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Abstract
Most of the real-life populations are heterogeneous and homogeneity is often just a simplifying assumption for
the relevant statistical analysis. Mixtures of lifetime distributions that correspond to homogeneous subpopulations
were intensively studied in the literature. Various distributional and stochastic properties of finite and continuous
mixtures were discussed. In this paper, following recent publications, we develop further a mixture concept in the
form of the generalized 𝛼-mixtures that include all mixture models that are widely explored in the literature. We
study some main stochastic properties of the suggested mixture model, that is, aging and appropriate stochastic
comparisons. Some relevant examples and counterexamples are given to illustrate our findings.

1. Introduction

1.1. Motivation and related literature

It is hard to find homogeneous populations in real life, as most populations of items in practice are non-
homogeneous. Heterogeneous populations in reality consist usually of a finite number of homogeneous
populations. For example, populations of manufactured items in practice often have two aggregated
groups, that is, the “defective” items with shorter lifetimes and “standard” items with longer, normal
lifetimes [11]. Heterogeneity also occurs when components manufactured at different facilities are
mixed, or they are manufactured at the same facility but with changing operational or environmental
characteristics, etc. [14,16]. Ignoring inherent heterogeneity in populations of items can lead to funda-
mental errors in the corresponding reliability analysis. Finite mixture models are usually an effective
tool for modeling heterogeneity. Some applications of finite mixture models can be found, for example,
in Everitt and Hand [15].

Let �̄� (𝑡) denote the survival function (SF) that describes the lifetime of an ordinary (arithmetic)
finite mixture of 𝑛 homogeneous subpopulations with the SF’s �̄�𝑖 (𝑡), 𝑖 = 1, . . . , 𝑛. Then,

�̄� (𝑡) =
𝑛∑
𝑖=1

𝑝𝑖 �̄�𝑖 (𝑡), (1)

where 𝑝𝑖 is the mixing proportion such that
∑𝑛

𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 ≥ 0, for 𝑖 ∈ {1, 2, . . . , 𝑛}.
Many authors have explored various aspects of mixture models. For instance, the tail behavior of

the corresponding failure rates in mixture models has been investigated by Block et al. [10] and Block
and Joe [9]. The preservation of relevant stochastic properties for mixtures has been examined by
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Block et al. [12]. Block et al. [11] also have studied mixtures with increasing linear failure rates. Badia
et al. [5] have provided bounds for the failure rate, the failure rate average, the mean residual life and
their derivatives. The relevant aging properties of the additive and proportional (multiplicative) hazards
mixing models have been investigated by Badia et al. [6]. Aging properties for the multivariate propor-
tional hazards in mixtures as well as relevant stochastic comparisons have been studied by Badia and Lee
[4]. The likelihood ratio ordering in the mixture models using Glaser’s function has been investigated by
Navarro [24]. Stochastic comparisons for general mixtures in the sense of the hazard rate order and the
likelihood ratio order have been studied by Navarro [25]. Navarro and Aguila [26] have obtained the nec-
essary and sufficient conditions to compare two finite mixture models in the sense of the usual stochastic
order and the hazard rate order. Stochastic comparisons for two finite mixture models with different
baseline random variables and different mixing proportions have been studied by Amini and Zhang [2].

Hazra and Finkelstein [19], using the multivariate majorization, have provided a stochastic compari-
son for two finite mixtures when the baseline distribution belongs to some semi-parametric families of
distribution such as proportional hazards, accelerated lifetimes (scale models) and proportional reversed
hazards models. Stochastic comparisons for two finite mixtures using majorization in the sense of the
usual stochastic order, the hazard rate order and the reversed hazard rate order have been discussed by
Nadeb and Torabi [23]. Albabtain et al. [1] have considered a parametric family of weighted distribu-
tions and their mixtures and have provided some stochastic comparisons. For some aging properties and
stochastic comparisons of mixtures, we refer, among others, to Finkelstein and Esaulova [17], Finkelstein
and Esaulova [18], Shaked and Shanthikumar [27] and Misra and Naqvi [22].

Recently, Asadi et al. [3] have proposed a flexible mixture model; the, so-called, 𝛼-mixture model
that combines two popular in applications mixture models, that is, the ordinary (arithmetic) mixture
model and the mixture of failure rates model. In accordance with this paper, the finite 𝛼-mixture for 𝑛
subpopulations with the corresponding SF’s �̄�𝑖 , 𝑖 = 1, 2, . . . , 𝑛, is defined as

�̄�𝛼 (𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼
𝑖 (𝑡)

]1/𝛼

, 𝛼 ≠ 0,
𝑛∏
𝑖=1

�̄� 𝑝𝑖
𝑖 (𝑡), 𝛼 = 0,

(2)

where 𝑝𝑖 is the mixing proportion such that 𝑝𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑛 and
∑𝑛

𝑖=1 𝑝𝑖 = 1. Thus Eq. (2),
for 𝛼 = 1 reduces to the arithmetic (ordinary) mixture of survival functions, whereas the case 𝛼 → 0,
as shown by Asadi et al. [3], defines the mixture of the failure rates (the geometric mixture of the
corresponding SF’s). Asadi et al. [3] have extended the classical result of Barlow and Proschan [7] on
DFR (DFRA) distributions in 𝛼-mixtures, stating that the 𝛼-mixture of DFR (IFR) distributions are
DFR (IFR) for 𝛼 > 0 (𝛼 < 0) (see Section 1.2 for definitions of these notions of aging). They, also, have
shown that this closure property holds for DFRA (IFRA) distributions for 𝛼 > 0 (𝛼 < 0). Shojaee et al.
[28] have considered the 𝛼-mixture model and provided a new interpretation for the 𝛼-mixture model
via the multiplicative–additive hazard transform.

An obvious shortcoming of the model in Eq. (2) is that the parameter 𝛼 is the same for all survival
functions, whereas the weights are different. For instance, the impact of the environment on different
components of a multi-component system can be also different. Obviously, Eq. (2) is the specific case of
a more general and practically sound in various applications and settings model with different parameters
(see our discussion and examples in the beginning of the next section). Therefore, in the current study,
motivated by Asadi et al. [3], we generalize some results of this paper on the finite 𝛼-mixture model
(e.g., relevant stochastic comparisons and aging properties) to the case with different parameters. We
also discuss in detail the limiting behavior of resulting distributions, conditional characteristics and
relevant stochastic ordering using majorization technique. The latter is the main focus of the second
part of the paper, where some new approaches are developed and discussed using relevant examples and
counterexamples.
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1.2. Notation

For two random variables 𝑋 and 𝑌 , we denote by 𝑓 and 𝑔, the probability density functions, by 𝐹 and
𝐺, the cumulative distribution functions, by �̄� and �̄�, the survival functions and by 𝑟𝑋 and 𝑟𝑌 , the
hazard (failure) rate functions, respectively. In this study, we will use the following concepts of aging
and definitions of stochastic orders:

• The random variable 𝑋 (or its distribution 𝐹) is said to be an increasing (decreasing) failure rate
(IFR (DFR)) if its failure rate 𝑟𝑋 (𝑡) is nondecreasing (nonincreasing) in 𝑡.

• The random variable 𝑋 (or its distribution 𝐹) is said to be an increasing (decreasing) failure rate
average (IFRA (DFRA)) if − 1

𝑡 log �̄� (𝑡) is nondecreasing (nonincreasing) in 𝑡.
• The random variable 𝑋 is said to be smaller than 𝑌 in the usual stochastic order (denoted by 𝑋 ≤st 𝑌

or 𝐹 ≤st 𝐺) if �̄� (𝑡) ≤ �̄� (𝑡) for all 𝑡.
• The random variable 𝑋 is said to be smaller than 𝑌 in the hazard rate order (denoted by 𝑋 ≤hr 𝑌 or
𝐹 ≤hr 𝐺) if �̄� (𝑡)/�̄� (𝑡) is increasing in 𝑡, for all 𝑡 or equivalently 𝑟𝑋 (𝑡) ≥ 𝑟𝑌 (𝑡), for all 𝑡.

• The random variable 𝑋 is said to be smaller than 𝑌 in the likelihood ratio order (denoted by 𝑋 ≤lr 𝑌
or 𝐹 ≤lr 𝐺) if 𝑔(𝑡)/ 𝑓 (𝑡) is increasing in 𝑡, for all 𝑡.

1.3. Organization of the paper

The organization of the paper is as follows. Section 2 defines the generalized finite 𝛼-mixture model
and discusses its relation to other models reported in the literature. Section 3 studies the aging prop-
erties of the generalized finite 𝛼-mixture. Section 4 is devoted to the special cases of additive and
multiplicative models for the baseline distributions in the generalized finite 𝛼-mixture. Section 5 pro-
vides some stochastic comparisons in the usual stochastic order and the hazard rate order with different
baseline distributions. Section 6 provides sufficient conditions based on the concept of majorization for
stochastic comparison of two generalized finite 𝛼-mixtures. Finally, Section 7 gives some concluding
remarks.

2. The generalized finite 𝛼-mixture model

The generalized finite 𝛼-mixture of 𝑛 subpopulations with SF’s �̄�𝑖 , 𝑖 = 1, 2, . . . , 𝑛, is defined as

�̄� (𝑡, �̄�) =

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

]1/�̄�

, 𝛼𝑖 ∈ (−∞,∞), (3)

where 𝑝𝑖 is the mixing proportion such that 𝑝𝑖 ≥ 0, for 𝑖 ∈ {1, 2, . . . , 𝑛}, and
∑𝑛

𝑖=1 𝑝𝑖 = 1 and
�̄� =

∑𝑛
𝑖=1 𝑝𝑖𝛼𝑖 . Assuming that 𝒑 = (𝑝1, . . . , 𝑝𝑛) is given, it includes the following special cases:

• 𝛼𝑖 = 1, 𝑖 = 1, . . . , 𝑛, give the arithmetic mixture of �̄�𝑖’s.
• 𝛼𝑖 = −1, 𝑖 = 1, . . . , 𝑛, give the harmonic mixture of �̄�𝑖’s.
• If 𝛼𝑖 = 0, 𝑖 = 1, . . . , 𝑛, we arrive at the geometric mixture of �̄�𝑖’s.
• 𝛼𝑖 = 𝛼, 𝑖 = 1, . . . , 𝑛, give the 𝛼-mixture of survival function.

2.1. Motivating example

Assume that we have a mixed population with two subpopulations. Let the survival functions of
items in each subpopulations in laboratory conditions be denoted as �̄�𝑖 (𝑡), 𝑖 = 1, 2. Suppose that the
corresponding mixing proportions are 𝑝 and (1 − 𝑝), respectively. Assume that the severe conditions
act on each subpopulation so that the survival functions of 𝑖th subpopulation, in accordance with the
proportional hazards model, becomes �̄�𝛼𝑖

𝑖 (𝑡), where 𝛼𝑖 > 0, 𝑖 = 1, 2. Then, the survival function of a

https://doi.org/10.1017/S0269964821000243 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000243


1058 O. Shojaee et al.

randomly selected item is
�̄�𝑠 (𝑡,𝜶) = 𝑝�̄�𝛼1

1 (𝑡) + (1 − 𝑝)�̄�𝛼2
2 (𝑡).

Assume now that an item is shielded from the severe conditions. However, this shielding is “executed”
also by the proportional hazards model that decreases proportionally the failure rate that corresponds to
the foregoing survival function. Thus, as it can be clearly seen, by this operation, we cannot arrive exactly
at the initial mixed survival function (in laboratory conditions). Since the severe conditions parameter of
the first selected item is 𝛼1 with probability 𝑝, and that of the second item is 𝛼2 with probability (1− 𝑝),
we consider the average value of the parameter in accordance with which the selected item is shielded,
that is, 𝑝𝛼1 + (1− 𝑝)𝛼2. Hence, the survival function of the selected component after these operations is

�̄� (𝑡, �̄�) = (𝑝�̄�𝛼1
1 (𝑡) + (1 − 𝑝)�̄�𝛼2

2 (𝑡))1/�̄�,

where �̄� = 𝑝𝛼1 + (1 − 𝑝)𝛼2.

