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MÁRTON ELEKES, JÁNOS FLESCH , VIKTOR KISS, DONÁT NAGY,
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Abstract. We consider a real-valued function f defined on the set of infinite branches X of a countably
branching pruned tree T. The function f is said to be a limsup function if there is a function u : T → R

such that f(x) = lim supt→∞ u(x0, ... , xt) for each x ∈ X . We study a game characterization of limsup
functions, as well as a novel game characterization of functions of Baire class 1.

§1. Introduction. Throughout the paper, let T be a pruned tree on a non-empty
countable set A, and X be the set of its infinite branches. We say that f : X → R is
a limsup function if there exists a function u : T → R such that, for every x ∈ X ,

f(x) = lim sup
t→∞

u(x0, ... , xt). (1.1)

Payoff evaluations of limsup type are ubiquitous in gambling theory [3], in the
theory of dynamic games [10], and in computer science [1]. Limsup payoff evaluation
expresses the decision maker’s preference to receive high payoff infinitely often.

We first relate limsup functions to certain well-known classes of functions. In fact,
f is a limsup function precisely if it is a pointwise limit of a descending sequence of
lower semicontinuous functions. Pointwise limits of a descending sequence of lower
semicontinuous functions have been studied, e.g., in [5]. In particular, it is known
that f is a limsup function exactly if its subgraph is a Π0

2 set (i.e., a G� set), and
that the sum, the minimum, and the maximum of two limsup functions is a limsup
function. We also deduce a characterization of Baire class 1 functions f : X → R:
these are exactly the functions such that both f and – f are limsup functions.

The core of the paper is devoted to the study of two related games. The first one
is the following:

I x0 x1 ···
II v0 v1 ···

The moves x0, x1, ... of Player I are points of A such that (x0, ... , xt) ∈ T for each
t ∈ N. The moves v0, v1, ... of Player II are real numbers (the results go through as
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1460 MÁRTON ELEKES ET AL.

stated or with obvious modifications for a version of the game where Player II is
restricted to play rational numbers). The game starts with a move of Player I, x0.
Having observed x0, Player II chooses v0. Having observed v0, Player I chooses x1,
and so on. In this fashion the players produce a run of the game, (x0, v0, x1, v1, ... ).
Player II wins the run if f(x0, x1, ... ) = lim sup vt . We denote this game by Γ(f).

As we will see in Lemma 3.1, Player II has a winning strategy in Γ(f) precisely
when f is a limsup function. Whether Player I has a winning strategy in Γ(f) turns
out to be a more subtle question. We give a sufficient condition for Player I to have
a winning strategy in Γ(f), a condition that is also necessary if either f is Borel
measurable (more precisely, it suffices if the sets of the form {x ∈ X : f(x) ≥ r} are
co-analytic), or if the range of f contains no infinite strictly increasing sequence, in
particular if f takes only finitely many values. We also show that the game Γ(f)
is determined if f is Borel measurable (again, it suffices if the sets of the form
{x ∈ X : f(x) ≥ r} are co-analytic), but not in general.

The second game, denoted by Γ′(f), is as follows:

I x0 x1 ···
II (v0, w0) (v1, w1) ···

This game is similar to Γ(f) except that now the moves (v0, w0), (v1, w1), ... of Player
II are pairs of real numbers. Player II wins in Γ′(f) if f(x0, x1, ... ) = lim sup vt =
lim inf wt . We denote this game by Γ′(f).

Player II has a winning strategy in the game Γ′(f) precisely when he has a winning
strategy in both games Γ(f) and Γ(– f), which is the case exactly when f is in Baire
class 1. Moreover, the game Γ′(f) is always determined. This result holds for any
function f, whether or not f is Borel measurable, and is established without the aid
of Martin’s determinacy.

The so-called eraser game characterizing Baire class 1 functions from the Baire
space to itself was constructed in [4]. Carroy [2] showed that the eraser game is
determined, and Kiss [8] generalized the characterization to functions of arbitrary
Polish spaces. Game characterizations of several other classes of functions have been
considered in [2, 11, 12].

Section 2 discusses characterizations of limsup functions. Sections 3 and 4 are
devoted to the analysis of the games Γ(f) and Γ′(f), respectively.

Unless stated otherwise, proofs are conducted within ZFC.

§2. Characterizations of limsup functions. For s ∈ T , we let O(s) denote the set
of x ∈ X such that s is an initial segment of x. We refer to O(s) as a cylinder set.
We endow X with its usual topology, generated by the base consisting of all cylinder
sets. For a function f : X → R write subgr(f) = {(x, r) ∈ X × R : f(x) ≥ r} to
denote the subgraph of f. For r ∈ R, we write {f ≥ r} = {x ∈ X : f(x) ≥ r}, {f >
r} = {x ∈ X : f(x) > r}, and {f = r} = {x ∈ X : f(x) = r}.

Theorem 2.1. Consider a function f : X → R. The following conditions are
equivalent:

[C1] The function f is a limsup function.
[C2] There is a sequence g0, g1, ... of lower semicontinuous functions converging

pointwise to f.
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[C3] There is a non-increasing sequence g0 ≥ g1 ≥ ··· of lower semicontinuous
functions converging pointwise to f.

[C4] The set subgr(f) is a Π0
2 subset of X × R.

[C5] For each r ∈ R, {f ≥ r} is a Π0
2 subset of X.

