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Abstract

Warren W. Wolfe obtained necessary conditions for the existence of orthogonal designs in terms of
rational matrices. In this paper it is shown that these necessary conditions can be obtained in terms
of integral matrices. In the integral form, Wolfe's theory is more useful in the construction of
orthogonal designs.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 05 B 20.

0. Introduction

An n X n matrix A with entries from the commuting variables 0,
± x,, ±x2, • • • , ± xu, is called an orthogonal design of type (sv s2, . . . , su) and
order n if

AA'-f, siXfln.
i - i

The study of orthogonal designs has arisen from problems in Hadamard
matrices, weighing matrices and Baumert-Hall arrays (see [4]). Most of this
study is directed toward a solution of the existence problem: given parameters
n, 5,, s2, • • • , su, does there exist an orthogonal design of type ( j l 5 s2, • • • , su)
and order ril This problem is clearly equivalent to finding n X n matrices
Av A2, . . ., Au, which satisfy

(0.1) Aj * Aj = 0 for /' ¥=j (* denotes Hadamard product),
(0.2) the entires of each At are from (0, 1, - 1 } ,
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(0.3) A,Af = S/In for 1 < / < u,
(0.4) AtAj + AjA\ = 0 for / ¥=j.
The equations (0.3) and (0.4) reflect the algebraic properties of orthogonal

designs. Radon [9] showed that if AVA2, . . . ,AU are real n X n matrices
satisfying (0.3) and (0.4), then u < p(n), where p (the Radon function) is defined
as follows. Suppose that n = 2ab, and a = Ac + d, where b is odd and 0 < d <
3. Then p(n) = 8c + 2d.

A rational family of type (sv s2, • • • , su) and order n is a set {Av A2, . . . , Au)
of n X n rational matrices which satisfy (0.3) and (0.4).

The following theorem uses rational families to give a necessary condition for
the existence of orthogonal designs. The theorem follows from the results of
Wolfe [11] and Shapiro [10].

(0.5) RATIONAL FAMILY THEOREM [4]. Siq>pose that n = 2"b where b is odd and
0 < a < 3. Then there is a rational family of type (su s2, . . • , su) and order n if
and only if

(0.6) there is a u X 2° rational number P such that

PP' = diag(j,, s2,..., su).

Wolfe showed how the Hasse-Minkowski classification of rational quadratic
forms can be applied to (0.6) to provide a useful necessary condition for the
existence of orthogonal designs. Much effort has been spent in attempting to
determine precisely when (0.6) is sufficient for the existence of an orthogonal
design (see [4]).

A rational family which consists of integral matrices shall be called an integral
family. An integral familly shall be called combinatorial if it satisfies (0.1). A
necessary and sufficient condition for the existence of an integral family of order
not divisible by 16 is given in this paper. This condition is shown to be often
sufficient for the existence of a combinatorial integral family. This is of interest
because a combinatorial integral family is not very different from an orthogonal
design. If {A\, A2, . . . , Au) is a combinatorial integral family of type
(su s2, . . . , su) and xu x2, . . . , xu, are commuting variables, then A = 2"_iX,^,
has entries from {/wx,: m EL Z, 1 < / < u} and

AA' = ^u
i_1sixfl.

Precisely, the following two theorems are proved.

(0.7) MAIN THEOREM A. Suppose that sh s2, . . . , su, are positive integers, b is
an odd positive integer, and 0 < a < 3. Then a necessary and sufficient condition
for the existence of an integral family of type (s{, s2, . . . , su) and order 2fb is
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(0.8) there is a u X 2" integral matrix Q such that

QQ' = diag( j , , s2, . . . , su).

(0.9) M A I N THEOREM B. / / 0 < a < 2 and b > u then (0.8) is a necessary and

sufficient condition for the existence of a combinatorial integral family of type

($,, s2, • • •, su) and order 2ab.

Necessity in the two main theorems is proved in Section 1 by showing that for

0 < a < 3, (0.6) implies (0.8). Sufficiency is proved in Section 2.

(0.10) REMARK. The Radon number bound shows that the added hypothesis

b > u in Main Theorem B excludes only combinatorial integral families of order

less than 16. These excluded cases are of little interest since the existence

problem for orthogonal designs is completely solved for such orders.