2.2. Relation to models in the literature

In what follows, we interpret some of the existent in the literature specific models in terms of the
generalized finite 𝛼-mixtures. Note that the subpopulations/populations of items are considered as
sufficiently large. Cha [13] has considered the following two selection policies for designing the 𝑚-
component series system:

• The 𝑚-component series systems are built only using one type of component. Assume that the
proportion of systems built using the 𝑖th component with the SF �̄�𝑖 (𝑡), 𝑖 = 1, . . . , 𝑛, is 𝑝𝑖 ,
𝑖 = 1, . . . , 𝑛. A system is randomly selected from the large mixed set of systems. This model is
defined as “mixing at the system level.” The SF of the selected series system is

F̄1(𝑡) =
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝑚
𝑖 (𝑡) = �̄�𝑚 (𝑡, 𝑚),

where �̄� (𝑡, 𝑚), as the 𝑚th root of the sum above, according to our definition, is the SF of the
generalized finite 𝛼-mixture with 𝛼𝑖 = 𝑚, 𝑖 = 1, . . . , 𝑛. Let �̄�𝑖 (𝑡) belong to the proportional hazard
model, �̄�𝑖 (𝑡) = �̄�𝑟𝑖

𝑖 (𝑡) and set 𝑚𝑟𝑖 = 𝛼𝑖 , 𝑖 = 1, . . . , 𝑛. Thus,

F̄1(𝑡) =
𝑛∑
𝑖=1

𝑝𝑖�̄�
𝛼𝑖

𝑖 (𝑡) = �̄� �̄� (𝑡, �̄�) = �̄�𝑚𝑟 (𝑡, 𝑚𝑟),

where �̄� (𝑡, �̄�) is the SF of the generalized finite 𝛼-mixture corresponding to �̄�𝑖 , 𝑖 = 1, . . . , 𝑛, and
𝑟 =

∑𝑛
𝑖=1 𝑝𝑖𝑟𝑖 .

• The system is “built randomly” using 𝑛 types of components. If the proportion of the 𝑖th component
with the SF �̄�𝑖 (𝑡) is 𝑝𝑖 , 𝑖 = 1, . . . , 𝑛, then the SF of the built series system of m components is:

F̄2(𝑡) =

(
𝑛∑
𝑖=1

𝑝𝑖 �̄�𝑖 (𝑡)

)𝑚
= �̄�𝑚 (𝑡, 1),

where �̄� (𝑡, 1) is the SF of the generalized finite 𝛼-mixture with 𝛼𝑖 = 1, 𝑖 = 1, . . . , 𝑛. This model can
be called “mixing at the component level.” Let �̄�𝑖 (𝑡) belong to the proportional hazard model,
�̄�𝑖 (𝑡) = �̄�𝛼𝑖

𝑖 (𝑡), 𝑖 = 1, . . . , 𝑛. Thus,

F̄2(𝑡) =

(
𝑛∑
𝑖=1

𝑝𝑖�̄�
𝛼𝑖

𝑖 (𝑡)

)𝑚
= (�̄� �̄� (𝑡, �̄�))𝑚,
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where �̄� (𝑡, �̄�) is the SF of the generalized finite 𝛼-mixture corresponding to �̄�𝑖 , 𝑖 = 1, . . . , 𝑛, and
�̄� =

∑𝑛
𝑖=1 𝑝𝑖𝛼𝑖 .

For generalizations of these two models, see Hazra et al. [20].

3. Hazard rate and aging properties of the generalized finite 𝛼-mixture

The generalized finite 𝛼-mixture of SF’s �̄�𝑖 for 𝑖 = 1, 2, .., 𝑛, in accordance with our definition, is

�̄� (𝑡, �̄�) =

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

]1/�̄�

, 𝛼𝑖 ∈ (−∞,∞).

Then, the corresponding PDF is

𝑓 (𝑡, �̄�) =
1
�̄�

[
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖 𝑓𝑖 (𝑡)�̄�
𝛼𝑖−1
𝑖 (𝑡)

] [
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

] 1
�̄�−1

,

where 𝑝𝑖 is the mixing proportion such that
∑𝑛

𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 ≥ 0, for 𝑖 ∈ {1, 2, . . . , 𝑛} and
�̄� =

∑𝑛
𝑖=1 𝑝𝑖𝛼𝑖 .

If 𝑟 (𝑡, �̄�) and 𝑟𝑖 (𝑡) denote, respectively, the hazard rate of the generalized finite 𝛼-mixture and the
hazard rate of the 𝑖th component, then

𝑟 (𝑡, �̄�) =
𝑓 (𝑡, �̄�)

�̄� (𝑡, �̄�)

=
1
�̄�

∑𝑛
𝑖=1 𝛼𝑖 𝑝𝑖𝑟𝑖 (𝑡)�̄�

𝛼𝑖

𝑖 (𝑡)∑𝑛
𝑗=1 𝑝 𝑗 �̄�

𝛼𝑗

𝑗 (𝑡)

=
1
�̄�

𝑛∑
𝑖=1

𝛼𝑖𝑟𝑖 (𝑡)𝑝𝛼𝑖
(𝑡), (4)

where 𝑝𝛼𝑖
(𝑡) = 𝑝𝑖 �̄�

𝛼𝑖

𝑖 (𝑡)/
∑𝑛

𝑗=1 𝑝 𝑗 �̄�
𝛼𝑗

𝑗 (𝑡).
As an example, let us consider first, a mixture of two SFs �̄�1 (𝑡) and �̄�2 (𝑡) with PDFs 𝑓1(𝑡) and 𝑓2(𝑡)

and hazard rates 𝑟1(𝑡) and 𝑟2(𝑡), respectively. We are interested in the bounds for the mixture hazard
rate that is defined in this case as

𝑟 (𝑡, �̄�) =
1
�̄�

[
𝛼1𝑟1(𝑡)

𝑝�̄�𝛼1
1 (𝑡)

𝑝�̄�𝛼1
1 (𝑡) + (1 − 𝑝)�̄�𝛼2

2 (𝑡)
+ 𝛼2𝑟2(𝑡)

(1 − 𝑝)�̄�𝛼2
2 (𝑡)

𝑝�̄�𝛼1
1 (𝑡) + (1 − 𝑝)�̄�𝛼2

2 (𝑡)

]

=
1
�̄�
[𝛼1𝑟1(𝑡)𝑝𝛼 (𝑡) + 𝛼2𝑟2(𝑡)(1 − 𝑝𝛼 (𝑡))],

where the time-dependent probabilities are

𝑝𝛼 (𝑡) =
𝑝�̄�𝛼1

1 (𝑡)

𝑝�̄�𝛼1
1 (𝑡) + (1 − 𝑝)�̄�𝛼2

2 (𝑡)
, (1 − 𝑝𝛼 (𝑡)) =

(1 − 𝑝)�̄�𝛼2
2 (𝑡)

𝑝�̄�𝛼1
1 (𝑡) + (1 − 𝑝)�̄�𝛼2

2 (𝑡)
.

From this representation, we have [16]:

min
{𝛼1

�̄�
𝑟1(𝑡),

𝛼2

�̄�
𝑟2(𝑡)

}
≤ 𝑟 (𝑡, �̄�) ≤ max

{𝛼1

�̄�
𝑟1(𝑡),

𝛼2

�̄�
𝑟2(𝑡)

}
.
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In particular for 𝛼𝑖 > 0, if 𝛼1 ≤ 𝛼2 and 𝐹1 ≥hr 𝐹2, then

𝛼1

�̄�
𝑟1(𝑡) ≤ 𝑟 (𝑡, �̄�) ≤

𝛼2

�̄�
𝑟2(𝑡),

and for 𝛼𝑖 < 0, if 𝛼1 ≤ 𝛼2 and 𝐹1 ≤hr 𝐹2, then

𝛼2

�̄�
𝑟2(𝑡) ≤ 𝑟 (𝑡, �̄�) ≤

𝛼1

�̄�
𝑟1(𝑡).

Generalizing the foregoing result, in the following theorem, we show that the lifetimes in the weak-
est (strongest) subpopulation is smaller (greater) than that of the generalized finite 𝛼-mixture of 𝑛
subpopulations in the sense of the hazard rate order for 𝛼𝑖 > 0 (𝛼𝑖 < 0), 𝑖 = 1, 2, . . . , 𝑛.

Theorem 3.1. Let the lifetimes in subpopulations be ordered in the sense of the hazard rate ordering,
that is, 𝐹1 ≤ℎ𝑟 𝐹2 ≤ℎ𝑟 · · · ≤ℎ𝑟 𝐹𝑛. Then, for all 𝑡,

𝐹1 ≤ℎ𝑟 𝐹 (𝑡, �̄�),

for all ordered 𝛼𝑖 > 0, 𝑖 = 1, . . . , 𝑛, whereas for all ordered 𝛼𝑖 < 0, 𝑖 = 1, . . . , 𝑛:

𝐹 (𝑡, �̄�) ≤ℎ𝑟 𝐹𝑛.

Proof. We only give proof for 𝛼𝑖 > 0, 𝑖 = 1, . . . , 𝑛 because the proof for 𝛼𝑖 < 0, 𝑖 = 1, . . . , 𝑛 is
completely similar. Let 𝛼𝑖 > 0, 𝑖 = 1, . . . , 𝑛. We need to show that 𝑟 (𝑡, �̄�) − 𝑟1(𝑡) ≤ 0 for all 𝑡. We have

𝑟 (𝑡, �̄�) − 𝑟1(𝑡) =
1

�̄�(
∑𝑛

𝑖=1 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡))

(
𝑛∑
𝑖=1

𝑟𝑖 (𝑡)𝛼𝑖 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

)
− 𝑟1(𝑡)

=
(
∑𝑛

𝑖=1 𝑟𝑖 (𝑡)𝛼𝑖 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)) − ((
∑𝑛

𝑖=1 𝛼𝑖 𝑝𝑖)(
∑𝑛

𝑖=1 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)))𝑟1(𝑡)

�̄�(
∑𝑛

𝑖=1 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡))

sign
=

(
𝑛∑
𝑖=1

𝑟𝑖 (𝑡)𝛼𝑖 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

)
−

((
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖

) (
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

))
𝑟1(𝑡).

From the assumption 𝐹1 ≤ℎ𝑟 𝐹2 ≤ℎ𝑟 · · · ≤ℎ𝑟 𝐹𝑛, we have 𝑟1(𝑡) ≥ · · · ≥ 𝑟𝑛 (𝑡). This implies that(
𝑛∑
𝑖=1

𝑟𝑖 (𝑡)𝛼𝑖 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

)
−

((
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖

) (
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

))
𝑟1(𝑡)

≤ 𝑟1(𝑡)

(
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

)
−

((
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖

) (
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)

))
𝑟1(𝑡).

Thus,

𝑟 (𝑡, �̄�) − 𝑟1(𝑡)
sign
= 𝑟1(𝑡)

[
𝛼1𝑝1(1 − 𝑝1)�̄�

𝛼1
1 (𝑡) + 𝛼2𝑝2(1 − 𝑝2)�̄�

𝛼2
2 (𝑡) + · · · + 𝛼𝑛𝑝𝑛 (1 − 𝑝𝑛)�̄�

𝛼𝑛
𝑛 (𝑡)

−𝛼1𝑝1

𝑛∑
𝑗≠1

𝑝 𝑗 �̄�
𝛼𝑗

𝑗 (𝑡) − 𝛼2𝑝2

𝑛∑
𝑗≠2

𝑝 𝑗 �̄�
𝛼𝑗

𝑗 (𝑡) − · · · − 𝛼𝑛𝑝𝑛

𝑛∑
𝑗≠𝑛

𝑝 𝑗 �̄�
𝛼𝑗

𝑗 (𝑡)

]

= 𝑟1(𝑡)

[
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖 (1 − 𝑝𝑖)�̄�
𝛼𝑖

𝑖 (𝑡) −
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖

𝑛∑
𝑗≠𝑖

𝑝 𝑗 �̄�
𝛼𝑗

𝑗 (𝑡)

]
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= 𝑟1(𝑡)

[
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖

(
𝑛∑
𝑗≠𝑖

𝑝 𝑗 �̄�
𝛼𝑖

𝑖 (𝑡) −
𝑛∑
𝑗≠𝑖

𝑝 𝑗 �̄�
𝛼𝑗

𝑗 (𝑡)

)]

= 𝑟1(𝑡)

[
𝑛∑
𝑖=1

𝛼𝑖 𝑝𝑖

(
𝑛∑
𝑗≠𝑖

𝑝 𝑗 (�̄�
𝛼𝑖

𝑖 (𝑡) − �̄�
𝛼𝑗

𝑗 (𝑡))

)]

= 𝑟1(𝑡)

[
𝑛∑
𝑖=2

𝑝1𝑝𝑖 (�̄�
𝛼1
1 (𝑡) − �̄�𝛼𝑖

𝑖 (𝑡))(𝛼1 − 𝛼𝑖)

+

𝑛∑
𝑖=3

𝑝2𝑝𝑖 (�̄�
𝛼2
2 (𝑡) − �̄�𝛼𝑖

𝑖 (𝑡))(𝛼2 − 𝛼𝑖) + · · ·

+ 𝑝𝑛−1𝑝𝑛 (�̄�
𝛼𝑛−1
𝑛−1 (𝑡) − �̄�𝛼𝑛

𝑛 (𝑡))(𝛼𝑛−1 − 𝛼𝑛)

]

≤ 𝑟1(𝑡)

[
𝑛∑
𝑖=2

𝑝1𝑝𝑖 (�̄�
𝛼1
1 (𝑡) − �̄�𝛼𝑖

1 (𝑡))(𝛼1 − 𝛼𝑖)

+

𝑛∑
𝑖=3

𝑝2𝑝𝑖 (�̄�
𝛼2
2 (𝑡) − �̄�𝛼𝑖

2 (𝑡))(𝛼2 − 𝛼𝑖) + · · ·

+ 𝑝𝑛−1𝑝𝑛 (�̄�
𝛼𝑛−1
𝑛−1 (𝑡) − �̄�𝛼𝑛

𝑛−1 (𝑡))(𝛼𝑛−1 − 𝛼𝑛)

]
.