We remark that the functions satisfying condition [C5] are sometimes called semi-
Borel class 2 (see [7]) or upper semi-Baire class 1 functions. The equivalence of the
conditions [C2]–[C5] is in fact well known (see [5]). Below we prove the equivalence
of conditions [C1]–[C3].

Proof that [C1] implies [C2]. Let f be a limsup function, and let u be a function as
in (1.1). For n ∈ N let gn(x) = sup{u(x0, ... , xt) : t ≥ n}. �

Proof that [C2] implies [C3]. Let gn be a sequence of lower semicontinuous
functions converging pointwise to f. Define g ′n(x) = sup{gm(x) : m ≥ n}. This gives
a non-increasing sequence of lower semicontinuous functions converging pointwise
to f. �

Proof that [C3] implies [C1]. Consider a non-increasing sequence g0 ≥ g1 ≥ ···
of lower semicontinuous functions converging pointwise to f. We will also assume
that for each n ∈ N, the range of gn contains only reals of the form z2–n for z ∈ Z.
To see that this could be imposed without loss of generality, consider the functions
g ′n(x) = min{z2–n : z ∈ Z, gn(x) ≤ z2–n}. Then, {g ′n > z2–n} is the same as the set
{gn > z2–n}, implying that g ′n is lower semicontinuous. It is easy to see that g ′0 ≥
g ′1 ≥ ··· is a non-increasing sequence, and that it converges pointwise to f.

We define the function u : T → R. For n ∈ N and r ∈ R note that the set {gn > r}
is an open set, becausegn is assumed to be lower semicontinuous. Take a sequence s ∈
T . DefineR∗(s) to be the set of real numbers r ∈ R such thatO(s) ⊆

⋂
n∈N

{gn > r}.
For n ∈ N define Rn(s) to be the set of real numbers r ∈ R such that O(s) ⊆
{gn > r}, and such that for no proper initial segment s ′ of s does it holds that
O(s ′) ⊆ {gn > r}. (We remark that R∗(s) is a half-line and the sets Rn(s) are
intervals.) Let R(s) be the union of the sets R∗(s), R0(s), R1(s), ... . Notice that the
setR(s) is bounded above by inf{g0(y) : y ∈ O(s)}. IfR(s) is non-empty, we define
u(s) = supR(s). If R(s) is empty, we let u(s) =– length(s).

We show that u satisfies (1.1). Thus fix an x ∈ X . We write st to denote (x0, ... , xt)
and let α = lim supt→∞ u(st). We must show that f(x) = α.

We first show that f(x) ≤ α.
Take a real number r with r < f(x). We argue that r ≤ α.
For every n ∈ N it holds that r < gn(x), so x ∈ {gn > r}. Let tn be the smallest

t ∈ N for whichO(stn ) ⊆ {gn > r}. We distinguish between two cases, depending on
whether the sequence t0, t1, ... is bounded or not. Suppose first the sequence t0, t1, ...
is unbounded. By the choice of tn, we have r ∈ Rn(stn ), and hence r ≤ u(stn ). We
obtain r ≤ α, as desired. Suppose now that the sequence t0, t1, ... is bounded, say
tn ≤ t for each n ∈ N. Then, O(st) ⊆

⋂
n∈N

{gn > r}. Since for k ≥ t the cylinder
O(sk) is contained in O(st), we have r ∈ R∗(sk), and consequently r ≤ u(sk). We
conclude that r ≤ α, as desired.

We now show that α ≤ f(x).
We know that – ∞ < α. Take a real number r < α. We now argue that r ≤ f(x).
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1462 MÁRTON ELEKES ET AL.

There exists an increasing sequence t0 < t1 < ··· such that r < u(stk ). By
discarding finitely many elements of the sequence, we may assume that – t0 < r.
The definition of u now implies that the set R(stk ) is not empty for each k ∈ N, and
hence we can take an rk ∈ R(stk ) such that r < rk .

Suppose first there exists some k ∈ N for which rk ∈ R∗(stk ). In that case,
x ∈ O(stk ) ⊆

⋂
n∈N

{gn > rk}. It follows that r < rk < gn(x) for each n ∈ N and
consequently that r ≤ f(x).

Otherwise, for each k ∈ N choose an nk ∈ N such that rk ∈ Rnk (stk ). We have
x ∈ O(stk ) ⊆ {gnk > rk} and hence r < rk < gnk (x). It is therefore enough to show
that the sequence n0, n1, ... is unbounded: for then the numbers gn0(x), gn1 (x), ...
form a sequence converging to f(x), and we are able to conclude that r ≤ f(x).

We argue that the sequence n0, n1, ... is unbounded. Assume the contrary. By
passing to a subsequence, we can then assume that n0 = n1 = ··· . Now the sequence
r0, r1, ... is bounded, because r < rk ≤ inf{g0(y) : y ∈ O(stk )} ≤ g0(x), for each
k ∈ N. Since only finitely many points in the range of gn0 fall in the interval [r, g0(x)],
only finitely many of the sets {{gn0 > rk} : k ∈ N} are distinct. Thus, at least two of
these sets are the same, say {gn0 > r0} = {gn0 > r1}. But st1 is a minimal sequence
satisfying O(st1) ⊆ {gn0 > r1}, while st0 is a proper initial segment of st1 satisfying
O(st0) ⊆ {gn0 > r0}, contradicting r1 ∈ Rn1(st1). �

We conclude this section with a list of some properties of the limsup functions
that follow easily from the above characterization.

