A note on convergence factors

By W. H. J. Fuchs.

(Received 2nd December, 1940. Read 7th December, 1940.)

1. In this note $\sum_{\nu=1}^{\infty} u_{\nu}$ denotes a divergent series of positive, decreasing terms for which $\lim _{n \rightarrow \infty} u_{n}=0 . \quad e_{1}, e_{2}, \ldots$ are real numbers (convergence factors) such that $\sum_{\nu=1}^{\infty} e_{\nu} u_{\nu}$ is convergent. We put

$$
t_{n}=\sum_{\nu=1}^{n} e_{r}, \quad \sigma_{n}=\frac{1}{n} t_{n}
$$

H. Rademacher ${ }^{1}$ has shown that

$$
\underline{\lim } \sigma_{n} \leqq 0 \leqq \varlimsup \sigma_{n}
$$

He also proved
Theorem A. If $\lim n u_{n}>0$, then for all sequences e_{v} for which $\Sigma e_{\nu} u_{\nu}$ is convergent we must have $\lim \sigma_{n}=0$.

We shall now add
Theorem 1. If lim $n u_{n}=0$, we can find a sequence e_{v} for which $\Sigma e_{\nu} u_{\nu}$ is convergent and $\overline{\lim } \sigma_{n}>0$. This is possible, even if the e_{ν} may take only the values plus one or minus one.
2. Proof of Theorem 1. We write

$$
u_{n}=n^{-1} a(n)
$$

Since $\lim n u_{n}=0$, we have $\lim a(n)=0$. It is therefore possible to select a subsequence $a\left(n_{1}\right), \bar{a}\left(n_{2}\right), \ldots$ which tends to zero rapidly enough to ensure the convergence of the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} a\left(n_{k}\right) . \tag{1}
\end{equation*}
$$

We may also assume that the conditions

$$
k=o\left(n_{k}\right), \quad n_{k+1} \geqq 2 n_{k}
$$

are satisfied. If this is not the case to start with, we need only omit a sufficient number of terms from (1) and renumber the remaining terms.

[^0]We now choose $e_{v}=+1$, if

$$
\begin{equation*}
n_{k} \leqq \nu<2 n_{k}, \quad(k=1,2 \ldots) \tag{2}
\end{equation*}
$$

$e_{\nu}=(-1)^{\nu}$, if ν is not in one of the intervals (2).
A section $\sum_{\nu=m}^{N} e_{\nu} u_{\nu}$ of the series will in general consist of sums of alternating terms separated by sums of positive terms arising from values of ν given by (2). Since the u_{v} are decreasing, the sum of a stretch of consecutive alternating terms will be less in absolute magnitude than its first term, so that the contribution of such sums to the value of $\sum_{\nu=m}^{N} e_{\nu} u_{\nu}$ is less than

$$
u_{m}+\sum_{n_{k} \geq m} u_{2 n_{k}}<u_{m}+\sum_{n_{k} \geq m} u_{n_{k}}<u_{m}+\sum_{n_{k} \geq m} a\left(n_{k}\right) .
$$

The contribution of one of the intervals (2) to the sum is

$$
\sum_{n_{k} \leqq \nu<2 n_{k}} u_{v}<n_{k} u_{n_{k}}=a\left(n_{k}\right)
$$

so that

$$
\sum_{\nu=m}^{N} e_{\nu} u_{\nu}=O\left(u_{m}+\sum_{n_{k} \geq m} a\left(n_{k}\right)\right)=o(1)
$$

as m tends to infinity. Therefore $\sum_{v=1}^{\infty} e_{\nu} u_{\nu}$ is convergent. But

$$
\sigma_{2 n_{k}} \geqq \frac{n_{k}-k-1}{2 n_{k}}
$$

and therefore

$$
\varlimsup \sigma_{n} \geqq \frac{1}{2}
$$

3. It is, of course, possible to ensure the existence of $\lim _{n \rightarrow \infty} \sigma_{n}$ by imposing conditions on $\sum_{\nu=1}^{\infty} u_{\nu}$ and $\sum_{\nu=1}^{\infty} e_{\nu} u_{\nu}$. We prove in this direction

Theorem 2. If (i) $\left|\sum_{\nu=n}^{\infty} e_{\nu} u_{\nu}\right|<K u_{n}$ for some $K>0 \quad(n=1,2 \ldots)$ and if
(ii) $\lim _{n \rightarrow \infty}\left(u_{n+1} / u_{n}\right)=1$
then

$$
\lim _{n \rightarrow \infty} \sigma_{n}=0
$$

Proof of Theorem 2. By condition (i)

$$
\left|e_{n} u_{n}\right|=\left|\sum_{\nu=n}^{\infty} e_{\nu} u_{\nu}-\sum_{\nu=n+1}^{\infty} e_{\nu} u_{\nu}\right|<K\left(u_{n}+u_{n+1}\right)<2 K u_{n}
$$

and therefore $\left|e_{n}\right|<2 K$.

