra over Z with maximal subfield M such that [M: Z] < 00. In the 
former case, since a < n by Remark 4, [A : Z] = 4:q2 < 4w2. In the latter case, 
we note first that * induces an involution in A ® z M == M'y for some j . Applying 
Remarks 3 and 4 to M^, we obtain7 < 2n and so again [A : Z] = j 2 < 4w2. 
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THEOREM 8. Let Abe a ^-primitive algebra over $ such that A is not a primitive 
algebra. Suppose S satisfies a polynomial identity of degree n over $ and is 
algebraic over $. Then A = U ® U*, where U is an ideal which is a simple 
algebra of dimension < \n2 over its centre. 

Proof. By Theorem 4 there is an ideal U 9e 0 such that U Pi U* = 0, and 
A/ [/and A/ [7* are primitive rings. Setting Â = A/U*, we see that 

V = (U+ U*)/U* 

is a non-zero ideal of A. Let tZi, Û2, . . . , ûn Ç Û, and note that ût may be 

written ut + ut*. Then 

/(wi, Û2, . . . , w») = /(wi + Mi*, U2 + u2*, . . . , un + un*) = 0. 

By Kaplansky's theorem (5, p. 226, Theorem 1) V is a simple algebra of 
dimension <Jw2 over its centre, and consequently Û = Â. Therefore 
A = U ® U*, where U = A/U* is a simple algebra of dimension Kin2 over 
its centre. 

As an important corollary we have 

THEOREM 9. Let A be a semi-simple algebra with involution * over <ï>. Suppose S 
satisfies a polynomial identity of degree n over $ and is algebraic over <ï>. Then A 
satisfies a standard identity of degree <4/z2 + 1. 

Proof. By Theorem 3, A is a subdirect sum of *-primitive algebras, each of 
which, in view of Theorems 7 and 8, is of dimension <4w2 over its centre. Thus 
each one satisfies a standard identity of degree <4?z2 + 1, and it follows that A 
also satisfies this identity. 

We now recall that an algebra A over a field $ is locally finite over $ if every 
finite subset generates a finite-dimensional subalgebra. If U is an ideal of A 
such that both U and A/U are locally finite, then A is locally finite. The 
locally finite kernel L of an algebra A is the sum of all the locally finite one
sided ideals of A and is itself locally finite. The locally finite kernel of A/L is 0. 
Of fundamental importance to us is the following recent result due to Procesi: 
if A is a PI-algebra (i.e., satisfies a polynomial identity) over $ and if every 
element of A is the sum of algebraic elements, then A is locally finite over <£. 

LEMMA 2. Let A be an algebra with involution * over <ï>. Suppose S satisfies a 
polynomial identity of degree n over <ï> and is algebraic over <i>. Suppose there is an 
a ?£ 0 G A such that a*a = 0. Then L ^ 0. 

Proof. By Remark 1,5 satisfies a multilinear identity/(/i, t2,. . . , tn) = 0. Let 
J be the right ideal generated by a and note that J* J = 0. Let x Ç J. Then 

m m m 

o = J2 x((* + * )' = E x,(* + x )*x = £ xtx
i+1 = o, 

z=0 i=0 z=0 
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\ t G <ï>. Hence J is algebraic over <£. Now let xi, x2, . . . , xn, xn+i 6 / . We have 

0 = f(xi + xi*, x2 + x2*, . . . , xn + xn*) 

= f(xi + Xi*, X2 + X2*, . . . , Xn + Xn*)xn+i 

= f\X\, X2, . . . , Xn)Xn+i 

= g(Xl,X2, • • • , Xn+i). 

Thus J is a Pi-algebra. J is then locally finite by Procesi's theorem, and hence 
L, which contains / , is not 0. 

THEOREM 10. Let A be an algebra with involution * over afield <ï>. Suppose S 
satisfies a polynomial identity over $ and is algebraic over 3>. Then A is locally 
finite over $. 

Proof. We claim first that N C L. If not, we may assume that L — 0 and 
N y* 0. All symmetric and skew elements of N, being algebraic, must actually 
be nilpotent, a contradiction to Lemma 2. Hence, N = (0). 

It therefore suffices to prove that A/N is locally finite. By Theorem 9, A/N is 
a PI-algebra. Since every element of A/N is the sum of a symmetric element 
and a skew element, A/N is locally finite by Procesi's theorem. 

COROLLARY 1. Let A be a simple algebra with involution * over $ such that S 
satisfies a polynomial identity of degree n over $ and is algebraic over <ï>. Then A 
is finite-dimensional over its centre, with [A : Z] < 4w2. 

Proof. By Theorem 7 we may assume that A is a simple radical algebra. 
Since A is locally finite by Theorem 10, it is easy to see that it is actually 
locally nilpotent, which contradicts a theorem of Levitzki; see, e.g., (3, p. 31, 
Theorem 1.17). 