As the hazard rate order implies the usual stochastic order, the assumption 𝐹1 ≤ℎ𝑟 𝐹2 ≤ℎ𝑟 · · · ≤ℎ𝑟 𝐹𝑛

yields �̄�1(𝑡) ≤ �̄�2 (𝑡) ≤ · · · ≤ �̄�𝑛 (𝑡). Thus, �̄�𝛼𝑗

𝑖 (𝑡) ≤ �̄�
𝛼𝑗

𝑗 (𝑡) for 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, and then
(�̄�𝛼𝑖

𝑖 (𝑡) − �̄�
𝛼𝑗

𝑗 (𝑡)) ≤ (�̄�𝛼𝑖

𝑖 (𝑡) − �̄�
𝛼𝑗

𝑖 (𝑡)) and last inequality holds.
Consider now the following two cases for 𝛼𝑖 > 0 separately.

• Let 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑛. In this case �̄�𝛼𝑖

𝑖 (𝑡) ≤ �̄�
𝛼𝑗

𝑖 (𝑡) for 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and then
(�̄�𝛼𝑖

𝑖 (𝑡) − �̄�
𝛼𝑗

𝑖 (𝑡)) ≤ 0. Since (𝛼𝑖 − 𝛼 𝑗) ≥ 0 for 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, thus

𝑟 (𝑡, �̄�) − 𝑟1(𝑡) ≤ 0.

• Let 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛. In this case �̄�𝛼𝑖

𝑖 (𝑡) ≥ �̄�
𝛼𝑗

𝑖 (𝑡) for 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and then
(�̄�𝛼𝑖

𝑖 (𝑡) − �̄�
𝛼𝑗

𝑖 (𝑡)) ≥ 0. Since (𝛼𝑖 − 𝛼 𝑗) ≤ 0 for 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, thus

𝑟 (𝑡, �̄�) − 𝑟1(𝑡) ≤ 0.

Thus, in general, 𝑟 (𝑡, �̄�) − 𝑟1(𝑡) ≤ 0, which means that 𝐹1 ≤ℎ𝑟 𝐹 (𝑡, �̄�) for 𝛼𝑖 > 0, 𝑖 = 1, . . . , 𝑛. This
completes the proof. �

In the following, we study the closure property of the generalized finite 𝛼-mixture. For proving the
main result, we first provide the following definition and lemma.

Definition 3.1. The hazard transform of the generalized finite 𝛼-mixture is

𝜂 �̄� (u) = −
1
�̄�

log

(
𝑛∑
𝑖=1

𝑝𝑖𝑒
−𝛼𝑖𝑢𝑖

)
, 𝛼𝑖 ∈ (−∞,∞), (5)

where u is a vector with elements 𝑢𝑖 , 0 ≤ 𝑢𝑖 ≤ ∞.
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Thus, the hazard function 𝑅(𝑡, �̄�) =
∫ 𝑢

0 𝑟 (𝑢, �̄�) 𝑑𝑢 that corresponds to the lifetime described by the
generalized finite 𝛼-mixture is given by

𝑅(𝑡, �̄�) = 𝜂 �̄� (R(𝑡)) ≡ −
1
�̄�

log

(
𝑛∑
𝑖=1

𝑝𝑖𝑒
−𝛼𝑖𝑅𝑖 (𝑡)

)
, 0 ≤ 𝑡 < ∞, (6)

where 𝑅𝑖 (𝑡) =
∫ 𝑢

0 𝑟𝑖 (𝑢)𝑑𝑢, 𝑖 = 1, . . . , 𝑛 is the hazard function that corresponds to �̄�𝑖 (𝑡) and R(𝑡) is a
vector.

Now we can prove the following lemma, which is an extension of Lemma A.1 of Asadi et al. [3].

Lemma 3.1. The hazard transform 𝜂 �̄� (u) of the generalized finite 𝛼-mixture is concave for 𝛼𝑖 > 0 and
convex for 𝛼𝑖 < 0. That is, for 𝛼𝑖 > 0 (𝛼𝑖 < 0)

𝜂 �̄� (𝛽u + (1 − 𝛽)v) ≥ (≤)𝛽𝜂 �̄� (u) + (1 − 𝛽)𝜂 �̄� (v), (7)

where 0 ≤ 𝛽 ≤ 1 and 0 ≤ 𝑢𝑖 , 𝑣𝑖 ≤ ∞ for 𝑖 = 1, .., 𝑛.

Proof. Using Holder’s inequality, we have (for 𝛼𝑖 > 0 (𝛼𝑖 < 0)):

𝑛∑
𝑖=1

𝑝𝑖 𝑒
−𝛽𝛼𝑖𝑢𝑖 𝑒−(1−𝛽)𝛼𝑖𝑣𝑖 ≤

(
𝑛∑
𝑖=1

𝑝𝑖 𝑒
−𝛼𝑖𝑢𝑖

)𝛽 (
𝑛∑
𝑖=1

𝑝𝑖 𝑒
−𝛼𝑖𝑣𝑖

) (1−𝛽)
.

Thus, the lemma follows the definition of 𝜂 �̄�. �

In order to prove the corresponding closure theorem, we need also the following lemma from Barlow
and Proschan [7].

Lemma 3.2. If ℎ(𝑢) is a concave (convex) function and is increasing in each argument and if 𝑢(𝑡) is
concave (convex), then 𝑔𝑢 (𝑡) ≡ ℎ(𝑢(𝑡)) is concave (convex).

Theorem 3.2. Let �̄� (𝑡, �̄�) be the generalized finite 𝛼-mixture. Then,

(a) If each �̄�𝑖 (𝑡) is DFR (IFR), then for 𝛼𝑖 > 0 (𝛼𝑖 < 0) , �̄� (𝑡, �̄�) is DFR (IFR).
(b) If each �̄�𝑖 (𝑡) is DFRA (IFRA), then for 𝛼𝑖 > 0 (𝛼𝑖 < 0) , �̄� (𝑡, �̄�) is DFRA (IFRA).

Proof. (a) Part (a) follows from Lemmas 3.1 and 3.2.
(b) As �̄�𝑖 (𝑡) is DFRA (IFRA), and 𝜂 �̄� is increasing, the hazard function 𝑅(𝑡, �̄�) of the generalized

finite 𝛼-mixture satisfies

𝜂 �̄� (R(𝛽𝑡)) ≥ (≤)𝜂 �̄� (𝛽R(𝑡)), 0 ≤ 𝛽 ≤ 1.

Choosing v = 0 in the result of Lemma 3.1, we obtain

𝜂 �̄� (𝛽R(𝑡)) ≥ (≤)𝛽𝜂 �̄� (R(𝑡)).

Thus,

𝑅(𝛽𝑡, �̄�) ≥ (≤)𝛽𝑅(𝑡, �̄�),

and hence, �̄� (𝑡, �̄�) is DFRA (IFRA). �

The following example provides some applications of Theorems 3.1 and 3.2.
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Figure 1. (a) The plots of 𝑟 (𝑡, �̄�) (solid) and the hazard rate of the weakest subpopulation (dash dot)
for 𝛼𝑖 > 0. (b) The plots of 𝑟 (𝑡, �̄�) (solid) and the hazard rate of the strongest subpopulation (dash dot)
for 𝛼𝑖 < 0.

Example 3.1. Let �̄�1 (𝑡) = exp(−0.8𝑡), 𝑡 > 0 and �̄�2 (𝑡) = exp(−0.4𝑡), 𝑡 > 0. If we assume that
(𝑝1, 𝑝2) = (0.7, 0.3) and (𝛼1, 𝛼2) = (2, 5), then clearly, 𝐹1 ≤ℎ𝑟 𝐹2. Since 𝛼𝑖 > 0, 𝑖 = 1, 2, then the
conditions of Theorem 3.1 are satisfied. Thus, the 𝛼-mixture hazard rate in this case is equal to

𝑟 (𝑡, �̄�) =
1

2.9
×

1.12 exp(−1.6𝑡) + 0.6 exp(−2𝑡)
exp(−1.6𝑡) + exp(−2𝑡)

.

As an example of Theorem 3.1, Figure 1(a) depicts the plot of 𝑟 (𝑡, �̄�) and the hazard rate of the weakest
subpopulation (𝑟1(𝑡) = 0.8). The plots show that, 𝐹1 ≤ℎ𝑟 𝐹 (𝑡, �̄�). On the other hand, one can see that
�̄�1 (𝑡) and �̄�2 (𝑡) are DFR and, �̄� (𝑡, �̄�) is also DFR for 𝛼𝑖 > 0, 𝑖 = 1, 2. As an application of Theorem
3.2, set (𝛼1, 𝛼2) = (−2,−5). Similarly, we can see from Figure 1(b) that, 𝐹 (𝑡, �̄�) ≤ℎ𝑟 𝐹2 for 𝛼𝑖 < 0,
𝑖 = 1, 2. Also, �̄�1(𝑡) and �̄�2 (𝑡) are IFR and, �̄� (𝑡, �̄�) is also IFR for 𝛼𝑖 < 0, 𝑖 = 1, 2.

3.1. Conditional characteristics

It is useful for further analysis in this section (see also the examples in the next section and Section 6,
where we discuss stochastic comparisons using majorization technique) to rewrite some relationships
(e.g., for the hazard rate functions) in a slightly different way. Then, the relevant conditional charac-
teristics will emerge naturally. For this, first consider a non-negative discrete random variable Λ with
probability mass 𝜋(𝜆𝑖) = 𝑝𝑖 at 𝜆 = 𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑛. Also, let �̄� (𝑡 | 𝜆𝑖) = �̄�𝑖 (𝑡), 𝑓 (𝑡 | 𝜆𝑖) = 𝑓𝑖 (𝑡)
and 𝑟 (𝑡 | 𝜆𝑖) = 𝑟𝑖 (𝑡), 𝑖 = 1, 2, . . . , 𝑛. Thus, the hazard rate that corresponds to the generalized finite
𝛼-mixture can be given as follows:

𝑟 (𝑡, �̄�) =
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝑖 (𝑡)

𝑝𝑖 �̄�
𝛼𝑖

𝑖 (𝑡)∑𝑛
𝑗=1 𝑝 𝑗 �̄�

𝛼𝑗

𝑗 (𝑡)

=
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟 (𝑡 | 𝜆𝑖)

𝜋(𝜆𝑖)�̄�
𝛼𝑖 (𝑡 | 𝜆𝑖)∑𝑛

𝑗=1 𝜋(𝜆 𝑗)�̄�𝛼𝑗 (𝑡 | 𝜆 𝑗 )

=
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟 (𝑡 | 𝜆𝑖)𝜋 �̄� (𝜆𝑖 | 𝑡), (8)
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where

𝜋 �̄� (𝜆𝑖 | 𝑡) =
𝜋(𝜆𝑖)�̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)∑𝑛
𝑗=1 𝜋(𝜆 𝑗 )�̄�𝛼𝑗 (𝑡 | 𝜆 𝑗 )

(9)

is the conditional probability mass at 𝜆 = 𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑛 and �̄� =
∑𝑛

𝑖=1 𝛼𝑖𝜋(𝜆𝑖) is the weighted
average of 𝛼𝑖 , 𝑖 = 1, 2, . . . , 𝑛, with weights 𝜋(𝜆𝑖).