Suppose now that $\lim \sigma_{i t}=3 l K>0$. Then we can find an infinite sequence of integers N_{1}, N_{2}, \ldots such that

$$
\sigma_{N_{j}}>2 l K, \quad(j=1,2 \ldots)
$$

Let m_{j} be the largest value of $n<N_{j}$ for which $\sigma_{n} \leqq l K$. Since $\lim \sigma_{n} \leqq 0$, by Rademacher's result quoted above, m_{j} must tend to infinity with N_{j}. Writing m for m_{j}, V for N_{j} we have

$$
\begin{aligned}
l K<\sigma_{N}-\sigma_{m} & =\frac{\left(t_{N}-t_{m}\right) m-(N-m) t_{m}}{m N} \\
& \left.\leqq \begin{array}{c}
1 \\
m N
\end{array} m \sum_{\nu=m+1}^{N}\left|e_{\nu}\right|+(N-m) \sum_{\nu=1}^{m}\left|e_{\nu}\right|\right\} \\
& \leqq \frac{1}{m N}\{2 K(N-m) m+2 K m(N-m)\} \\
& =\frac{4 K(N-m)}{N}
\end{aligned}
$$

Hence $N-m>\frac{1}{4} l N \rightarrow \infty$ as $N \rightarrow \infty$.
Now

$$
\begin{equation*}
\left|\sum_{m+1}^{N-1} e_{\nu} u_{\nu}\right| \leqq K\left(u_{m+1}+u_{N}\right)<2 K u_{m+1} \tag{3}
\end{equation*}
$$

But

$$
\begin{aligned}
& \sum_{m+1}^{N-1} e_{\nu} u_{\nu}=\sum_{m+1}^{N-1} t_{\nu}\left(u_{\nu}-u_{\nu+1}\right)+t_{N} u_{N}-t_{m} u_{m+1} \\
& \quad=\sum_{m+1}^{N-1} \sigma_{\nu} \nu\left(u_{\nu}-u_{\nu+1}\right)+N \sigma_{N} u_{N}-m \sigma_{m} u_{m+1}
\end{aligned}
$$

$>l K\left\{(m+1) u_{m+1}+u_{m_{+2}}+\ldots+u_{N}\right\}+2 l K N u_{N}-l K N u_{N}-m l K u_{m_{+1}}$

$$
>l K\left\{u_{m+1}+u_{m+2} \ldots+u_{N}\right\}
$$

It follows from condition (ii) of the Theorem that, given $\epsilon\left(0<\epsilon<\frac{1}{4} l\right)$, we have, for $\nu>n(\epsilon)$,

$$
u_{\nu+1} / u_{\nu}>1-\epsilon
$$

Hence

$$
\begin{aligned}
\left|\sum_{m+1}^{N-1} e_{\nu} u_{\nu}\right| & >l K\left(u_{m+1}+u_{m+2}+\ldots+u_{N}\right) \\
& >l K u_{m+1}\left\{1+(1-\epsilon)+(1-\epsilon)^{2}+\ldots+(1-\epsilon)^{N-m-1}\right\} \quad(m \geqq n(\epsilon)) \\
& =l K u_{m+1} \frac{1-(1-\epsilon)^{N-m}}{\epsilon} \\
& >l K \frac{u_{m+1}}{2 \epsilon}>2 K u_{m+1}
\end{aligned}
$$

for sufficiently large $N-m$. This is a contradiction of (3). Therefore $\overline{\lim } \sigma_{n}=0$. Similarly we find that $\lim \sigma_{n}$ cannot be negative; that is $\lim \sigma_{n}=0$.
4. The restriction $\lim \frac{u_{m+1}}{u_{m}}=1$ is necessary and the right hand side of the inequality (i) cannot be replaced by $K u_{N+1}^{a}$ with $a<1$, as can be shown by gegenbeispiels constructed in the following. way. Let $\sum_{\nu=1}^{\infty} v_{\nu}$ be a convergent series of decreasing, positive terms. We choose a sequence of integers n_{1}, n_{2}, \ldots tending to infinity and insert between $v_{n_{k}}$ and $v_{n_{k}+1}$ new terms $v_{n_{k}}^{\prime}, v_{n_{k}}^{\prime \prime}, \ldots$ satisfying $v_{n_{k}}>v_{n_{k}}^{\prime}>v_{n_{k}}^{\prime \prime}>\ldots>v_{n_{k}+1}$. The number of these terms we take sufficiently large to ensure that $v_{n_{k}}^{\prime}+v_{n_{k}}^{\prime \prime}+\ldots+v_{n_{k}+1}>1$. Renumbering the terms we obtain a divergent series $\sum_{\nu=1}^{\infty} u_{\nu}$. The e_{ν} we choose all equal to +1 with the exception of those e_{y} multiplying the newly inserted terms. To these terms we give the factor $e_{v}=(-1)^{\nu}$. It is plain that $\sum_{\nu=1}^{\infty} e_{v} u_{\nu}$ will be convergent and that we shall have $\varlimsup \sigma_{n}>0$, provided only that the sequence n_{1}, n_{2}, \ldots increases rapidly enough. If we take $v_{n}=q^{n}(0<q<1)$, we obtain a series $\sum_{\nu \sim 1}^{\infty} u_{\nu}$ satisfying condition (i), but not condition (ii) of Theorem 2. If $v_{n}=n^{-1 /(1-a)}$ condition (ii) is satisfied and $\sum_{\nu=n+1}^{\infty} e_{\nu} u_{\nu} \mid<K u_{n+1}^{a}$, but the conclusion of the theorem holds in neither case.

I am indebted to Dr Hyslop for several suggestions.
King's College, Aberdeen.

[^0]: ${ }^{1}$ Math. Zeitschrift, 11 (1921), 276.