(0.11) REMARK. The integral condition (0.8) has at least two advantages over

its rational counterpart (0.6). Firstly, it is often easier to construct an integral

matrix Q satisfying QQ' = diag(j , , s2, . . •, su) than to prove that such a matrix

exists by using the Hasse-Minkowski theory. Secondly, the integral matrix Q

can be used as a starting point in an algorithm to construct the orthogonal

design in question. This algorithm, described in [1], has been used successfully to

construct many orthogonal designs of orders 20 and 28.

1. The integer matrix conjecture

The following conjecture originally arose from a study of the Goethals-Seidel

method for constructing orthogonal designs (see [1]).

(1.1) INTEGER MATRIX CONJECTURE. Suppose that sly s2, . . •, su, are positive

integers. If the matrix equation

(1.2) XX' = diag( j , , s2, . . . , su)

has a rational u X n solution then it has an integral u X n solution.

In this section we prove

(1.3) PROPOSITION. The Integer Matrix Conjecture is true for u < n < 8.

It follows that for a e {0, 1, 2, 3} the conditions (0.6) and (0.8) are equivalent,

and necessity in Main Theorem A and B is established.
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The author does not know whether the Integer Matrix Conjecture holds for
any value n > 9. However, for n < 7, a stronger result may be proved.

(1.4) PROPOSITION. Suppose that A is a nonsingular integral matrix and the
matrix equation
(1.5) XX' = A
has a rational u X n solution, where u < n < 7. Then (1.4) has an integral u X n
solution.

(1.6) REMARKS. The proof given below for Proposition (1.4) was presented by
Gordon Pall at the Conference on Quadratic Forms at Queen's University,
Kingston, Ontario, in 1976. The author is grateful to Professor Pall for his kind
permission to use his work.

J. S. Hsia [6] has independently obtained proofs of Propositions (1.3) and (1.4)
using the language of lattices. In fact, Hsia's results give information about the
case n > 8 as well.

The proof of Propositions (1.3) and (1.4) uses the classical theory of integral
quadratic forms. We shall begin by revising some terminology. The rational
quadratic forms are rationally equivalent if there is a nonsingular rational linear
transformation which takes one to the other. Thus, for instance, if there is a
u X u rational matrix P such that PP' = diag(s,, s2, . . . , su), then the form
x] + x\ + • • • +xl is rationally equivalent to sxx] + s2x\ + • • • + xux*. Two
integral quadratic forms are integrally equivalent or in the same class, if there is a
nonsingular integral linear transformation of determinant 1 which takes one to
the other.

A form shall be called classic if it has an integral matrix. A classic form/shall
be called c-reducible if there is an integral linear transformation which takes a
classic form g to / , where |detg| < |det/|. In matrix terms, the form / with
matrix F is c-reducible if there is an integral matrix G and a nonsingular integral
matrix T such that F = TGT' and |det F\ > |det G\. A classic form which is not
c-reducible is c-irreducible.

The following lemma is central to the proof of Proposition (1.4).

(1.7) LEMMA. If two c-irreducible forms are rationally equivalent, then they have
the same determinant.

Because the proof of this proposition is long and tedious, it is left until the end
of this section. First we show how to obtain Proposition (1.3) and (1.4).

Consider the case u — n < 7. Suppose that there is a u X u rational solution
to (1.4), that is, the form / with matrix A is rationally equivalent to x\ + x\
+ • • • + xl- Since / is classic, there is a c-irreducible form g and a nonsingular
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integral linear transformation which takes g to / . Clearly g is rationally equiva-
lent to x] + x\ + • • • + xl; hence, by Proposition (1.6), g has determinant 1.
Now a theorem of Hermite (Jones [7], p. 60) implies that there is only one class
of positive definite classic forms of determinant 1 with u < 7 variables. So g is
integrally equivalent to x\ + x\ + • • • + x\. The composition of this equiva-
lence transformation with the transformation from g to f has an integral matrix
Q which satisfies QQ' = A.

Now suppose that u < n < 7, and P is a rational u X n solution to (1.5). Let
m be an integer such that mP is integral. Let V be an (n — u) X n matrix whose
rows form a basis of the orthogonal complement of the rowspace of P in
rational H-space. Suppose that k is an integer such that kV is integral. If U
denotes the n X n integral matrix whose transpose is (/", mkV'), then UU' is
integral. From the case u = n proved above there is an n X n integral matrix Y
such that YY' = UU'. The first u rows of Y form an integral u X n solution to
(1.5). This completes the proof of Proposition (1.4) (except for the proof of
Lemma (1.7)).

