A note on convergence factors

By W. H. J. FUCHS.

(Received 2nd December, 1940. Read 7th December, 1940.)

1. In this note $\sum_{\nu=1}^{\infty} u_{\nu}$ denotes a divergent series of positive, decreasing terms for which $\lim_{n \to \infty} u_n = 0$. e_1, e_2, \ldots are real numbers (convergence factors) such that $\sum_{\nu=1}^{\infty} e_{\nu} u_{\nu}$ is convergent. We put

$$t_n = \sum_{\nu=1}^n e_{\nu}, \qquad \sigma_n = \frac{1}{n} t_n.$$

H. Rademacher¹ has shown that

$$\lim \sigma_n \leq 0 \leq \overline{\lim} \sigma_n.$$

He also proved

Theorem A. If $\lim_{n \to \infty} nu_n > 0$, then for all sequences e_{ν} for which $\sum e_{\nu}u_{\nu}$ is convergent we must have $\lim_{n \to \infty} \sigma_n = 0$.

We shall now add

Theorem 1. If $\lim_{n \to \infty} nu_n = 0$, we can find a sequence e_v for which $\sum e_v u_v$ is convergent and $\overline{\lim_{n \to \infty} \sigma_n} > 0$. This is possible, even if the e_v may take only the values plus one or minus one.

2. Proof of Theorem 1. We write

$$u_n = n^{-1} a(n).$$

Since $\lim_{n \to \infty} nu_n = 0$, we have $\lim_{n \to \infty} a(n) = 0$. It is therefore possible to select a subsequence $a(n_1), \overline{a(n_2)}, \ldots$ which tends to zero rapidly enough to ensure the convergence of the series

$$\sum_{k=1}^{\infty} a(n_k). \tag{1}$$

We may also assume that the conditions

 $k = o(n_k),$ $n_{k+1} \ge 2n_k$ are satisfied. If this is not the case to start with, we need only omit a sufficient number of terms from (1) and renumber the remaining terms.

¹ Math. Zeitschrift, 11 (1921), 276.

We now choose $e_{\nu} = +1$, if

$$n_k \leq \nu < 2n_k$$
, $(k = 1, 2)$, (2)

 $e_{\nu} = (-1)^{\nu}$, if ν is not in one of the intervals (2).

A section $\sum_{\nu=m}^{N} e_{\nu}u_{\nu}$ of the series will in general consist of sums of alternating terms separated by sums of positive terms arising from values of ν given by (2). Since the u_{ν} are decreasing, the sum of a stretch of consecutive alternating terms will be less in absolute magnitude than its first term, so that the contribution of such sums to the value of $\sum_{\nu=m}^{N} e_{\nu} u_{\nu}$ is less than

$$u_m + \sum_{n_k \geq m} u_{2n_k} < u_m + \sum_{n_k \geq m} u_{n_k} < u_m + \sum_{n_k \geq m} a(n_k).$$

The contribution of one of the intervals (2) to the sum is

$$\sum_{n_k\leq\nu<2n_k}u_\nu< n_ku_{n_k}=a(n_k),$$

so that

$$\sum_{\nu=m}^{N} e_{\nu} u_{\nu} = O \left(u_{m} + \sum_{n_{k} \geq m} a(n_{k}) \right) = o (1),$$

as m tends to infinity. Therefore $\sum_{\nu=1}^{\infty} e_{\nu} u_{\nu}$ is convergent. But

$$\sigma_{2n_k} \geq \frac{n_k - k - 1}{2n_k},$$

and therefore

$$\lim \sigma_n \geq \frac{1}{2}$$

3. It is, of course, possible to ensure the existence of $\lim_{n \to \infty} \sigma_n$ by imposing conditions on $\sum_{\nu=1}^{\infty} u_{\nu}$ and $\sum_{\nu=1}^{\infty} e_{\nu}u_{\nu}$. We prove in this direction Theorem 2. If (i) $|\sum_{\nu=1}^{\infty} e_{\nu}u_{\nu}| < Ku_{\nu}$ for some K > 0 (n = 1, 2, ..., n)

Theorem 2. If (i) $|\sum_{\nu=n}^{\infty} e_{\nu} u_{\nu}| < K u_{n}$ for some K > 0 (n = 1, 2 ...)and if then $\lim_{n \to \infty} (u_{n+1}/u_{n}) = 1$ $\lim_{n \to \infty} \sigma_{n} = 0.$

Proof of Theorem 2. By condition (i)

$$|e_n u_n| = |\sum_{\nu=n}^{\infty} e_{\nu} u_{\nu} - \sum_{\nu=n+1}^{\infty} e_{\nu} u_{\nu}| < K (u_n + u_{n+1}) < 2Ku_n,$$

and therefore $|e_n| < 2K$.