Denote by 𝐸 �̄� (Λ | 𝑡) the conditional expectation of Λ, that is,

𝐸 �̄� (Λ | 𝑡) =
𝑛∑
𝑖=1

𝜆𝑖𝜋 �̄� (𝜆𝑖 | 𝑡) (10)

and by 𝜙 �̄� (𝑡) the derivative of 𝐸 �̄� (Λ | 𝑡) with respect to 𝑡, that is,

𝜙 �̄� (𝑡) =
𝜕

𝜕𝑡
𝐸 �̄� (Λ | 𝑡) =

𝑛∑
𝑖=1

𝜆𝑖
𝜕

𝜕𝑡
𝜋 �̄� (𝜆𝑖 | 𝑡),

where

𝜕

𝜕𝑡
𝜋 �̄� (𝜆𝑖 | 𝑡) =

[−𝜋(𝜆𝑖)𝛼𝑖 𝑓 (𝑡 | 𝜆𝑖)�̄�
𝛼𝑖−1(𝑡 | 𝜆𝑖)] [

∑𝑛
𝑗=1 𝜋(𝜆 𝑗 )�̄�

𝛼𝑗 (𝑡 | 𝜆 𝑗 )]

[
∑𝑛

𝑗=1 𝜋(𝜆 𝑗 )�̄�𝛼𝑗 (𝑡 | 𝜆 𝑗 )]2

+
[
∑𝑛

𝑗=1 𝜋(𝜆 𝑗)𝛼 𝑗 𝑓 (𝑡 | 𝜆 𝑗 )�̄�
𝛼𝑗−1(𝑡 | 𝜆 𝑗 )] [𝜋(𝜆𝑖)�̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)]

[
∑𝑛

𝑗=1 𝜋(𝜆 𝑗)�̄�𝛼𝑗 (𝑡 | 𝜆 𝑗 )]2

=
[𝜋(𝜆𝑖)�̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)] [
∑𝑛

𝑗=1 𝛼 𝑗𝑟 (𝑡 | 𝜆 𝑗 )𝜋(𝜆 𝑗)�̄�
𝛼𝑗 (𝑡 | 𝜆 𝑗 )]

[
∑𝑛

𝑗=1 𝜋(𝜆 𝑗)�̄�𝛼𝑗 (𝑡 | 𝜆 𝑗 )]2
−
𝛼𝑖𝑟 (𝑡 | 𝜆𝑖)𝜋(𝜆𝑖)�̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)∑𝑛
𝑗=1 𝜋(𝜆 𝑗)�̄�𝛼𝑗 (𝑡 | 𝜆 𝑗 )

= 𝜋 �̄� (𝜆𝑖 | 𝑡)�̄�𝑟 (𝑡, �̄�) − 𝛼𝑖𝑟 (𝑡 | 𝜆𝑖)𝜋 �̄� (𝜆𝑖 | 𝑡).

Thus,

𝜙 �̄� (𝑡) = �̄�

[
𝑟 (𝑡, �̄�)𝐸 �̄� (Λ | 𝑡) −

𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝜆𝑖𝑟 (𝑡 | 𝜆𝑖)𝜋 �̄� (𝜆𝑖 | 𝑡)

]
= �̄�[𝐸 �̄� (𝑟

∗ (𝑡 |Λ) | 𝑡)𝐸 �̄� (Λ | 𝑡) − 𝐸 �̄� (Λ𝑟
∗(𝑡 |Λ) | 𝑡)]

= −�̄�𝐶𝑜𝑣 �̄� ((Λ, 𝑟
∗ (𝑡 |Λ)) | 𝑡),

where 𝑟∗ (𝑡 | 𝜆𝑖) = (𝛼𝑖/�̄�)𝑟 (𝑡 | 𝜆𝑖) for 𝑖 = 1, 2, . . . , 𝑛. Now, we can formulate the following results:

• If 𝑟 (𝑡 | 𝜆) is increasing in 𝜆 and 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛 (𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑛) for 𝛼𝑖 ≥ 0 (𝛼𝑖 ≤ 0),
𝑖 = 1, 2, . . . , 𝑛, then Cov�̄� ((Λ, 𝑟∗ (𝑡 |Λ)) | 𝑡) > 0, which, in turn, implies that for 𝛼𝑖 ≥ 0 (𝛼𝑖 ≤ 0),
𝑖 = 1, 2, . . . , 𝑛, 𝜙 �̄� (𝑡) < 0 (>0). This means that 𝐸 �̄� (Λ | 𝑡) is decreasing (increasing) in 𝑡.

• If 𝑟 (𝑡 | 𝜆) is decreasing in 𝜆 and 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑛 (𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛) for 𝛼𝑖 ≥ 0 (𝛼𝑖 ≤ 0),
𝑖 = 1, 2, . . . , 𝑛, then Cov�̄� ((Λ, 𝑟∗ (𝑡 |Λ)) | 𝑡) < 0, which, in turn, implies that for 𝛼𝑖 ≥ 0 (𝛼𝑖 ≤ 0),
𝑖 = 1, 2, . . . , 𝑛, 𝜙 �̄� (𝑡) > 0 (< 0). This means that 𝐸 �̄� (Λ | 𝑡) is increasing (decreasing) in 𝑡.

4. Special cases: additive and multiplicative models

It is well-known that the additive hazard model has the following form:

𝑟 (𝑡 | 𝜆𝑖) = 𝑟 (𝑡) + 𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑛,
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where 𝑟 (𝑡) is the baseline hazard rate. In this case, the hazard rate that corresponds to the generalized
finite 𝛼-mixture, 𝑟 (𝑡, �̄�), from Eq. (8) can be given as follows:

𝑟 (𝑡, �̄�) =
𝑛∑
𝑖=1

𝛼𝑖

�̄�
(𝑟 (𝑡) + 𝜆𝑖))𝜋 �̄� (𝜆𝑖 | 𝑡)

= 𝑟 (𝑡)
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝜋 �̄� (𝜆𝑖 | 𝑡) +

𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝜆𝑖𝜋 �̄� (𝜆𝑖 | 𝑡)

= 𝑟 (𝑡)
�̄�∗

�̄�
+ 𝐸 �̄� (Λ

∗ | 𝑡), (11)

where 𝜆∗𝑖 =
𝛼𝑖

�̄� 𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑛 and �̄�∗ =
∑𝑛

𝑖=1 𝛼𝑖𝜋 �̄� (𝜆𝑖 | 𝑡) is the weighted average of 𝛼𝑖 , 𝑖 = 1, 2, . . . , 𝑛,
with weights 𝜋 �̄� (𝜆𝑖 | 𝑡).

For the multiplicative hazard model, we have

𝑟 (𝑡 | 𝜆𝑖) = 𝜆𝑖𝑟 (𝑡), 𝑖 = 1, 2, . . . , 𝑛.

Hence, the hazard rate that corresponds to the generalized finite 𝛼-mixture, 𝑟 (𝑡, �̄�), is

𝑟 (𝑡, �̄�) =
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝜆𝑖𝑟 (𝑡)𝜋 �̄� (𝜆𝑖 | 𝑡)

= 𝑟 (𝑡)𝐸 �̄� (Λ
∗ | 𝑡). (12)

Thus,

𝑟 ′(𝑡, �̄�) = 𝑟 ′(𝑡)𝐸 �̄� (Λ
∗ | 𝑡) + 𝑟 (𝑡)

𝜕

𝜕𝑡
𝐸 �̄� (Λ

∗ | 𝑡). (13)

From Eq. (13), the generalized finite 𝛼-mixture will be IFR (DFR) for 𝛼𝑖 > 0 (𝛼𝑖 < 0), 𝑖 = 1, 2, . . . , 𝑛,
if and only if for all 𝑡 ∈ (0,∞)

𝑟 ′(𝑡)

𝑟 (𝑡)
≥ (≤) −

𝜕
𝜕𝑡 𝐸 �̄� (Λ∗ | 𝑡)

𝐸 �̄� (Λ∗ | 𝑡)
.

The following theorem describes the limiting behavior of hazard rates for the multiplicative model
in the generalized 𝛼-mixture model for two components. The result is given for positive values of 𝛼𝑖 ,
𝑖 = 1, 2. The case of negative values can be described in a similar manner.

Theorem 4.1. Let 𝑟1(𝑡) = 𝜆1𝑟 (𝑡), 𝑟2(𝑡) = 𝜆2𝑟 (𝑡) where 𝜆1 ≤ 𝜆2 and 𝑟 (𝑡) −→ ∞ as 𝑡 −→ ∞ in the
multiplicative model for the generalized finite 𝛼-mixture of two SFs with 𝛼𝑖 > 0. If 𝛼1 ≤ 𝑐𝛼2, where
𝑐 = 𝜆2/𝜆1 ≥ 1 and �̄� = 𝑝1𝛼1 + 𝑝2𝛼2, then

(a)

𝑟 (𝑡, �̄�) =
𝛼1

�̄�
𝑟1(𝑡)(1 + 𝑜(1)) as 𝑡 −→ ∞. (14)

(b)

𝑟 (𝑡, �̄�) −
𝛼1

�̄�
𝑟1(𝑡) −→ 0 as 𝑡 −→ ∞ (15)

if and only if

𝑟 (𝑡) exp
{
−(𝛼2𝜆2 − 𝛼1𝜆1)

∫ 𝑡

0
𝑟 (𝑢) 𝑑𝑢

}
→ 0 as 𝑡 −→ ∞. (16)
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Proof. From the assumptions of the theorem, we have 𝑟2(𝑡) = 𝑐𝑟1(𝑡), where 𝑐 = 𝜆2/𝜆1 ≥ 1. This
implies that, �̄�2(𝑡) = �̄�𝑐

1 (𝑡) and 𝑓2(𝑡) = 𝑐 𝑓1(𝑡)�̄�
𝑐−1
1 (𝑡). Thus, the ratio of the two densities and the two

survival functions as 𝑡 −→ ∞, is respectively,

𝑓1(𝑡)

𝑓2(𝑡)
=

�̄�1−𝑐
1 (𝑡)

𝑐
↑ ∞ if 𝑐 > 1 and = 1 if 𝑐 = 1

�̄�1 (𝑡)

�̄�2 (𝑡)
= �̄�1−𝑐

1 (𝑡) ↑ ∞ if 𝑐 > 1 and = 1 if 𝑐 = 1.

We have

𝑟 (𝑡, �̄�)

𝑟1(𝑡)
=

1
�̄�
×

�̄�𝛼1−1
1 (𝑡) [𝛼1𝑝1 + 𝑐𝛼2𝑝2�̄�

𝑐𝛼2−𝛼1
1 (𝑡)] × �̄�1(𝑡)

�̄�𝛼
1 (𝑡) [𝑝1 + 𝑝2�̄�

𝑐𝛼2−𝛼1
1 (𝑡)]

=
1
�̄�
×

[𝛼1𝑝1�̄�
𝛼1−𝑐𝛼2
1 (𝑡) + 𝑐𝛼2𝑝2]�̄�

𝑐𝛼2−𝛼1
1 (𝑡)

[𝑝1�̄�
𝛼1−𝑐𝛼2
1 (𝑡) + 𝑝2]�̄�

𝑐𝛼2−𝛼1
1 (𝑡)

=
1
�̄�
×

(
𝛼1 +

𝑝2(𝑐𝛼2 − 𝛼1)

𝑝1�̄�
𝛼1−𝑐𝛼2
1 (𝑡) + 𝑝2

)
.