There is more than one class of positive definite classic forms of determinant
1 with 8 variables [8]. However, it is well known (see [8]) that an integral form is
integrally equivalent to x\ + x\ + • • • + x\ if and only if it represents an odd
number. So using the same argument as in the case n < 8, we can show that if
one Sj, 1 < / < 8, is odd, then the existence of an 8 X 8 rational solution to (1.2)
implies the existence of an 8 X 8 integral solution. To prove the Integer Matrix
Conjecture (1.1) for n = u = 8, only 8-tuples (.?„ s2, . . . , ss) of even integers
need be considered. Clearly the st can be assumed to be squarefree, and so we
consider only the case st = 2 (mod 4) for 1 < / < 8. A standard Hasse-symbol
argument shows that sxx\ + s2x\ + • • • +JgXg is rationally equivalent to
\(sxx\ + s2xj + • • • +s8xl). So, if there is a rational 8 x 8 solution to (1.2),
then there is a rational 8 x 8 matrix P such that PP' = |diag(j1, s2, • • • , ^g).
Because ^sl is odd, there is an 8 x 8 integral matrix S such that SS'
= jdiag(^|, s2, . . . , s&). The product Q of S with

X 74 (Kronecker product)

satisfies QQ' = diag(i,, s2, . . . , ss).
The case u < n = 8 follows since any set of mutually orthogonal vectors in

rational 8-space can be completed to an orthogonal basis.
It remains only to prove Lemma 1.7.
Suppose that / i s a c-irreducible form. We will show that
(1.8) d e t / i s not divisible by 4;

and if p is an odd prime then
(1.9) p3 does not divide det/ ,
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and
(1.10) ifp2 divides det/then cp(f) = - 1 ,

and
(1.11) ifp does not divide det/then cp(f) = 1.

(The Hasse symbol at/> is denoted by cp.)
A theorem of Hasse-Minkowski implies that if / , and f2 are rationally

equivalent forms, then the squarefree parts of det/, and det/2 are equal and
c/>(/i) = c

P{fi> f°r e a c n prime p. \lfx and/2 are c-irreducible then it follows from
(1.8) to (1.11) that det/, = det/2.

Firstly we prove (1.8). Suppose that 4 divides det/, and choose r so that the
largest power of 2 dividing det / i s less than 2r. Now/ is integrally equivalent to
a form g such that
(1.12) g =aiht + a2h2 + • • • +amhm (mod 2"),

where the a, are integers and each ht has shape either 2xy, 2x2 + 2xy + 2y2 or
x2, and the variables of distinct A,'s are distinct (Jones [7], p. 110). (By/, = / 2

(mod t>) we mean that the corresponding coefficients of / , and / 2 are equal
modulo v.)

Now each term in (1.12) has odd determinant; if 4 divides det / then one of
the following must hold. Either

(1.13) 2 divides a, for some ht of shape 2xy;
or

(1.14) 4 divides a,- for some ht of shape x2;
or

(1.15) 2 divides a,- for some ht of shape 2x2 + 2xy + 2y2

or
(1.16) a, = a, = 2 (mod 4) for some diagonal components ht and hr

It is clear that neither (1.13) nor (1.14) can hold for the c-irreducible form/.
Suppose that (1.15) holds. The transformation Twith matrix

2 0
. 1 1

takes x2 + 3y2 to 4x2 + 4xy + 4y2. Since T has determinant 2 and/contains a
term 4x2 + 4xy + 4y2 (mod 2r), / is c-reducible, contrary to hypothesis. A
similar argument shows that (1.16) is impossible.

Hence 4 does not divide det / .
For (1.9), (1.10) and (1.11) a similar method may be employed. Suppose that/;

is an odd prime. Choose r so that the highest power of p which divides det / is
less than/»r. Now/is integrally equivalent to a form g which is diagonal modulo
pr (see Jones [7], p. 110). Since/ is c-irreducible, p2 does not divide any of the
diagonal coefficients of g. Using elementary methods we can show that a
diagonal form with coefficients prime to p is integrally equivalent to a form
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which has shape x2 + x\ + • • • + kx\ modulo pr, where (k,p) = 1. Thus the

form

(1.17) h = x] + x2
2 + • • • + x2_, + A:*,2 + p{y] + y\ + • • • +y2

K_i + ly\)

is considered, where k and / are prime to/». Now h has many of the properties of
/ : a power of p divides det h if and only if it divides det /; / is c-reducible if h is
c-reducible by a transformation of determinant ±p; and cp(f) = cp(h).