28

Suppose now that $\lim_{n \to \infty} \sigma_n = 3lK > 0$. Then we can find an infinite sequence of integers N_1, N_2, \ldots such that

$$\sigma_{N_j} > 2lK, \qquad (j = 1, 2 \ldots).$$

Let m_j be the largest value of $n < N_j$ for which $\sigma_n \leq lK$. Since $\lim_{i \to \infty} \sigma_n \leq 0$, by Rademacher's result quoted above, m_j must tend to infinity with N_j . Writing m for m_j , N for N_j we have

$$\begin{split} l\bar{K} < \sigma_N - \sigma_m &= \frac{(t_N - t_m) \ m - (N - m) \ t_m}{mN} \\ &\leq \frac{1}{mN} \left\{ m \sum_{\nu=m+1}^N |e_\nu| + (N - m) \sum_{\nu=1}^m |e_\nu| \right\} \\ &\leq \frac{1}{mN} \left\{ 2K \ (N - m) \ m + 2Km \ (N - m) \right\} \\ &= \frac{4K \ (N - m)}{N} \,. \end{split}$$

Hence $N - m > \frac{1}{4}l N \rightarrow \infty$ as $N \rightarrow \infty$. Now

ł

$$\sum_{m+1}^{N-1} e_{\nu} u_{\nu} | \leq K (u_{m+1} + u_N) < 2K u_{m+1}.$$
(3)

But

$$\sum_{m+1}^{N-1} e_{\nu} u_{\nu} = \sum_{m+1}^{N-1} t_{\nu} (u_{\nu} - u_{\nu+1}) + t_{N} u_{N} - t_{m} u_{m+1}$$
$$= \sum_{m+1}^{N-1} \sigma_{\nu} \nu (u_{\nu} - u_{\nu+1}) + N \sigma_{N} u_{N} - m \sigma_{m} u_{m+1}$$

>
$$lK \{(m + 1) \ u_{m+1} + u_{m+2} + \ldots + u_N\} + 2lKNu_N - lKNu_N - mlKu_{m+1}$$

> $lK \{u_{m+1} + u_{m+2} + \ldots + u_N\}.$

It follows from condition (ii) of the Theorem that, given ϵ ($0 < \epsilon < \frac{1}{4}l$), we have, for $\nu > n(\epsilon)$,

$$u_{\nu+1}/u_{\nu} > 1 - \epsilon$$

Hence

$$|\sum_{m+1}^{N-1} e_{\nu} u_{\nu}| > lK (u_{m+1} + u_{m+2} + \dots + u_{N})$$

> $lK u_{m+1} \{ 1 + (1 - \epsilon) + (1 - \epsilon)^{2} + \dots + (1 - \epsilon)^{N-m-1} \} \quad (m \ge n \ (\epsilon))$
= $lK u_{m+1} \frac{1 - (1 - \epsilon)^{N-m}}{\epsilon}$
> $lK \frac{u_{m+1}}{2\epsilon} > 2K u_{m+1}$

for sufficiently large N - m. This is a contradiction of (3). Therefore $\overline{\lim} \sigma_n = 0$. Similarly we find that $\underline{\lim} \sigma_n$ cannot be negative; that is $\lim \sigma_n = 0$.

4. The restriction $\lim \frac{u_{m+1}}{u_m} = 1$ is necessary and the right hand side of the inequality (i) cannot be replaced by Ku_{N+1}^{a} with a < 1, as can be shown by gegenbeispiels constructed in the following way. Let $\tilde{\Sigma}$ v, be a convergent series of decreasing, positive terms. We choose a sequence of integers n_1, n_2, \ldots tending to infinity and insert between v_{n_k} and v_{n_k+1} new terms v'_{n_k} , v''_{n_k} , satisfying $v_{n_k} > v'_{n_k} > v''_{n_k} > \ldots > v_{n_k+1}$. The number of these terms we take sufficiently large to ensure that $v'_{n_k} + v''_{n_k} + \ldots + v_{n_k+1} > 1$. Renumbering the terms we obtain a divergent series $\sum_{\nu=1}^{\infty} u_{\nu}$. The e_{ν} we choose all equal to +1 with the exception of those e, multiplying the newly inserted terms. To these terms we give the factor $e_{\nu} = (-1)^{\nu}$. It is plain that $\sum_{\nu=1}^{\infty} e_{\nu} u_{\nu}$ will be convergent and that we shall have $\overline{\lim} \sigma_n > 0$, provided only that the sequence n_1, n_2, \ldots increases rapidly enough. If we take $v_n = q^n$ (0 < q < 1), we obtain a series $\sum_{\nu=1}^{\infty} u_{\nu}$ satisfying condition (i), but not condition (ii) of Theorem 2. If $v_n = n^{-1/(1-\alpha)}$ condition (ii) is satisfied and $\left|\sum_{\nu=n+1}^{\infty} e_{\nu} u_{\nu}\right| < K u_{n+1}^{\alpha}$, but the conclusion of the theorem holds in neither case.

I am indebted to Dr Hyslop for several suggestions.

KING'S COLLEGE, ABERDEEN.