4. In this final section we initiate an attempt to prove for rings with involu
tion an analogue of Herstein's theorem (see, e.g., (5, p. 221, Theorem 2)) that 
if in a ring A, xn{x) — x is always central, n(x) > 1, then A is commutative. 

THEOREM 11. Let A be a finite simple ring with involution * such that 

sn(s) _ s £ Z n ^ > lf 

for all s (z S. Then A is either Z, Z2 with canonical involution, or Z2 with 
symplectic involution (see Remark 3). 

Proof. Since A is a finite simple ring, we have by Remark 3 that A ~Dk and 
the involution is canonical. We have case 1, D ~ Z (since D is a finite division 
ring), and case 2, D = Z2 (see Remark 3 for exact details). 

For case 1 it suffices to show that k = l o r & = 2. If & > 2 we may assume 
without loss of generality that k = 3. Let F denote the symmetric elements of 
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the involution 7 —-> 7 induced in the coefficient field D. There are fixed non-zero 
elements p, X, fx Ç F such that the symmetric elements of A are of the form 

« 1 1 «21P «31X 

« 2 1 « 2 2 «32M 

- « 3 1 « 3 2 « 3 3 

l 0 1 0 
0 1 0 - 1 

- 1 0 - 1 0 
0 1 0 - 1 

an , «22, «33 £ F; «2i, «3i, «32 G -D. F is a finite field, and by (4, p. 317, Lemma 
7.7) there exist a, p £ F such that 1 + a2X + /32/x = 0. It follows that the 
matrix 

[~-l 0 aX" 
a = 0 - 1 ftu 

L « /? i _ 

is a symmetric element of A such that r(a) = 2 and r(a2) = 1, where 
r(x) = rank of x. On the other hand, we know that an — a = z £ Z. z must be 
0 since otherwise a would be invertible and have rank 3. But now an = a 
forces r(a2) = r(a) — 2, a contradiction. 

For case 2, we wish to show that k = 1. To this end we may assume that 
k = 2. One verifies that the matrix 

b = 

is a symmetric matrix such that b2 = 0, a contradiction to bn — b 6 Z. 

THEOREM 12. Le/ A be a primitive ring with involution * /or which there is a 
fixed integer n > 1 swc/* /Aa/ sw — 5 Ç Z/or a// s £ S. Then A is either afield, 
a quaternion algebra, or the 2 X 2 matrices with canonical involution over a finite 
field. 

Proof. Suppose first that 5 Ç Z . It follows from Remark 5 that Z is a field 
and [A : Z] < 4. If A ^ Z, then Z = S and 4̂ is a quaternion algebra over Z. 

We may therefore assume that S <£ Z and select an element 5 (z S, s & Z. 
If Z 9^ 0, we claim that 5 P\ Z is a finite field. Indeed, (Xs)w — Xs £ Z for all 
X £ S Pi Z forces Xw — X = 0 since s g Z. I t follows that 5 H Z is a finite 
commutative integral domain and hence a finite field. If Z = 0, we let C be the 
centroid of A and consider the subring P of C generated by the identity. The 
same argument as above shows that P is also a finite field. 

If Z y£ 0, we set $ = Z H 5, and if Z = 0 we set $ = P. A is then an 
algebra with involution * over the finite field <£. Since sn — s 6 Z for all s £ 5 
and n is fixed, S satisfies a polynomial identity over <ï> and 5 is algebraic over <£. 
By Theorem 7, 4̂ is a finite-dimensional simple algebra with involution over the 
finite field $ = 5 Pi Z. Thus A is a finite simple ring and the conclusion 
follows from Theorem 11. 
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COROLLARY 2. Let A be a semi-simple ring with involution *for which there is 
a fixed integer n > 1 such that s11 — s Ç Z for all s £ S. Then A is a subdirect 
sum of rings Aa with involution which are either of the type described in Theorem 12 
or are of the form U + U*, where U is afield. 

Proof. By Theorem 3, A is a subdirect sum of *-primitive rings Aa. If Aa is 
primitive, we may apply Theorem 12. If Aa is not primitive, by Theorem 4 
there is an ideal U 9e 0 such that U Pi U* = 0. Since u + u* £ 5 for u £ [/, 
un — u lies in the centre of £7 and hence U is commutative. I t follows that 
Aa = U 0 £/*, Z7a field. 

iVflte. Since the announcement of our results in this paper, I. N. Herstein has 
proved the following striking theorem: if A is a simple algebra with involution 
such that 5 satisfies a polynomial identity, then A is finite-dimensional over its 
centre. It appears very likely that his result will hold, more generally, for 
primitive algebras. In that event our Theorem 7 will, of course, be a special case 
of his theorem. 
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