Suppose that (1.9) is false, that is,/?3 divides det/. Then w > 3 and integers a
and b can be found such that the form

K = px2 - laxz + pz2 - 2byz + (a2 + b2 + I)z2/p

is classic. The transformation

1 a
1 b

P .

has determinant p and takes h to h'. Thus w > 3 is impossible and p3 does not
divide det/.

Suppose that/*2 divides det/; then w = 2. If cp(f) = 1, then an easy calcula-
tion shows that -/ is a square modulopr. Hence there is an integer d such that

px2 + ply2 =px2 - (Ppy2

Since ( / , / ? )= 1, d *£. 0 (mod/? r ) , and so there are integers e and q such that

de = \ + qp. The transformation with matrix

d p

1 0

has determinant -p and takes the classic form

d^px2 - 2d2xy + ey2

topx2 — d^y2. Hence / i s c-reducible contrary to assumption; so cp(f) = - 1 .

Finally, if p does not divide d e t / then w = 0 and an easy calculation shows

that cp(f)= 1.

This completes the proof of Lemma 1.7.

2. Combinatorial integral families

Geramita and Pullman [3] showed that for each n there is an orthogonal

design of type (1, 1, . . . , 1) and order n on p(n) variables. Sufficiency in Main

Theorem A may be deduced using the following method. Suppose that n = H'b

where 0 < a < 3 and b is odd; for convenience denote 2" by r. Note that

p(n) = r. Let [Pv P2, . . . , Pr) be the rational family corresponding to the
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Geramita-Pullman orthogonal design. Suppose that Q is a u X r integral matrix
such that

>' = diag( j , , s2, . . .,su).

If qtJ is the yth entry of Q then the matrices
r

2 qtJPj, 1< I <U,
i - 1

form an integral family of type (su s2, . . ., su) and order n.
For a = 0 it is trivial that the integral family above is combinatorial. For

a > 0 and b > u consider the sequences
CJ = (auxv a2jX2, •••, q u j x u , 0 ^ u ) ,

where the x, are commuting variables and 0b_u denotes a sequence of b — u
zeros. Denote by Aj the b X b circulant matrix with first row Cj. It is easy to
check that

r u

E sixfh-(2.1) 2 AJAJ
1 - 1

Let R denote the backdiagonal matrix, that is, R has 1 in the (/, b — i + l)th
position for 1 < / < b, and zeros elsewhere. In the case a = 1, consider the
2b X 2b matrix

M =
Ax

-A2R
A2R

From (2.1), MM' = 2"_,i,x^/26, and M has entries from {mjc(: m £ Z, 1 < / <
M). Hence M gives a combinatorial integral family of type (sv s2, . . . , su) and
order 2b. For a = 2, the Goethals-Seidel array [5]

^ , y42/? y!3/J A4R

-A

-A

-A

2R

3 *

4 *

Ax

-A'AR

A'2R

A\R

\

-A'2R Al

can be used to obtain a combinatorial integral family of type (s,, s2, . . . , su) and
order 4b.

Finally we give a combinatorial condition to determine when combinatorial
integral families constructed by the method above are orthogonal designs.

(2.2) PROPOSITION. Suppose Xx, X2, . . . , Xu, are integral circulant b X b
matrices such that

(2.3) xtx; = dB.
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Write Xf = Yt — Z,, where Y( and Z, have nonnegative entries, and denote by yj

and z, the rowsums of Yt and Z, respectively. Then

(2-4) c = £ (y, - tf

and the Xt have entries from {0, 1, -1} if and only if

(2.5) c = £ (y, + z,).

PROOF. A standard rowsum argument gives (2.4), and, if the Xt have entries
from {0, 1, -1} , then (2.5) is immediate. Conversely, suppose that (2.5) holds,
and let x, = (xu, x2j, . . . , xbi) denote the first row of Xt. Clearly

* + *,-2l*/J-

Hence by (2.5),
u b

c= y y \x\
i - l y - 1

but also

by considering the scalar products the first row of each Xt with itself. Hence

- £ 2 1̂ 1(1̂ ,1 - i) = o.
t - \ j - \

But each term in this sum is nonnegative. Hence xjt E {0, 1, -1} for 1 < j < b
and 1 < i < u.
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