Corollary 2.2. The sum, the minimum, and the maximum of two limsup functions
is a limsup function.

We say that a collection C of real-valued functions on X is closed under pointwise
limits from above if for each sequence f0 ≥ f1 ≥ ··· of functions in C converging
pointwise to a function f, the function f is an element of C.

Corollary 2.3. The set of limsup functions is the smallest collection of functions
that (a) contains all lower semicontinuous functions and (b) is closed under pointwise
limits from above.

Corollary 2.4. A uniform limit of limsup functions is a limsup function.

Corollary 2.5. A function f is of Baire class 1 if and only if both f and –f are
limsup functions.

§3. A game for limsup functions. In this section we turn to the analysis of the
game Γ(f). Let us begin with the following observation.

Lemma 3.1. Player II has a winning strategy in Γ(f) precisely when f is a limsup
function.

The result is obvious: the rules of the game Γ(f) are designed so that any function
u : T → R witnessing that f is a limsup function is a winning strategy for Player II,
and vice versa.

Unlike the eraser game (see [8]), as we will show below, the game Γ(f) need not
be determined.
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Recall that a set B ⊆ X is called a Bernstein set if neither B nor X \ B contains a
non-empty perfect set. Under the axiom of choice, every uncountable Polish space
contains a Bernstein set; moreover, every uncountable analytic set (in a Polish space)
contains a non-empty perfect set.

Theorem 3.2. If X is uncountable and B ⊆ X is a Bernstein set, then Γ(1B) is not
determined.

Proof. Notice first that B is not a Borel set: for if it were, either B or X \ B
would contain a non-empty perfect set. And since B is not Borel, the function 1B is
not a limsup function, and hence Player II has no winning strategy in Γ(1B).

Suppose that Player I does.
Let E = {v ∈ 2N : vn = 1 for infinitely many n ∈ N}, where we write 2 = {0, 1}.

Notice that E is not a Σ0
2 subset of 2N. For it were, we would be able to express 2N

as a countable union of meagre sets, contradicting the Baire category theorem.
Now, consider the continuous function g : 2N → X induced by Player I’s winning

strategy. Then,g(E) ⊆ X \ B andg(2N \ E) ⊆ B . Sinceg(E) is an analytic subset of
X, it is either countable, or it contains a perfect subset. ButX \ B contains no perfect
subset. Thus g(E) is countable, hence a Σ0

2 subset of X. But then, E = g–1(g(E)) is
a Σ0

2 subset of 2N, yielding a contradiction. �

We now turn to a sufficient condition for Player I to have a winning strategy. This
sufficient condition will also turn out to be necessary under various assumptions.

Recall that a set is called a Cantor set if it is homeomorphic to the classical
middle-thirds Cantor set.

Theorem 3.3. Let f : X → R be arbitrary and suppose that there is a number
r ∈ R and a Cantor set C ⊆ X such that, in the subspace topology of C, the set
C ∩ {f ≥ r} is meagre and dense. Then, Player I has a winning strategy in Γ(f).

Proof. Let Y = C ∩ {f ≥ r}, and let {S0, S1, ... } be a cover of Y by closed
nowhere dense subsets of C. We presently construct a winning strategy for Player I.

Fix some sequence v0, v1, ... of Player II’s moves.
Let y(0) be any point of the set Y \ S0. Notice that the set C \ S0 is not empty

because S0 is nowhere dense in C, and Y \ S0 is not empty since Y is dense in C. Set
m0 = 0.

Player I starts with a move x0 = y(0)0. Take an n ∈ N and suppose that Player
I’s moves x0, ... , xn have been defined, along with a point y(n) ∈ Y and a number
mn ∈ N, such that

(x0, ... , xn) = (y(n)0, ... , y(n)n). (3.1)

To define the next move of Player I, xn+1, we distinguish two cases:
Case 1: vn > r – 2–mn and O(x0, ... , xn) ∩ Smn = ∅. Let y(n + 1) be any point of

the set (O(x0, ... , xn) ∩ Y ) \ Smn+1. Notice that the set (O(x0, ... , xn) ∩ C ) \ Smn+1

is not empty because Smn+1 is nowhere dense in C, and (O(x0, ... , xn) ∩ Y ) \ Smn+1

is not empty since Y is dense in C. Let mn+1 = mn + 1, and define Player I’s move
as xn+1 = y(n + 1)n+1.

Case 2: otherwise. In this case we let y(n + 1) = y(n), mn+1 = mn, and define
Player I’s move as xn+1 = y(n + 1)n+1.

https://doi.org/10.1017/jsl.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.29


1464 MÁRTON ELEKES ET AL.

Notice that in either case (3.1) holds for n + 1. This completes the definition of
Player I’s strategy.

The intuition behind this definition could be explained as follows: Player I starts
by zooming in on the point y(0) chosen to be in Y but not in S0. Player I awaits a
stage n where Player II would make a move vn > r – 1, and where the set S0 would
be “excluded.” As soon as such a stage is reached, Player I switches to an element
y(1), chosen to be in Y but not in S1. He then zooms in on y(1), awaiting a stage
where Player I would make a move vn > r – 1/2, and where S1 would be “excluded.”
As soon as such a stage occurs, Player I switches to an element y(2) chosen to be in
Y but not in S2. And so on.