When 𝑡 → ∞, �̄�1 (𝑡) → 0, and thus we get Eq. (14). To prove (b), note that

𝑟 (𝑡, �̄�) −
𝛼1

�̄�
𝑟1(𝑡) =

1
�̄�
× 𝑟1(𝑡)�̄�

𝑐𝛼2−𝛼1
1 (𝑡)

𝑝2(𝑐𝛼2 − 𝛼1)

𝑝1 + 𝑝2�̄�
𝑐𝛼2−𝛼1
1 (𝑡)

. (17)

As

𝑟1(𝑡)�̄�
𝑐𝛼2−𝛼1
1 (𝑡) = 𝜆1𝑟 (𝑡) exp

{
−(𝛼2𝜆2 − 𝛼1𝜆1)

∫ 𝑡

0
𝑟 (𝑢) 𝑑𝑢

}
,

from Eq. (16), we get

𝑟1(𝑡)�̄�
𝑐𝛼2−𝛼1
1 (𝑡) −→ 0 as 𝑡 −→ ∞,

Hence, from Eq. (17), we obtain the result in Eq. (15). This completes the proof. �

Remark 4.1. In Theorem 4.1, since 𝜆1 ≤ 𝜆2, we have 𝐹1 ≥ℎ𝑟 𝐹2, and from the results of Section 3,
before Theorem 3.1, we have (𝛼1/�̄�)𝑟1(𝑡) ≤ 𝑟 (𝑡, �̄�). The results of Theorem 4.1 show the asymptotic
behavior of 𝑟 (𝑡, �̄�) in the multiplicative model. In particular, if 𝛼𝑖 = 𝛼 > 0 (𝛼𝑖 = 𝛼 < 0), 𝑖 = 1, 2, the
hazard rate of the generalized finite 𝛼-mixture in the multiplicative model tends to the hazard rate of the
strongest (weakest) subpopulation as 𝑡 → ∞.

5. Stochastic comparisons for different baseline distributions

Our main emphasis in the rest of the paper will be on stochastic comparisons obtained by using
majorization technique. However, as a prelude to that, in this section, we discuss meaningful stochastic
comparisons for two generalized finite 𝛼-mixtures in the more conventional for existing literature way.

Theorem 5.1. Let 𝐹𝑝 (𝑡, �̄�) and 𝐺 𝑝 (𝑡, �̄�) be two n-component generalized finite 𝛼-mixture models with
common mixing probabilities (𝑝1, . . . , 𝑝𝑛). Assume that for 𝛼𝑖 > 0 (𝛼𝑖 < 0), 𝐹𝑖 ≤𝑠𝑡 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛.
Then,

𝐹𝑝 (𝑡, �̄�) ≤𝑠𝑡 𝐺 𝑝 (𝑡, �̄�).
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Proof. Let 𝛼𝑖 > 0 (𝛼𝑖 < 0). From 𝐹𝑖 ≤𝑠𝑡 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛, we have �̄�𝑖 (𝑡) ≤ �̄�𝑖 (𝑡) for any 𝑡,
𝑖 = 1, . . . , 𝑛. Since 𝛼𝑖 > 0 (𝛼𝑖 < 0), �̄�𝛼𝑖

𝑖 (𝑡) ≤ (≥)�̄�𝛼𝑖

𝑖 (𝑡) for 𝑖 = 1, . . . , 𝑛. Thus,

𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖 ≤ (≥)

𝑛∑
𝑖=1

𝑝𝑖�̄�
𝛼𝑖

𝑖 .

Consequently from
∑𝑛

𝑖=1 𝑝𝑖𝛼𝑖 > 0 (
∑𝑛

𝑖=1 𝑝𝑖𝛼𝑖 < 0)[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖

𝑖

]1/
∑𝑛

𝑖=1 𝑝𝑖𝛼𝑖

≤

[
𝑛∑
𝑖=1

𝑝𝑖�̄�
𝛼𝑖

𝑖

]1/
∑𝑛

𝑖=1 𝑝𝑖𝛼𝑖

.

This means for 𝛼𝑖 > 0 (𝛼𝑖 < 0)
𝐹𝑝 (𝑡, �̄�) ≤𝑠𝑡 𝐺 𝑝 (𝑡, �̄�).

�

Theorem 5.2. Let 𝐹𝑝 (𝑡, �̄�) and 𝐺 𝑝 (𝑡, �̄�) be two 𝑛-component generalized finite 𝛼-mixture models with
common mixed proportions (𝑝1, . . . , 𝑝𝑛). Suppose that for 𝛼𝑖 > 0 (𝛼𝑖 < 0)

(i) (𝛼1/�̄�)𝑟𝐹1 (𝑡) ≤ · · · ≤ (𝛼𝑛/�̄�)𝑟𝐹𝑛
(𝑡) or (𝛼1/�̄�)𝑟𝐺1 (𝑡) ≤ · · · ≤ (𝛼𝑛/�̄�)𝑟𝐺𝑛

(𝑡);
(ii) �̄�𝑖 (𝑡)/�̄�𝑖 (𝑡) is increasing (decreasing) in 𝑖 ∈ {1, 2, . . . , 𝑛};
(iii) 𝐹𝑖 ≤ℎ𝑟 𝐺𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑛};
(iv) 𝛼1 ≥ · · · ≥ 𝛼𝑛.

Then,
𝐹𝑝 (𝑡, �̄�) ≤ℎ𝑟 𝐺 𝑝 (𝑡, �̄�).

Proof. Let 𝛼𝑖 > 0. From Eq. (4), the expressions for the failure rate functions that correspond to 𝐹𝑝 (𝑡, �̄�)
and 𝐺 𝑝 (𝑡, �̄�) can be written as

𝑟𝐹 (𝑡, �̄�) =
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝐹𝑖

(𝑡)𝑝𝛼𝑖
(𝑡)

and

𝑟𝐺 (𝑡, �̄�) =
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝐺𝑖

(𝑡)𝑞𝛼𝑖
(𝑡)

respectively, where 𝑞𝛼𝑖
(𝑡) = 𝑝𝑖�̄�

𝛼𝑖

𝑖 (𝑡)/
∑𝑛

𝑗=1 𝑝 𝑗�̄�
𝛼𝑗

𝑗 (𝑡) for 𝑖 = 1, . . . , 𝑛. To prove 𝐹𝑝 (𝑡, �̄�) ≤ℎ𝑟 𝐺 𝑝 (𝑡, �̄�)
for 𝛼𝑖 > 0, we need to show that 𝜓(𝑡) = 𝑟𝐹 (𝑡, �̄�) − 𝑟𝐺 (𝑡, �̄�) is non-negative for all 𝑡 ≥ 0. Note that,

𝜓(𝑡) =
𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝐹𝑖

(𝑡)𝑝𝛼𝑖
(𝑡) −

𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝐺𝑖

(𝑡)𝑞𝛼𝑖
(𝑡)

≥

𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝐺𝑖

(𝑡)𝑝𝛼𝑖
(𝑡) −

𝑛∑
𝑖=1

𝛼𝑖

�̄�
𝑟𝐺𝑖

(𝑡)𝑞𝛼𝑖
(𝑡) ≡ 𝜉 (𝑡),

where the inequality follows from condition (iii). Thus, it suffices to show that 𝜉 (𝑡) is non-negative for all
𝑡 ≥ 0. Consider two non-negative discrete random variables𝑊 and𝑉 on a sample space {1, . . . , 𝑛} with
probability mass functions 𝑞𝛼𝑖

(𝑡) and 𝑝𝛼𝑖
(𝑡), 𝑖 = 1, . . . , 𝑛, respectively. Thus, 𝜉 (𝑡) can be written as

𝜉 (𝑡) = 𝐸 [𝜙(𝑉)] − 𝐸 [𝜙(𝑊)], (18)
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where 𝜙(𝑖) = (𝛼𝑖/�̄�)𝑟𝐺𝑖
(·), 𝑖 = 1, . . . , 𝑛. To prove that Eq. (18) is non-negative, it is sufficient to show that

𝜙(𝑖) is increasing in 𝑖 and𝑊 ≤𝑠𝑡 𝑉 . Based on condition (i), we have (𝛼1/�̄�)𝑟𝐺1 (𝑡) ≤ · · · ≤ (𝛼𝑛/�̄�)𝑟𝐺𝑛
(𝑡)

for all 𝑡 ≥ 0. Thus, 𝜙(𝑖) is increasing in 𝑖. On the other hand, one can see that

𝑝𝛼𝑖
(𝑡)

𝑞𝛼𝑖
(𝑡)
∝

(
�̄�𝑖 (𝑡)

�̄�𝑖 (𝑡)

) 𝛼𝑖

, 𝑖 ∈ {1, . . . , 𝑛}.

The condition (iii), that is, 𝐹𝑖 ≤ℎ𝑟 𝐺𝑖 implies �̄�𝑖 (𝑡) ≤ �̄�𝑖 (𝑡), 𝑖 ∈ {1, 2, . . . , 𝑛}. Thus, 0 ≤ �̄�𝑖 (𝑡)/�̄�𝑖 (𝑡) ≤
1 for all 𝑖 ∈ {1, 2, . . . , 𝑛}. Hence, conditions (ii) and (iv) imply that 𝑝𝛼𝑖

(𝑡)/𝑞𝛼𝑖
(𝑡) is increasing in

𝑖 ∈ {1, . . . , 𝑛}, which means that 𝑊 ≤𝑙𝑟 𝑉 , which in turn implies 𝑊 ≤𝑠𝑡 𝑉 . Thus, 𝜉 (𝑡) is non-negative
and for 𝛼𝑖 > 0, 𝐹𝑝 (𝑡, �̄�) ≤ℎ𝑟 𝐺 𝑝 (𝑡, �̄�). If, we assume (𝛼1/�̄�)𝑟𝐹1 (𝑡) ≤ · · · ≤ 𝛼𝑛/�̄�𝑟𝐹𝑛

(𝑡), the proof is
similar. The case 𝛼𝑖 < 0 can be also established in the same way. �

6. Stochastic comparisons using majorization concept

In this section, we provide the main comparison results of the paper with detailed analysis, examples
and counterexamples. Specifically, we compare two generalized finite 𝛼-mixture in the sense of the
usual stochastic order and in the sense of the hazard rate order when the vector of parameters of the first
mixture majorizes the second one (see the relevant conditional characteristics discussed in Sections 3
and 4). However, first, we must recall some definitions and supplementary results to be used in what
follows.

Definition 6.1 ([21. p. 8)] Consider two vectors 𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑛). Let 𝑥 (1) ≤

· · · ≤ 𝑥 (𝑛) and 𝑦 (1) ≤ · · · ≤ 𝑦 (𝑛) be increasing arrangements of their components, respectively.

(i) If
∑𝑖

𝑗=1 𝑥 ( 𝑗) ≤
∑𝑖

𝑗=1 𝑦 ( 𝑗) for 𝑖 = 1, . . . , 𝑛 − 1, and
∑𝑖

𝑗=1 𝑥 ( 𝑗) =
∑𝑖

𝑗=1 𝑦 ( 𝑗) , then 𝒙 is said to majorize

𝒚 and denoted by 𝒙
𝑚
� 𝒚.

(ii) If
∑𝑖

𝑗=1 𝑥 ( 𝑗) ≤
∑𝑖

𝑗=1 𝑦 ( 𝑗) for 𝑖 = 1, . . . , 𝑛, then 𝒙 is said to weakly supermajorize 𝒚, and denoted by

𝒙
𝑤
� 𝒚.

(iii) If
∑𝑛

𝑗=𝑖 𝑥 ( 𝑗) ≥
∑𝑛

𝑗=𝑖 𝑦 ( 𝑗) for 𝑖 = 1, . . . , 𝑛, then we say that 𝒙 weakly submajorize 𝒚, denoted by
𝒙�𝑤 𝒚.

From the foregoing definition, clearly, the majorization order implies both weak submajorization and
supermajorization orders. Order-preserving functions have been widely used in the literature to obtain
some inequalities that arise from majorization. A Schur-convex function is a function that preserves the
ordering of majorization [21].

Definition 6.2 ([21. p. 80)] A real-valued function 𝜙 defined on a setA ⊆ R𝑛 is said to be Schur-convex
(Schur-concave) on A if 𝒙

𝑚
� 𝒚 implies 𝜙(𝒙) ≥ (≤)𝜙(𝒚) for any 𝒙, 𝒚 ∈ A.

Some conditions for the characterization of Schur-convex (Schur-concave) functions are provided in
the next lemma.