We argue that Player I’s strategy is winning.
Suppose first that lim sup vn ≤ r – 2–m for some m ∈ N. Then, Case 1 occurs at

most finitely many times. Let N be the last stage when Case 1 occurs (or N = 0 if
Case 1 never occurs). Then, the point x produced by Player I equals to y(N ). We
thus have lim sup vn ≤ r – 2–m < r ≤ f(y(N )) = f(x).

Suppose now that lim sup vn ≥ r. We argue that Case 1 occurs infinitely many
times. Suppose to the contrary and let N be the last stage when Case 1 occurs (or
0 if Case 1 never occurs). Then, mN = mN+1 = ··· and y(N ) = y(N + 1) = ··· =
x. There are infinitely many n > N with vn > r – 2–mN , and for each such n the
neighborhoodO(x0, ... , xn) of x has a point in common with SmN . This implies that
x ∈ SmN . This, however, contradicts the choice of y(N ). This establishes that Case
1 occurs infinitely many times.

Let x be the point constructed by Player I. We argue that x ∈ C \ Y . In view
of (3.1), x is a limit of the sequence y(0), y(1), ... . Since each y(n) is an element
of the closed set C, so is x. To see that x is not an element of Y, suppose to the
contrary. Then, x ∈ Sm for some m ∈ N. Since Case 1 occurs infinitely often, the
sequence m0, m1, ... runs through all natural numbers, so we can choose n ∈ N to
be the largest number such that mn = m. This choice implies that Case 1 occurs at
stage n, and hence O(x0, ... , xn) is disjoint from Smn , leading to a contradiction.

It follows that x is not an element of {f ≥ r}. Thus lim sup vn ≥ r > f(x), which
completes the proof. �

Remark 3.4. For an arbitrary set H ⊆ X the existence of a Cantor set C ⊆ X
such that C ∩H is meager and dense in C is equivalent to the existence of a Cantor
set C ⊆ X such that C ∩H is countable and dense in C. This either follows from
Theorems 3.3 and 3.6 applied to 1H and r = 1

2 , or can also be proved directly by a
standard Cantor scheme construction.

If the range of the function f does not contain a strictly increasing sequence,
the condition of Theorem 3.3 is both sufficient and necessary for Player I to have
a winning strategy. The proof relies on a Kechris–Louveau–Woodin separation
theorem [6, Theorem 21.22].

For a set R ⊆ R, and function f : X → R define the game ΓR(f) similarly to
Γ(f), but allowing Player II to choose vi ’s from R instead of the whole real line.

Lemma 3.5. Let R ⊆ R and f : X → R. Then, Player I has a winning strategy in
the game ΓR(f) if and only if Player I has a winning strategy in Γ(f).
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Proof. It is straightforward to check that if Player I has a winning strategy in
Γ(f), then the restriction of this strategy is winning for Player I in ΓR(f).

Conversely, fix a winning strategy �R of Player I for the game ΓR(f). For each
n ∈ N define Fn : R → R so that

∀y ∈ R, n ∈ N: |Fn(y) – y| < d(y,R) + 1
n (3.2)

holds. Now define Player I’s strategy � in Γ(f) as follows: let �(∅) = �R(∅), and let

�(x0, v0, x1, v1, ... , xn, vn) = �R(x0, F0(v0), x1, F1(v1), ... , xn, Fn(vn)) (3.3)

whenever n ∈ N and (x0, ... , xn) ∈ T.
It remains to check that � is a winning strategy for Player I in Γ(f). Fix a run

x0, v0, x1, v1, ... of the game Γ(f) consistent with �, i.e., such that for each n ∈ N,
�(x0, v0, ... , xn, vn) = xn+1. Then, (3.3) implies that for each n

�R(x0, F0(v0), x1, F1(v1), ... , xn, Fn(vn)) = xn+1, (3.4)

and as �R is a winning strategy for Player I in ΓR(f), we obtain that

f(x0, x1, x2, ... ) �= lim sup
n→∞

Fn(vn).

We have to check that f(x0, x1, x2, ... ) �= lim supn→∞ vn. First, if lim supn→∞ vn /∈
R ⊇ ran(f), we are done. Otherwise lim supn→∞ vn = r ∈ R, therefore for each
ε > 0, for all but finitely many k we have vk < r + ε, thus (3.2) implies Fk(vk) <
r + 2ε + 1

k for these cofinitely many k’s, therefore lim supk→∞ Fk(vk) ≤ r. Since
r – ε < vk holds for infinitely many k, this argument also shows that r – 2ε – 1

k <
Fk(vk) for infinitely many k too, thus

lim sup
n→∞

vn = r = lim sup
n→∞

Fn(vn) �= f(x0, x1, x2, ... ),

as desired. �
Theorem 3.6. Consider a function f : X → R such that the range of f contains no

infinite strictly increasing sequence. If Player I has a winning strategy in Γ(f), then
there is a number r ∈ R and a Cantor set C ⊆ X such that the set C ∩ {f ≥ r} is
countable and dense in C.

Proof. Define R to be the closure of the range of f. Then, it is easy to verify that
R contains no infinite strictly increasing sequence. Hence, the usual order > of the
reals is a well ordering of R. Let � be the order type of (R,>), and let α �→ rα be
the bijective map from � to R such that rα > r� whenever α < � . Notice that � is a
countable ordinal.

Assume that Player I has a winning strategy in Γ(f). Then, by Lemma 3.5
Player I also has a winning strategy in ΓR(f). Let �R be such a strategy. Let
g : RN → X be the continuous function induced by �R. Here R is given its discrete
topology; since R is countable, RN is a Polish space. For each r ∈ R let Lr = {v ∈
RN : lim supt→∞ vt = r}, and let Ar = g(Lr). The set Ar is analytic. Moreover,

{f = r} ∩ Ar = ∅. (3.5)

Suppose that the function f fails to satisfy the conclusion of the theorem, that is,
there is no number r ∈ R and Cantor setC ⊆ X such thatC ∩ {f ≥ r} is countable
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and dense in C. We obtain a contradiction by showing that there exists a limsup
function e : X → R such that Player I has a winning strategy in the game Γ(e).
More precisely, we show that �R is a winning strategy for Player I in ΓR(e), which
suffices by Lemma 3.5.

Note that a function e : X → R is a limsup function if and only if {e ≥ r} is a Π0
2

set for each r ∈ R, using that R is closed.
We define recursively a sequence (Gα : α < �) of Π0

2 subsets of X such that
{f ≥ rα} ⊆ Gα . Let � < � be an ordinal such that the sets (Gα : α < �) have been
defined. In particular, notice that

{f > r�} ⊆
⋃
α<�

⋂
�: α≤�<�

G�. (3.6)

Since f fails to satisfy the condition of the theorem, there exists no Cantor set
C ⊆ X such that C ∩ {f ≥ r�} is countable and dense in C. This implies (using [6,
Theorem 21.22]) that {f ≥ r�} can be separated from any disjoint analytic subset
of X by a Π0

2 set. Consider the set

Ar�

∖ ⋃
α<�

⋂
�: α≤�<�

G�. (3.7)

It is analytic, since � is a countable ordinal. Moreover, it is disjoint from {f ≥ r�} as
can be seen from (3.5) and (3.6). Hence there exists a Π0

2 subset G� of X containing
{f ≥ r�} and disjoint from (3.7). Thus {f ≥ r�} ⊆ G� and

G� ∩ Ar� ⊆
⋃
α<�

⋂
�: α≤�<�

G�. (3.8)

This concludes the recursive definition of the sequence (Gα : α < �).
Now, for an arbitrary � < � define the set

E� =
⋂

�: �≤�<�
G�.

This is a Π0
2 set, since � is a countable ordinal. Moreover, {f ≥ r�} ⊆ E� for each

� < �, hence X =
⋃
�<� E� . In view of (3.8), we have

E� ∩ Ar� ⊆
⋃
α<�

Eα. (3.9)

Define e : X → R by letting e(x) = r� , where � < � is the least ordinal such that
x ∈ E� . Then, {e ≥ r�} = E� for each � < �, so e is a limsup function. Moreover,
{e = r�} equals the set E� \

⋃
α<� Eα , which is disjoint from Ar� by (3.9). This

shows that Player I’s strategy �R remains winning in the game ΓR(e), yielding the
desired contradiction. �

Next we show that the above necessary and sufficient condition for the existence of
a winning strategy for Player I also holds if we assume that f is sufficiently definable,
e.g., Borel measurable.

We say that the function f is semi-Borel if for each r ∈ R, the set {f ≥ r} is
co-analytic.
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Theorem 3.7. Let f : X → R be semi-Borel. If Player I has a winning strategy
in Γ(f), then there is a number r ∈ R and a Cantor set C ⊆ X such that the set
C ∩ {f ≥ r} is countable and dense in C.

Proof. If for each r ∈ R, {f ≥ r} is a Π0
2 set, then f is a limsup function, hence

Player II has a winning strategy in Γ(f), a contradiction. Hence {f ≥ r} is not a
Π0

2 set for some r ∈ R. Then, the Hurewicz theorem (see, e.g., [6, Theorem 21.18])
implies that there is a Cantor set C such that the set C ∩ {f ≥ r} is countable and
dense in C. �

Corollary 3.8. If f is semi-Borel, then the game Γ(f) is determined.

Proof. If for each r ∈ R, {f ≥ r} is a Π0
2 set, then f is a limsup function, hence

Player II has a winning strategy in Γ(f). Otherwise, {f ≥ r} is not a Π0
2 set for

some r ∈ R, and as above, the Hurewicz theorem implies that there is a Cantor set
C such that the set C ∩ {f ≥ r} is countable and dense in C, therefore Player I has
a winning strategy by Theorem 3.3. �

Next we will show that in general the condition of Theorem 3.3 is not equivalent
to the existence of a winning strategy for Player I. More precisely, we will show in
Corollary 3.10 that the restriction on the range of f in Theorem 3.6 is optimal; if
R ⊆ R contains an infinite strictly increasing sequence, then there exists a function
f : NN → R such that Player I has a winning strategy in Γ(f), and C ∩ {f ≥ r} is
either uncountable or empty for each r ∈ R and each Cantor set C ⊆ N

N.

Theorem 3.9. There exists a functionf : NN → N such that Player I has a winning
strategy in Γ(f), andC ∩ {f ≥ r} is uncountable for each r ∈ R and each Cantor set
C ⊆ N

N.