Lemma 6.1 ([21. p. 84)] Let 𝐼 ⊆ R be an open interval and let 𝜙 : 𝐼 → R be a real-valued, continuously
differentiable function. Then, 𝜙 is Schur-convex (Schur-concave) on 𝐼𝑛 if and only if

(i) 𝜙 is symmetric on 𝐼𝑛, and
(ii) for all 𝑖 ≠ 𝑗 and all 𝒙 ∈ 𝐼𝑛,

(𝑥𝑖 − 𝑥 𝑗 )

(
𝜕𝜙

𝜕𝑥𝑖
(𝒙) −

𝜕𝜙

𝜕𝑥 𝑗
(𝒙)

)
≥ 0(≤0),

where the partial derivative of 𝜙 with respect to its 𝑖th argument denoted by 𝜕𝜙/𝜕𝑥𝑖 .
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The next lemma provides some conditions under which the weak supermajorization and the weak
submajorization orders are preserved.

Lemma 6.2 ([21. p. 87)] Consider the real-valued function 𝜙, defined on a set A ⊆ R𝑛. Then,

(i) 𝒙�𝑤 𝒚 implies 𝜙(𝒙) ≥ 𝜙(𝒚) if and only if 𝜙 is increasing and Schur-convex on A;
(ii) 𝒙

𝑤
� 𝒚 implies 𝜙(𝒙) ≥ 𝜙(𝒚) if and only if 𝜙 is decreasing and Schur-convex on A.

We will also need the following notation

U𝑛 = {(𝒙, 𝒚) : 𝑥𝑖 , 𝑦𝑖 ≥ 0 (𝑥𝑖 − 𝑥 𝑗 )(𝑦𝑖 − 𝑦 𝑗 ) ≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑛}.

6.1. Usual stochastic order

Theorem 6.1. Let

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) =

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 | 𝜆𝑖)

]1/�̄�𝑝

and

�̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝) =

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 |𝛾𝑖)

]1/�̄�𝑝

,

be two 𝑛-component generalized finite 𝛼-mixtures with common mixing proportions 𝑝1, . . . , 𝑝𝑛 and
parameters𝜆1, . . . , 𝜆𝑛 and 𝛾1, . . . , 𝛾𝑛, respectively, where �̄�𝑝 =

∑𝑛
𝑖=1 𝑝𝑖𝛼𝑖 . Suppose that for ( 𝒑, 𝝀) ∈ U𝑛

and ( 𝒑, 𝜸) ∈ U𝑛:

(i) �̄� (𝑡 | 𝜆) is decreasing and convex in 𝜆 > 0 for all 𝑡 ≥ 0;
(ii) 𝛼1 ≤ · · · , ≤ 𝛼𝑛;
(iii) 𝝀

𝑤
� 𝜸;

(iv) 𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Then, for 𝛼𝑖 ≥ 1,
�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≥ �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝).

Proof. Without loss of generality, suppose that 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑛. From assumption ( 𝒑, 𝝀) ∈ U𝑛 and
( 𝒑, 𝜸) ∈ U𝑛, we have 0 < 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 and 0 < 𝛾1 ≤ 𝛾2 ≤ · · · ≤ 𝛾𝑛. Note that, by considering
𝜙(𝝀) = �̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) = [

∑𝑛
𝑖=1 𝑝𝑖 �̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)]
1/�̄�𝑝 , we have

𝜕𝜙(𝝀)

𝜕𝜆𝑖
= 𝑝𝑖

𝛼𝑖

�̄�𝑝

(
𝜕�̄� (𝑡 | 𝜆𝑖)

𝜕𝜆𝑖

)
�̄�𝛼𝑖−1(𝑡 | 𝜆𝑖)

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 | 𝜆𝑖)

]1/�̄�𝑝−1

≤ 0,

as from condition (i), �̄� (𝑡 | 𝜆𝑖) is decreasing in 𝜆𝑖 . In addition, from Lemma 6.1 and for any pair (𝑖, 𝑗),
1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

𝜕𝜙(𝝀)

𝜕𝜆𝑖
−
𝜕𝜙(𝝀)

𝜕𝜆 𝑗
= 𝑝𝑖

𝛼𝑖

�̄�𝑝

(
𝜕�̄� (𝑡 | 𝜆𝑖)

𝜕𝜆𝑖

)
�̄�𝛼𝑖−1(𝑡 | 𝜆𝑖)

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 | 𝜆𝑖)

]1/�̄�𝑝−1

− 𝑝 𝑗

𝛼 𝑗

�̄�𝑝

(
𝜕�̄� (𝑡 | 𝜆 𝑗 )

𝜕𝜆 𝑗

)
�̄�𝛼𝑗−1(𝑡 | 𝜆 𝑗 )

[
𝑛∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 | 𝜆𝑖)

]1/�̄�𝑝−1

.
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This implies that

𝜕𝜙(𝝀)

𝜕𝜆𝑖
−
𝜕𝜙(𝝀)

𝜕𝜆 𝑗

sign
=

[
𝛼𝑖 𝑝𝑖
�̄�𝑝

(
𝜕�̄� (𝑡 | 𝜆𝑖)

𝜕𝜆𝑖

)
�̄�𝛼𝑖−1(𝑡 | 𝜆𝑖) −

𝛼 𝑗 𝑝 𝑗

�̄�𝑝

(
𝜕�̄� (𝑡 | 𝜆 𝑗 )

𝜕𝜆 𝑗

)
�̄�𝛼𝑗−1(𝑡 | 𝜆 𝑗 )

]
≤ 0,

as from condition (iv), 𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 and from condition (i), �̄� (𝑡 | 𝜆𝑖) is decreasing and convex, thus
−(𝜕�̄� (𝑡 | 𝜆𝑖))/𝜕𝜆𝑖 ≥ −(𝜕�̄� (𝑡 | 𝜆 𝑗 ))/𝜕𝜆 𝑗 ≥ 0 and from condition (ii), �̄�𝛼𝑖−1(𝑡 | 𝜆𝑖) ≥ �̄�𝛼𝑗−1(𝑡 | 𝜆 𝑗 ).
Thus,

(𝜆𝑖 − 𝜆 𝑗)

(
𝜕𝜙(𝝀)

𝜕𝜆𝑖
−
𝜕𝜙(𝝀)

𝜕𝜆 𝑗

)
≥ 0.

Consequently, �̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) is decreasing and Schur-convex for 𝛼𝑖 ≥ 1. Now, condition (iii),
𝝀

𝑤
� 𝜸, together with condition of Lemma 6.2 imply 𝜙(𝝀) ≥ 𝜙(𝜸). This means �̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≥

�̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝) completing the proof of the theorem. �

Remark 6.1. Theorem 6.1 extends the result of Theorem 3.2 in Nadeb and Torabi [23] that compares
two finite ordinary mixtures with respect to parameter 𝜆.

To illustrate Theorem 6.1, we present a numerical example.

Example 6.1. Let �̄� (𝑡 | 𝜆) = 𝑒−𝜆𝑡 , for 𝑡 ∈ [0, +∞). Clearly, �̄� (𝑡 | 𝜆) is decreasing and convex in
𝜆. Set (𝑝1, 𝑝2, 𝑝3) = (0.55, 0.35, 0.1), (𝜆1, 𝜆2, 𝜆3) = (0.4, 0.7, 0.8), (𝛾1, 𝛾2, 𝛾3) = (0.5, 0.8, 0.9) and
(𝛼1, 𝛼2, 𝛼3) = (2.5, 3, 4). As we see, 𝝀

𝑤
� 𝜸, ( 𝒑, 𝝀) ∈ U3 and ( 𝒑, 𝜸) ∈ U3 and (𝛼1𝑝1, 𝛼2𝑝2, 𝛼3𝑝3) =

(1.375, 1.05, 0.4). Thus, all conditions of Theorem 6.1 are satisfied.

However, if conditions ( 𝒑, 𝝀) ∈ U𝑛 and ( 𝒑, 𝜸) ∈ U𝑛 in Theorem 6.1 are removed, the result may be
not true any more. The following counterexample illustrates this.

Counterexample 6.1. In Example 6.1, set (𝜆1, 𝜆2, 𝜆3) = (18, 5, 1) and (𝛾1, 𝛾2, 𝛾3) = (17, 5, 2).
Thus, ( 𝒑, 𝝀) ∉ U3 and ( 𝒑, 𝜸) ∉ U3. Figure 2 plots �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝), �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝) and 𝑔1(𝑡) =
�̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝), which indicates that the usual stochastic ordering does not hold
between �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝).

Theorem 6.2. Let �̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝) be two 𝑛-component generalized finite𝛼-mixtures
with common mixing proportions 𝑝1, . . . , 𝑝𝑛 and parameters 𝜆1, . . . , 𝜆𝑛 and 𝛾1, . . . , 𝛾𝑛, respectively,
where �̄�𝑝 =

∑𝑛
𝑖=1 𝑝𝑖𝛼𝑖 . Suppose that for ( 𝒑, 𝝀) ∈ U𝑛 and ( 𝒑, 𝜸) ∈ U𝑛:

(i) �̄� (𝑡 | 𝜆) is increasing and concave in 𝜆 > 0 for all 𝑡 ≥ 0;
(ii) 𝛼1 ≤ · · · , ≤ 𝛼𝑛;
(iii) 𝝀

𝑤
� 𝜸.

Then, for 𝛼𝑖 ≤ 0 (0 < 𝛼𝑖 < 1 such that 𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛):

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≤ �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝).

The proof of this theorem is similar (with relevant alterations) to that of the previous one and,
therefore, is omitted. To illustrate the result, the following numerical example is provided.
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Figure 2. (a) The plots of �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) (solid) and �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝) (dash dot). (b) 𝑔1(𝑡) =
�̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝).

Example 6.2. Let �̄� (𝑡 | 𝜆) = (𝜆/(𝜆 + 𝑡2))𝑎, for 𝑡 ∈ [0, +∞), which is the survival function of the
Compound Rayleigh distribution. Clearly, �̄� (𝑡 | 𝜆) is increasing and concave in 𝜆 for 0 < 𝑎 < 1.
For 𝛼𝑖 ≤ 0 (0 < 𝛼𝑖 < 1), set 𝑎 = 0.9, (𝑝1, 𝑝2, 𝑝3) = (0.6, 0.3, 0.1), (𝜆1, 𝜆2, 𝜆3) = (10, 12, 14),
(𝛾1, 𝛾2, 𝛾3) = (11, 12, 15) and (𝛼1, 𝛼2, 𝛼3) = (−4,−3,−2.5) ((𝛼1, 𝛼2, 𝛼3) = (0.4, 0.5, 0.6)). As we see,
𝝀

𝑤
� 𝜸, ( 𝒑, 𝝀) ∈ U3 and ( 𝒑, 𝜸) ∈ U3 and for 0 < 𝛼𝑖 < 1, (𝛼1𝑝1, 𝛼2𝑝2, 𝛼3𝑝3) = (0.24, 0.15, 0.06).

Thus, all conditions of Theorem 6.2 are satisfied.

In the following counterexample, we show that conditions ( 𝒑, 𝝀) ∈ U𝑛 and ( 𝒑, 𝜸) ∈ U𝑛 in Theorem
6.9 can not be dropped.

Counterexample 6.2. In Example 6.2, set (𝜆1, 𝜆2, 𝜆3) = (20, 10.5, 10) and (𝛾1, 𝛾2, 𝛾3) = (19.5, 11, 10).
Thus, ( 𝒑, 𝝀) ∉ U3 and ( 𝒑, 𝜸) ∉ U3. Figure 3 plots 𝑔2(𝑡) = �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) for 𝛼𝑖 ≤ 0
and 0 < 𝛼𝑖 < 1, which indicates that the usual stochastic ordering does not hold between �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝)

and �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝).

Corollary 6.1. Let �̄� (𝑡 | 𝜆) belongs to the proportional hazard family, �̄� (𝑡 | 𝜆) = �̄�𝜆 (𝑡), for all 𝑡, where
�̄� (𝑡) is the baseline survival function. Then, for 𝛼𝑖 ≥ 1, 𝑖 = 1, 2, . . . , 𝑛 such that 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛

and 𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝝀
𝑤
� 𝜸, ( 𝒑, 𝝀) ∈ U𝑛 and ( 𝒑, 𝜸) ∈ U𝑛, we have

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≥ �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝).