Proof. First note that every Cantor set can be written as a disjoint union of
uncountably many (in fact, continuum many) Cantor sets, since it is well-known that
a Cantor set is homeomorphic to 2I for every countably infinite set I, in particular
to 2N×N, which is homeomorphic to 2N × 2N =

⋃
c∈2N

(
{c} × 2N

)
.

This implies that if H is an arbitrary set, then in order to show that C ∩H is
uncountable for each Cantor set C ⊆ N

N, it suffices to show that C ∩H �= ∅ for
each Cantor set C ⊆ N

N.
Let X = N

N and let ϕ : X → N ∪ {+∞} be given by ϕ(x) = lim supn→∞ xn. We
first argue that there exists a function f : X → N such that (a) f(x) �= ϕ(x) for
each x ∈ X , and (b) C ∩ {f ≥ r} �= ∅ for each r ∈ R and each Cantor set C ⊆ X .
We will then show that condition (a) implies that Player I has a winning strategy in
Γ(f), while we already argued that (b) implies that C ∩ {f ≥ r} is uncountable for
each r ∈ R and each Cantor set C ⊆ N

N.
Let (rα : α < c), (zα : α < c), and (Cα : α < c) be enumerations of the real

numbers, of the points of X, and of the Cantor subsets of X, respectively. We
define the pairs (zα, f(zα)) ∈ X × N recursively as follows. Take an ordinal α < c

and suppose that (z� , f(z�)) has been defined for every � < α. Let zα be any
point of Cα \ {z� : � < α}. Define f(zα) to be the smallest natural number such
that f(zα) ≥ rα and f(zα) �= ϕ(zα). To complete the definition of f, for each
point x ∈ X \ {z� : � < c} let f(x) be the smallest natural number such that
f(x) �= ϕ(x).
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Now we show that Player I has a winning strategy in Γ(f). Using Lemma 3.5,
it is enough to show that Player I has a winning strategy in ΓN(f). Let Player
I start by playing x0 = 0. To a move vn ∈ N of Player II in round n, Player I
responds with xn+1 = vn. Then, for a run x0, v0, x1, v1, ... of the game, it holds
that ϕ(x) = lim supn→∞ xn = lim supn→∞ vn. Since f(x) �= ϕ(x) holds, we have
f(x) �= lim supn→∞ vn, hence the run is won by Player I. �

Corollary 3.10. If R ⊆ R contains an infinite strictly increasing sequence, then
there exists a function f : NN → R such that Player I has a winning strategy in Γ(f),
and C ∩ {f ≥ r} is either uncountable or empty for each r ∈ R and each Cantor set
C ⊆ N

N.

Proof. Let i : N → R be a strictly increasing map. Letf0 : NN → Nbe a function
as in Theorem 3.9, that is, such that Player I has a winning strategy in Γ(f0), and
C ∩ {f0 ≥ r} is uncountable for each r ∈ R and each Cantor setC ⊆ N

N. We claim
that the function defined as f = i ◦ f0 works. Clearly, f : NN → R, and it is also
clear that C ∩ {f ≥ r} is either uncountable or empty for each r ∈ R and each
Cantor setC ⊆ N

N, hence we only have to show that Player I has a winning strategy
in Γ(f). By Lemma 3.5 it suffices to check that Player I has a winning strategy in
Γi(N)(f). Let �0 be a winning strategy for Player I in Γ(f0), and define for each
n ∈ N

�i(N)(x0, v0, ... , xn, vn) = �0(x0, i
–1(v0), ... , xn, i–1(vn)). (3.10)

Since i is order-preserving, it is easy to check that �i(N) is a winning strategy for
Player I in Γi(N)(f). �

Next we state another result of similar sort. We will strengthen the above
counterexamples by showing that such an f can have a co-analytic graph, but on the
other hand we have to sacrifice that the range is countable. Note that the complexity
of the graph of f is optimal, since if the graph of a function is analytic, then it is
well-known that the function is actually Borel measurable, hence by Theorem 3.7
it cannot be a counterexample, and similarly, the range cannot be countable, since
it is easy to show that a function with co-analytic graph and countable range is
semi-Borel.

Recall that the statement “V = L” is the Axiom of Constructibility due to K.
Gödel. It is known that it is consistent withZFC , and that it implies the Continuum
Hypothesis.

Theorem 3.11. Assume V = L. Then, there exists a function f : NN → R with
co-analytic graph such that Player I has a winning strategy in Γ(f), andC ∩ {f ≥ r}
is uncountable for each r ∈ R and each Cantor set C ⊆ N

N.

Proof. Let X = N
N. Let q(0), q(1), ... be an enumeration of the rational

numbers, and let ϕ : X → R ∪ {+∞} be given by ϕ(x) = lim supn→∞ q(xn). In
order to constructf : X → Rwith co-analytic graph, we use a result of Vidnyánszky
[13, Theorem 1.3]. Let B1 = {(C, t) ∈ K(X ) × R : C is a Cantor set}, where K(X )
is the family of non-empty compact sets in X equipped with the Hausdorff metric.
Let B2 = R and B = B1 � B2 be the disjoint union of B1 and B2 making B a subset
of the Polish space (K(X ) × R) � R. Let i : X → R be a Borel bijection,M = R

2,
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and let

F1 =
{(
A, (C, r), (y, t)

)
∈M≤
 × B1

×M : y ∈ i(C ) \ pr1(ran(A)), t ≥ r, t �= ϕ(i–1(y))
}
,

where pr1(ran(A)) is the projection of the range of the sequence A onto the first
coordinate. Let

F2 =
{(
A, y′, (y, t)

)
∈M≤
 × B2 ×M : t �= ϕ

(
i–1(y)

)
, y′ �∈ pr1

(
ran(A)

)
⇒y′ =y,

y′ ∈ pr1

(
ran(A)

)
⇒ y �∈ pr1

(
ran(A)

)}
,

and let F = F1 � F2 ⊆M≤
 × B ×M .
We now check that the conditions of Vidnyánszky’s theorem are satisfied. First, a

non-empty compact set C ⊆ N
N is a Cantor set if and only if it is perfect. Using [6,

Exercise 4.31] one can easily see that B1 is a Borel subset of K(X ) × R. Therefore
B is a Borel subset of (K(X ) × R) � R. The set F1 is clearly co-analytic, and since
A ∈M≤
 is a countable sequence, conditions of the form y′ ∈ pr1(ran(A)) are
Borel. ThereforeF2 is even Borel, makingF = F1 � F2 co-analytic. For each (A, b) ∈
M≤
 × B , no matter whether b ∈ K(X ) × R or b ∈ R, the section

F(A,b) = {(y, t) ∈M :
(
A, b, (y, t)

)
∈ F }

contains {x1} × {t : t ≥ x2} for some (x1, x2) ∈ R
2, hence it is cofinal in the Turing

degrees (for this notion, see Definition 1.1 of [13]). Therefore the conditions of the
theorem are satisfied.

The conclusion of the theorem assures that there is a co-analytic setG ⊆M = R
2

and enumerations B = {bα : α < 
1}, G = {gα : α < 
1} and for every α < 
1 a
sequenceAα ∈M≤
 that is an enumeration of {g� : � < α} such that gα ∈ F(Aα,bα)
for every α < 
1. We note here that the assumption V = L implies the continuum
hypothesis.

First we check that G is the graph of a function with domain R. Notice that
for � < α, if gα = (y1, t1) and g� = (y2, t2), then y1 �= y2. Indeed, gα ∈ F(Aα,bα)
implies that y1 �∈ pr1(ran(Aα)), and since y2 ∈ pr1(ran(Aα)), y1 �= y2 easily follows.
To see that for each y ∈ R, (y, t) ∈ G for some t ∈ R, let α < 
1 be chosen with
bα = y ∈ B2. Then, either y ∈ pr1(ran(Aα)) and we are done, or gα is chosen to be
(y, t) for some t ∈ R. Therefore G is indeed a graph of a function with domain R.

Now we define the function f : X → R in the following way: for each (y, t) ∈ G ,
let f(i–1(y)) = t. Clearly, the graph of f is (i, id)–1(G), hence it is co-analytic.

We now show that the defined function f has properties (a)f(x) �= ϕ(x) for each
x ∈ X , and (b)C ∩ {f ≥ r} �= ∅ for each r ∈ R and each Cantor setC ⊆ X . Then,
we will show that (a) implies that Player I has a winning strategy in Γ(f). The proof
that (b) implies that C ∩ {f ≥ r} is uncountable for each r ∈ R and each Cantor
set C is exactly the same as in the proof of Theorem 3.9.

To show (a), let (x, t) ∈ X × R be a pair with (i(x), t) = gα ∈ G . Then, gα ∈
F(Aα,bα) implies t �= ϕ(x), hence f(x) = t �= ϕ(x). To show (b), let C ⊆ X be a
Cantor set and let r ∈ R. Let α < 
1 be the ordinal with bα = (C, r). Then, for
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gα = (y, t), using again that gα ∈ F(Aα,bα), y ∈ i(C ) and t ≥ r, hence i–1(y) ∈ C
and f(i–1(y)) = t ≥ r.

It remains to show that Player I has a winning strategy in Γ(f). Let Player I start
by playing x0 = 0. To a move vn of Player II, Player I responds with an xn+1 ∈ N

chosen to be the smallest natural number satisfying |vn – q(xn+1)| ≤ 2–n. Then,
for a run x0, v0, x1, v1, ... of the game, it holds that ϕ(x) = lim supn→∞ vn. Since
f(x) �= ϕ(x), the run is won by Player I. �

We note that the assumption V = L cannot be simply dropped from the above
theorem. Indeed, it can be derived using the standard proof that Projective
Determinacy implies that the Hurewicz theorem holds for all projective sets;
moreover, if the graph of f is projective, then so is {f ≥ r} for every r ∈ R. Thus one
could derive an analogue to Theorem 3.7 under Projective Determinacy, assuming
only that f has a projective graph.

Despite all the partial results above, we still do not know the answer to the
following interesting question.

Question 3.12. For which f : X → R does Player I have a winning strategy in
Γ(f)?

§4. A game for Baire class 1 functions. Recall the definition of the game Γ′(f)
from the Introduction. Corollary 2.5 immediately yields the following result:

Corollary 4.1. Player II has a winning strategy in Γ′(f) if and only if Player
II has winning strategies in both games Γ(f) and Γ(–f), if and only if f is of Baire
class 1.

New we turn to the existence of a winning strategy for Player I.
Let C ⊆ X be a closed set, and consider the restriction of f to C. The oscillation

of f|C at a point x ∈ C is defined as

oscf(C, x) = inf
s∈T :
x∈O(s)

sup
y,z∈O(s)∩C

|f(y) – f(z)|.