Corollary 6.2. Let �̄� (𝑡 | 𝜆) belong to the accelerated lifetime (scale model) family, �̄� (𝑡 | 𝜆) = �̄� (𝜆𝑡), for
all 𝑡, where �̄� (𝑡) is the baseline survival function. Also, let 𝑓 (𝑡) denoting the baseline density function,
is decreasing in 𝑡. Then, for 𝛼𝑖 ≥ 1, 𝑖 = 1, 2, . . . , 𝑛 such that 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛 and 𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for
all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝝀

𝑤
� 𝜸, ( 𝒑, 𝝀) ∈ U𝑛 and ( 𝒑, 𝜸) ∈ U𝑛, we have

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≥ �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝).

Corollary 6.3. Let �̄� (𝑡 | 𝜆) belong to the proportional reversed hazard family, �̄� (𝑡 | 𝜆) = 1 − 𝐹𝜆(𝑡),
for all 𝑡, where 𝐹 (𝑡) is the baseline distribution function. Then, for 𝛼𝑖 ≤ 0 (0 < 𝛼𝑖 < 1 such that
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Figure 3. (a) 𝑔2(𝑡) = �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) for 𝛼𝑖 ≤ 0. (b) 𝑔2(𝑡) = �̄�𝑊3 (𝒑,𝜸) (𝑡, �̄�𝑝) −

�̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) for 0 < 𝛼𝑖 < 1.

𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛), 𝑖 = 1, 2, . . . , 𝑛 such that 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛, 𝝀
𝑤
� 𝜸,

( 𝒑, 𝝀) ∈ U𝑛 and ( 𝒑, 𝜸) ∈ U𝑛, we have

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≤ �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, �̄�𝑝).

From Theorems 6.1 and 6.2, we can obtain a lower or upper bound for the generalized finite 𝛼-mixture
as discussed in the following remark.

Remark 6.2. Set (𝛾1, . . . , 𝛾𝑛) = (�̄�, . . . , �̄�), where �̄� = (1/𝑛)
∑𝑛

𝑖=1 𝜆𝑖 . It is easy to see that 𝝀
𝑤
� 𝜸. Then,

for ( 𝒑, 𝝀) ∈ U𝑛:

(i) If �̄� (𝑡 | 𝜆) is decreasing and convex in 𝜆 > 0 for all 𝑡 and for 𝛼𝑖 ≥ 1, 𝑖 = 1, 2, . . . , 𝑛 such that
𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛 and 𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, we have the following lower
bound for the generalized finite 𝛼-mixture:

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≥ �̄�𝛼𝑛/�̄�𝑝 (𝑡 | �̄�).

(ii) If �̄� (𝑡 | 𝜆) is increasing and concave in 𝜆 > 0 for all 𝑡 and for 𝛼𝑖 ≤ 0 (0 < 𝛼𝑖 < 1 such that
𝛼𝑖 𝑝𝑖 ≥ 𝛼 𝑗 𝑝 𝑗 for all 𝑖 ≤ 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛), 𝑖 = 1, 2, . . . , 𝑛 such that 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑛, we have
the following upper bound for the generalized finite 𝛼-mixture:

�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) ≤ �̄�
𝛼𝑛
�̄�𝑝 (𝑡 | �̄�).

The next numerical examples illustrate Remark 6.2 for two cases 𝛼𝑖 ≥ 1 and 𝛼𝑖 ≤ 0.

Example 6.3. (i) Consider Example 6.1. Let �̄� (𝑡 | 𝜆) = 𝑒−𝜆𝑡 , for 𝑡 ∈ [0, +∞). Clearly, �̄� (𝑡 | 𝜆) is
decreasing and convex in 𝜆. Set (𝑝1, 𝑝2, 𝑝3) = (0.55, 0.35, 0.1), (𝜆1, 𝜆2, 𝜆3) = (0.4, 0.7, 0.8),
(𝛾1, 𝛾2, 𝛾3) = (�̄�, �̄�, �̄�) = (0.63, 0.63, 0.63) and (𝛼1, 𝛼2, 𝛼3) = (2.5, 3, 4). As we see, 𝝀

𝑤
� 𝜸,

( 𝒑, 𝝀) ∈ U3 and ( 𝒑, �̄�) ∈ U3 and (𝛼1𝑝1, 𝛼2𝑝2, 𝛼3𝑝3) = (1.375, 1.05, 0.4). Thus, all conditions of
Remark 6.2(i) are satisfied.
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(ii) Consider Example 6.2. Let �̄� (𝑡 |𝜆) = (𝜆/(𝜆 + 𝑡2))𝑎, for 𝑡 ∈ [0, +∞), which is the survival function
of the Compound Rayleigh distribution. Clearly, �̄� (𝑡 | 𝜆) is increasing and concave in 𝜆 for
0 < 𝑎 < 1. For 𝛼𝑖 ≤ 0, set 𝑎 = 0.9, (𝑝1, 𝑝2, 𝑝3) = (0.6, 0.3, 0.1), (𝜆1, 𝜆2, 𝜆3) = (10, 12, 14),
(𝛾1, 𝛾2, 𝛾3) = (�̄�, �̄�, �̄�) = (12, 12, 12) and (𝛼1, 𝛼2, 𝛼3) = (−4,−3,−2.5). As we see, 𝝀

𝑤
� 𝜸,

( 𝒑, 𝝀) ∈ U3 and ( 𝒑, �̄�) ∈ U3. Thus, all conditions of Remark 6.2(ii) are satisfied.

6.2. Hazard rate order

In this subsection, we consider the 2-component generalized finite 𝛼-mixture and provide some
comparisons in the sense of the hazard rate order.

Theorem 6.3. Let

�̄�𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) =

[
2∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 | 𝜆𝑖)

]1/�̄�𝑝

and

�̄�𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝) =

[
2∑
𝑖=1

𝑝𝑖 �̄�
𝛼𝑖 (𝑡 | 𝛾𝑖)

]1/�̄�𝑝

,

be two 2-component generalized finite 𝛼-mixtures with common mixing proportions 𝑝1, 𝑝2 and param-
eters 𝜆1, 𝜆2 and 𝛾1, 𝛾2, respectively, where �̄�𝑝 =

∑2
𝑖=1 𝑝𝑖𝛼𝑖 . Suppose that for ( 𝒑, 𝝀) ∈ U2 and

( 𝒑, 𝜸) ∈ U2:

(i) 𝑟 (𝑡 | 𝜆) is increasing (decreasing) and concave (convex) in 𝜆 > 0 for all 𝑡;
(ii) �̄� (𝑡 | 𝜆) is decreasing (increasing) in 𝜆 > 0 for all 𝑡;
(iii) 𝛼1 ≤ 𝛼2;
(iv) 𝝀

𝑚
� 𝜸.

Then, for 𝛼𝑖 ≥ 0 such that 𝛼1𝑝1 ≥ 𝛼2𝑝2 (𝛼𝑖 < 0) :

𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) ≤ (≥)𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝),

where 𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) and 𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝) are the hazard rate functions that correspond to �̄�𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝)

and �̄�𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝), respectively.

Proof. Without loss of generality, suppose that 𝑝1 ≥ 𝑝2. From assumption ( 𝒑, 𝝀) ∈ U2 and ( 𝒑, 𝜸) ∈
U2, we have 0 < 𝜆1 ≤ 𝜆2 and 0 < 𝛾1 ≤ 𝛾2. The hazard rate function of �̄�𝑊2 (𝒑,𝝀)(𝑡, �̄�𝑝) is

𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) =
1
�̄�𝑝

[∑2
𝑖=1 𝑝𝑖𝛼𝑖𝑟 (𝑡 | 𝜆𝑖)�̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)∑2
𝑖=1 𝑝𝑖 �̄�

𝛼𝑖 (𝑡 | 𝜆𝑖)

]

=
1
�̄�𝑝

[
𝑝1𝛼1𝑟 (𝑡 | 𝜆1)�̄�

𝛼1 (𝑡 | 𝜆1) + 𝑝2𝛼2𝑟 (𝑡 | 𝜆2)�̄�
𝛼2 (𝑡 | 𝜆2)

𝑝1�̄�𝛼1 (𝑡 | 𝜆1) + 𝑝2�̄�𝛼2 (𝑡 | 𝜆2)

]
=

1
�̄�𝑝

[
Ψ1(𝑡; 𝒑, 𝝀)
Ψ2(𝑡; 𝒑, 𝝀)

]
.
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Thus,

𝜕𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝)

𝜕𝜆1
=

1
�̄�𝑝

[ 𝜕Ψ1 (𝑡;𝒑,𝝀)
𝜕𝜆1

Ψ2 (𝑡; 𝒑, 𝝀) − 𝜕Ψ2 (𝑡;𝒑,𝝀)
𝜕𝜆1

Ψ1 (𝑡; 𝒑, 𝝀)

Ψ2
2 (𝑡; 𝒑, 𝝀)

]
sign
=

1
�̄�𝑝

[
𝑝1𝛼1

(
𝜕𝑟 (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1 (𝑡 | 𝜆1) + 𝛼1

𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1 (𝑡 | 𝜆1)𝑟 (𝑡 | 𝜆1)

)
Ψ2 (𝑡; 𝒑, 𝝀)

−

(
𝑝1𝛼1

𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1 (𝑡 | 𝜆1)

)
Ψ1 (𝑡; 𝒑, 𝝀)

]
=

𝑝1𝛼1
�̄�𝑝

[
𝜕𝑟 (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1 (𝑡 | 𝜆1)Ψ2 (𝑡; 𝒑, 𝝀) + 𝛼1

𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1 (𝑡 | 𝜆1)𝑟 (𝑡 | 𝜆1)Ψ2 (𝑡; 𝒑, 𝝀)

−
𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1 (𝑡 | 𝜆1)Ψ1 (𝑡; 𝒑, 𝝀)

]
=

𝑝1𝛼1
�̄�𝑝

[
𝜕𝑟 (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1 (𝑡 | 𝜆1)Ψ2 (𝑡; 𝒑, 𝝀)

+
𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1 (𝑡 | 𝜆1) (𝛼1𝑟 (𝑡 | 𝜆1)Ψ2 (𝑡; 𝒑, 𝝀) −Ψ1 (𝑡; 𝒑, 𝝀))

]
=

𝑝1𝛼1
�̄�𝑝

[
𝜕𝑟 (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1 (𝑡 | 𝜆1)Ψ2 (𝑡; 𝒑, 𝝀)

+
𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1 (𝑡 | 𝜆1) (𝑝2�̄�

𝛼2 (𝑡 | 𝜆2) (𝛼1𝑟 (𝑡 | 𝜆1) − 𝛼2𝑟 (𝑡 | 𝜆2)))

]
.

Now, we have

𝜕𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝)

𝜕𝜆1
−
𝜕𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝)

𝜕𝜆2

sign
=

1
�̄�𝑝

[(
𝑝1𝛼1

𝜕𝑟 (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1 (𝑡 | 𝜆1) − 𝑝2𝛼2

𝜕𝑟 (𝑡 | 𝜆2)

𝜕𝜆2
�̄�𝛼2 (𝑡 | 𝜆2)

)
Ψ2(𝑡; 𝒑, 𝝀)

]
+

1
�̄�𝑝

[
𝑝1𝛼1

𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1(𝑡 | 𝜆1)(𝑝2�̄�

𝛼2 (𝑡 | 𝜆2)(𝛼1𝑟 (𝑡 | 𝜆1) − 𝛼2𝑟 (𝑡 | 𝜆2)))

−𝑝2𝛼2
𝜕�̄� (𝑡 | 𝜆2)

𝜕𝜆2
�̄�𝛼2−1(𝑡 | 𝜆2)(𝑝1�̄�

𝛼1 (𝑡 | 𝜆1)(𝛼2𝑟 (𝑡 | 𝜆2) − 𝛼1𝑟 (𝑡 | 𝜆1)))

]
=

1
�̄�𝑝

[𝐴 + 𝐵 − 𝐶],

where,

𝐴 =

(
𝑝1𝛼1

𝜕𝑟 (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1 (𝑡 | 𝜆1) − 𝑝2𝛼2

𝜕𝑟 (𝑡 | 𝜆2)

𝜕𝜆2
�̄�𝛼2 (𝑡 | 𝜆2)

)
Ψ2(𝑡; 𝒑, 𝝀),

𝐵 = 𝑝1𝛼1
𝜕�̄� (𝑡 | 𝜆1)

𝜕𝜆1
�̄�𝛼1−1(𝑡 | 𝜆1)(𝑝2�̄�

𝛼2 (𝑡 | 𝜆2)(𝛼1𝑟 (𝑡 | 𝜆1) − 𝛼2𝑟 (𝑡 | 𝜆2)))

and

𝐶 = 𝑝2𝛼2
𝜕�̄� (𝑡 | 𝜆2)

𝜕𝜆2
�̄�𝛼2−1(𝑡 | 𝜆2)(𝑝1�̄�

𝛼1 (𝑡 | 𝜆1)(𝛼2𝑟 (𝑡 | 𝜆2) − 𝛼1𝑟 (𝑡 | 𝜆1))).

From condition (ii), �̄� (𝑡 | 𝜆1) ≥ (≤)�̄� (𝑡 | 𝜆2). Since, from condition (iii), 𝛼1 ≤ 𝛼2, �̄�𝛼1 (𝑡 | 𝜆1) ≥

�̄�𝛼2 (𝑡 | 𝜆2). From condition (i), (𝜕𝑟 (𝑡 | 𝜆1))/𝜕𝜆1 ≥ (≤)(𝜕𝑟 (𝑡 | 𝜆2))/𝜕𝜆2 ≥ (≤)0. Consequently, 𝐴 ≥ 0
follows from condition 𝛼1𝑝1 ≥ 𝛼2𝑝2. Also, we claim that 𝐵 ≥ 0, because from condition (i), 𝑟 (𝑡 | 𝜆1) ≤
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Figure 4. (a) 𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) (solid) and 𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝) (dash dot). (b) 𝑔3(𝑡) = 𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝) −

𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝).

(≥)𝑟 (𝑡 | 𝜆2), and condition (iii), 𝛼1 ≤ 𝛼2, (𝛼1𝑟 (𝑡 | 𝜆1) − 𝛼2𝑟 (𝑡 | 𝜆2)) ≤ 0. On the other hand, from
condition (ii), 𝜕�̄� (𝑡 | 𝜆1)/𝜕𝜆1 ≤ (≥)0. Consequently, 𝐵 ≥ 0. Similarly, 𝐶 ≤ 0 and hence −𝐶 ≥ 0.
Therefore,

(𝜆1 − 𝜆2)

(
𝜕𝑟𝑊2 (𝒑,𝝀) (𝑡, 𝛼𝑝)

𝜕𝜆1
−
𝜕𝑟𝑊2 (𝒑,𝝀) (𝑡, 𝛼𝑝)

𝜕𝜆2

)
≤ (≥)0.

Consequently, according to Lemma 6.1, 𝑟𝑊2 (𝒑,𝝀) (𝑡, 𝛼𝑝) is Schur-concave (Schur-convex). Using
condition (iv), 𝝀

𝑚
� 𝜸, we have 𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) ≤ (≥)𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝).

This completes the proof. �

Remark 6.3. Theorem 6.3 is proved for 𝑛 = 2. We have not yet been able to prove whether the result
holds for 𝑛 > 2 or not leaving it as an open problem for now (see also Section 4 of Hazra and Finkelstein
[19] and Nadeb and Torabi [23], where the authors make the similar statement for ordinary mixtures
when 𝑛 > 2).

Theorem 6.3 is illustrated by the following numerical example:

Example 6.4. Let �̄� (𝑡 | 𝜆) = 𝑒−𝜆𝑡 , for 𝑡 ∈ [0, +∞). Clearly, �̄� (𝑡 | 𝜆) is decreasing and 𝑟 (𝑡 | 𝜆) =
𝜆 is increasing and concave in 𝜆. For 𝛼𝑖 ≥ 0, set (𝑝1, 𝑝2) = (0.55, 0.45), (𝜆1, 𝜆2) = (0.4, 0.7),
(𝛾1, 𝛾2) = (0.5, 0.6) and (𝛼1, 𝛼2) = (2.5, 3). As we see, 𝝀

𝑚
� 𝜸, ( 𝒑, 𝝀) ∈ U2 and ( 𝒑, 𝜸) ∈ U2 and

(𝛼1𝑝1, 𝛼2𝑝2) = (1.375, 1.35). Thus, all conditions of Theorem 6.3 are satisfied.

In the following counterexample, we show that conditions ( 𝒑, 𝝀) ∈ U2 and ( 𝒑, 𝜸) ∈ U2 in Theorem
6.3 can not be dropped.

Counterexample 6.3. In Example 6.4, set (𝜆1, 𝜆2) = (0.8, 0.5) and (𝛾1, 𝛾2) = (0.7, 0.6). As we
see, 𝝀

𝑚
� 𝜸, but ( 𝒑, 𝝀) ∉ U2 and ( 𝒑, 𝜸) ∉ U2. Figure 4 plots 𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝), 𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝) and

𝑔3(𝑡) = 𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝) − 𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) for 𝛼𝑖 ≥ 0, which indicates that the hazard rate ordering does
not hold between �̄�𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝).
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Figure 5. (a) �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) (solid) and �̄�𝑊3 (𝒒,𝜸) (𝑡, �̄�𝑝) (dash dot). (b) 𝑔4(𝑡) = �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) −

�̄�𝑊3 (𝒒,𝜸) (𝑡, �̄�𝑞).

The result of the next corollary extends the result of Theorem 4.2 in Nadeb and Torabi [23], which
compares two finite ordinary mixtures with respect to parameter 𝜆 in the generalized finite 𝛼-mixture.
Its proof directly follows from Theorem 6.3 and, therefore, is omitted.

Corollary 6.4. Let �̄� (𝑡 | 𝜆) belong to the proportional hazards family, �̄� (𝑡 | 𝜆) = �̄�𝜆 (𝑡), for all 𝑡, where
�̄� (𝑡) is the baseline survival function. Then, for 0 ≤ 𝛼1 ≤ 𝛼2 such that 𝛼1𝑝1 ≥ 𝛼2𝑝2, 𝝀

𝑚
� 𝜸, ( 𝒑, 𝝀) ∈ U2

and ( 𝒑, 𝜸) ∈ U2, we have

𝑟𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) ≤ 𝑟𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝).

Remark 6.4. The results in this paper are obtained under the assumption that 𝛼𝑖 ≠ 0. It should be
pointed out that the case 𝛼𝑖 = 0 can be considered as a special case of ordinary finite 𝛼-mixtures (see
the model in Eq. (2)). For this special case, we refer to Asadi et al. [3] for Theorems 3.1 and 3.2 and
Lemma 3.2; for results given in Sections 3, 4, 5, etc., we refer to Shojaee et al. [28] and for results given
in Section 6, we refer to Barmalzan et al. [8].

6.3. More counterexamples

The following counterexamples can help in better understanding the limitations/assumptions of the
considered in this section stochastic orderings. We first show that the result of Theorem 6.1 (Theorem
6.2) cannot be extended to the case 𝒑

𝑚
� 𝒒.

Counterexample 6.4. Let �̄� (𝑡 | 𝜆) = 𝑒−𝜆𝑡 , for 𝑡 ∈ [0, +∞). Clearly, �̄� (𝑡 | 𝜆) is decreasing and con-
vex in 𝜆. Set (𝑝1, 𝑝2, 𝑝3) = (0.875, 0.0625, 0.0625), (𝜆1, 𝜆2, 𝜆3) = (0.4, 0.7, 0.8), (𝑞1, 𝑞2, 𝑞3) =

(0.35, 0.35, 0.3), (𝛾1, 𝛾2, 𝛾3) = (0.4, 0.7, 0.8) and (𝛼1, 𝛼2, 𝛼3) = (2.5, 8, 10). As we see, 𝒑
𝑚
� 𝒒,

𝝀
𝑤
� 𝜸, ( 𝒑, 𝝀) ∈ U3 and (𝒒, 𝜸) ∈ U3. The plots in Figure 5 depict �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝), �̄�𝑊3 (𝒒,𝜸) (𝑡, �̄�𝑞) and

𝑔4(𝑡) = �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒒,𝜸) (𝑡, �̄�𝑞), which indicate that the usual stochastic ordering does not
hold between �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊3 (𝒒,𝜸) (𝑡, �̄�𝑞).
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Figure 6. (a) 𝑔6(𝑡) = 𝑓𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝)/ 𝑓𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝). (b) 𝑔5(𝑡) = �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒑,𝜸) (𝑡, 𝛽𝑝).

In the following counterexample, we show that the usual stochastic ordering does not hold between
�̄�𝑊𝑛 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊𝑛 (𝒑,𝜸) (𝑡, 𝛽𝑝) when 𝜶

𝑚
� 𝜷.

Counterexample 6.5. Let �̄� (𝑡 | 𝜆) = 𝑒−𝜆𝑡 , for 𝑡 ∈ [0, +∞). Clearly, �̄� (𝑡 | 𝜆) is decreasing. For𝛼𝑖 ≥ 1, set
(𝑝1, 𝑝2, 𝑝3) = (1/3, 1/3, 1/3), (𝜆1, 𝜆2, 𝜆3) = (0.4, 0.7, 0.8), (𝛾1, 𝛾2, 𝛾3) = (0.4, 0.7, 0.8), (𝛼1, 𝛼2, 𝛼3) =

(2.5, 3.5, 4) and (𝛽1, 𝛽2, 𝛽3) = (2.8, 3.4, 3.8). As we see, 𝝀
𝑤
� 𝜸, ( 𝒑, 𝝀) ∈ U3 and ( 𝒑, 𝜸) ∈ U3 and

𝜶
𝑚
� 𝜷. Figure 6(b) plots 𝑔5(𝑡) = �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) − �̄�𝑊3 (𝒑,𝜸) (𝑡, 𝛽𝑝) for 𝛼𝑖 , 𝛽𝑖 ≥ 1, which indicates that

the usual stochastic ordering does not hold between �̄�𝑊3 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊3 (𝒑,𝜸) (𝑡, 𝛽𝑝).

Finally, we demonstrate that the result of Theorem 6.3 cannot be extended to the likelihood ratio
ordering

Counterexample 6.6. Let �̄� (𝑡 | 𝜆) = 𝑒−𝜆𝑡 , for 𝑡 ∈ [0, +∞). Clearly, �̄� (𝑡 | 𝜆) is decreasing and 𝑟 (𝑡 | 𝜆) =
𝜆 is increasing and concave in 𝜆. For 𝛼𝑖 ≥ 0, set (𝑝1, 𝑝2) = (0.55, 0.45), (𝜆1, 𝜆2) = (0.4, 0.7),
(𝛾1, 𝛾2) = (0.5, 0.6) and (𝛼1, 𝛼2) = (2.5, 3). As we see, 𝝀

𝑚
� 𝜸, ( 𝒑, 𝝀) ∈ U2 and ( 𝒑, 𝜸) ∈ U2 and

(𝛼1𝑝1, 𝛼2𝑝2) = (1.375, 1.35). Thus, all conditions of Theorem 6.3 are satisfied. Figure 6(a) plots
𝑔6(𝑡) = ( 𝑓𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝))/( 𝑓𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝)) for 𝛼𝑖 ≥ 1, which indicates that the likelihood ratio ordering
does not hold between �̄�𝑊2 (𝒑,𝝀) (𝑡, �̄�𝑝) and �̄�𝑊2 (𝒑,𝜸) (𝑡, �̄�𝑝).

7. Conclusions

We have introduced the generalized finite 𝛼-mixture of survival functions, which is a new flexible
family of distributions that includes many mixture models as special cases and can be used to model,
for example, heterogeneity in populations. We have studied the hazard rate properties of the generalized
finite 𝛼-mixture family. Specifically, it was proved under some assumptions that the weakest (strongest)
subpopulation is smaller (greater) than the generalized finite 𝛼-mixture in the sense of the hazard rate
order. Moreover, an extension of the closure property of the 𝛼-mixtures of DFR (IFR) distributions of
Asadi et al. [3] was provided, that is, when all components are DFR (IFR), then the generalized finite
𝛼-mixture is also DFR (IFR) under the specified assumptions. We also have shown that this closure
property holds for DFRA (IFRA) distributions.
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Some aging properties of the generalized finite 𝛼-mixtures were investigated. In particular, for two
important baseline hazard models, additive and multiplicative hazards, the hazard rate of the generalized
finite 𝛼-mixture is expressed in terms of the corresponding conditional moments of mixing distributions.

We have employed the concept of majorization for obtaining sufficient conditions for stochastic
comparison of two generalized finite 𝛼-mixture models in the sense of the usual stochastic order and the
hazard rate order. The detailed analyses with numerous examples and counterexamples help understand
the assumptions and limitations in our modeling.
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