Lemma 4.2. Suppose that there is a closed set C ⊆ X such that the oscillation of
f|C is bounded away from zero: infx∈C oscf(C, x) > 0. Then, Player I has a winning
strategy in Γ′(f).

Proof. Assume that oscf(C, x) ≥ 5� > 0 for each x ∈ C . We will first describe
a strategy of Player I and then we will show that it is a winning strategy. To define
the moves of Player I in a particular run, we will use recursion to define natural
numbers n0 < n1 < n2 < ··· and sequences s0, s1, s2, ... ∈ T (these may depend on
the moves of Player II).

Let n0 = 0, and let s0 be the empty sequence. Suppose that, for some even number
k ∈ N, Player I’s moves prior to the stage nk have been defined.

Let sk ∈ T denote the sequence of Player I’s moves prior to the stage nk . Define
αk = sup{f(x) : x ∈ O(sk) ∩ C}, and choose a point x(k) ∈ O(sk) ∩ C so that
αk – � < f(x(k)). Starting with the stage nk , Player I produces his moves using the
point x(k), that is, he plays xn = x(k)n at a stage n ≥ nk . He continues doing so
until the first stage, say nk+1 > nk , that Player II makes a move (vnk+1 , wnk+1) such
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that |vnk+1 – f(x(k))| < �. If no such stage occurs, then Player I goes on using the
point x(k) to make his moves until the end of the game.

Let sk+1 ∈ T denote the sequence of moves produced by Player I prior to the stage
nk+1. Define �k+1 = inf{f(x) : x ∈ O(sk+1) ∩ C}, and choose a point x(k + 1) ∈
O(sk+1) ∩ C so that f(x(k + 1)) < �k+1 + �. Starting with the stage nk+1, Player
I produces the moves using x(k + 1), that is he plays xn = x(k + 1)n at a stage
n ≥ nk+1. He continues doing so until the first stage, say nk+2 > nk+1, that Player II
makes a move (vnk+2 , wnk+2) such that |wnk+2 – f(x(k + 1))| < �. If no such stage
occurs, then Player I goes on using the point x(k + 1) until the end of the game.

We show that the strategy thus defined is winning.
Suppose first that only finitely many stages n0, n1, ... occur, the last one being nk .

For concreteness, suppose that k is even. In this case Player I uses the point x(k)
to generate his moves until the end of the game. Moreover, there is no n > nk such
that |vn – f(x(k))| < �. This implies that lim sup vn �= f(x(k)), and hence the run
is won by Player I. Likewise, if the last one of the sequence n0, n1, ... is the stage nk+1

where k is even, then Player I generates the point x(k + 1), and there is no n > nk+1

such that |wn – f(x(k + 1))| < �. Therefore lim inf wn �= f(x(k + 1)), and hence
the run is won by Player I.

Suppose that infinitely many stages n0, n1, ... occur. From the above definitions
we get for each even k ∈ N

vnk+1 > f(x(k)) – �

> αk – 2�

= (αk – �k+1) + �k+1 – 2�

≥ (αk – �k+1) + f(x(k + 1)) – 3�

≥ (αk – �k+1) + wnk+2 – 4�.

Let αk+1 = sup{f(x) : x ∈ C ∩O(sk+1)}. Since the sequence sk+1 extends sk , we
haveαk ≥ αk+1. By the assumption, the oscillation off|C at the point x(k + 1) ∈ C
is at least 5�, hence αk+1 – �k+1 ≥ 5�. Combining these facts we obtain that for each
even k ∈ N it holds that vnk+1 ≥ wnk+2 + �. This, however, means that lim sup vn >
lim inf wn, implying a win for Player I. �

Remark 4.3. The above construction of the winning strategy for Player I is
similar to that in [8]. In both cases Player I zooms in on a particular element of
C until Player II triggers a switch to another element. The main difference is that
here Player I undergoes two alternating types of switches: even switches are different
from the odd ones. An odd switch, say (k + 1)st (where k is even) is triggered when
Player II makes a move such that vn is close to f(x(k)). Player I reacts by switching
to a point x(k + 1) with a low value of f. Even switches, say (k + 2)nd, are triggered
when Player II makes a move such that wn is close to f(x(k + 1)). Player I reacts
by switching to a point x(k + 2) of C with a high value of f.

Theorem 4.4. Let f : X → R be an arbitrary function. The game Γ′(f) is
determined.

Proof. If f is a function in Baire class 1, then Player II has a winning strategy
by Lemma 4.1. Suppose that f is not a function in Baire class 1. Then (see [9,
Theorem 2 and Remark 1, p. 395]) there exists a non-empty closed set K ⊆ X such
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that the set of discontinuity points of f|K contains an open subset of K. Using the
Baire category theorem and the arguments as in [8, p. 9] one can show that there is a
non-empty closed set C ⊆ K such that the oscillation of f|C is bounded away from
zero. The preceding lemma then implies that Player I has a winning strategy. �

Remark 4.5. It is not completely clear which results of the paper use the
countability of A in an essential way. It seems to us that almost all results go through
without the assumption that A is countable, and the only really problematic issues
are the applications of the Hurewicz theorem and the Kechris–Louveau–Woodin
theorem in the proofs of Theorems 3.6–3.8.
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