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For the purpose of studying the spectral properties of energy transfer between large
and small scales in high-Reynolds-number turbulence, we measure the longitudinal
subgrid-scale (SGS) dissipation spectrum, defined as the co-spectrum of the SGS
stress and filtered strain-rate tensors. An array of four closely spaced X-wire probes
enables us to approximate a two-dimensional box filter by averaging over different
probe locations (cross-stream filtering) and in time (streamwise filtering using Taylor’s
hypothesis). We analyse data taken at the centreline of a cylinder wake at Reynolds
numbers up to Rλ ∼ 450. Using the assumption of local isotropy, the longitudinal SGS
stress and filtered strain-rate co-spectrum is transformed into a radial co-spectrum,
which allows us to evaluate the spectral eddy viscosity, ν(k, k∆). In agreement with
classical two-point closure predictions, for graded filters, the spectral eddy viscosity
deduced from the box-filtered data decreases near the filter wavenumber k∆. When
using a spectral cutoff filter in the streamwise direction (with a box-filter in the cross-
stream direction) a cusp behaviour near the filter scale is observed. In physical space,
certain features of a wavenumber-dependent eddy viscosity can be approximated
by a combination of a regular and a hyper-viscosity term. A hyper-viscous term is
also suggested from considering equilibrium between production and SGS dissipation
of resolved enstrophy. Assuming local isotropy, the dimensionless coefficient of the
hyper-viscous term can be related to the skewness coefficient of filtered velocity
gradients. The skewness is measured from the X-wire array and from direct numerical
simulation of isotropic turbulence. The results show that the hyper-viscosity coefficient
is negative for graded filters and positive for spectral filters. These trends are in
agreement with the spectral eddy viscosity measured directly from the SGS stress–
strain rate co-spectrum. The results provide significant support, now at high Reynolds
numbers, for the ability of classical two-point closures to predict general trends of
mean energy transfer in locally isotropic turbulence.

1. Introduction
In large eddy simulations (LES) of turbulent flows, the effective equations for the

large-scale velocity field ũi include the divergence of an additional tensor

τij = ũiuj − ũiũj , (1.1)

called the subgrid-scale (SGS) stress tensor. The tilde represents a low-pass spatial
filtering operation at scale ∆ (convolution with some homogeneous kernel G∆(x)). The
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quantity τij must be modelled in terms of the resolved field ũi. Existing subgrid models
may be grouped into several basic categories: eddy viscosity, stochastic, similarity,
and (more recently) assumed SGS velocity models.

The most common approach is based on the eddy-viscosity assumption,

τdij ≡ τij − 1
3
τkkδij = −2νT S̃ij , (1.2)

where τdij is the deviatoric part of τij and S̃ij is the resolved strain-rate tensor. This
approach includes a number of variants for evaluating the eddy viscosity νT . The
Smagorinsky model (Smagorinsky 1963), where νT = (cs∆)2|S̃ |, is the best-known.
Another variant is the so-called kinetic-energy model (Schumann 1975; Mason 1994),
where an additional scalar transport equation for the SGS kinetic energy is solved.
An important recent development in subgrid modelling is the dynamic procedure
(Germano et al. 1991; Lilly 1992), where the model coefficient cs is evaluated from
the resolved scales during an LES.

In these formulations, the eddy viscosity acts equally on all scales of motion, i.e. it
is a nonlinear, but ‘simple’ viscosity. However, it has been shown by Kraichnan (1976)
that if it is considered in detail how the eddy viscosity acts upon different wavenum-
ber modes, the eddy viscosity must be allowed to depend upon the wavenumber
magnitude. Specifically, let E<(k, t) be the energy spectrum of the filtered velocity
field. The quantity E<(k, t) is defined by

E<(k, t) ≡ |Ĝ∆(k)|2E(k, t), (1.3)

where Ĝ∆(k) is the Fourier transform of the filter, and E(k, t) the radial energy
spectrum of the turbulence. The quantity E<(k, t) evolves according to(

∂

∂t
+ 2νk2

)
E<(k, t) = F(k, t) + T<(k, t)−H(k, t), (1.4)

where F(k, t) is the energy injection by large-scale forces, and T<(k, t) is the trans-
fer spectrum of resolved scales. The quantity T<(k, t) is typically negative at low
wavenumbers (energy is extracted from the large scales) and positive near the filter
wavenumber k∆ = π/∆ (energy is deposited by the resolved nonlinear interactions
near the filter scale ∆). The quantity H(k, t) is the SGS dissipation spectrum, given by

H(k, t) = −∑
|k|=k

τ̂ij(k, t)
̂̃S∗ij(k, t). (1.5)

The symbol (̂ ) denotes the Fourier transform and ( )∗ the complex conjugate; the
summation is over a spherical wavenumber shell of constant radius k. The quantity
H(k, t) represents the rate at which energy is transferred from a given wavenumber
shell at k into the subgrid scales. Even if the actual momentum transfer associated
with τij cannot be represented as an eddy viscosity (owing to a lack of scale-separation
in turbulence), the corresponding spectral SGS dissipation can be written in eddy-
viscosity form according to

H(k) = 2νre(k, k∆)k2E<(k). (1.6)

The quantity νre(k, k∆) is the ‘real’ spectral eddy viscosity, which can always be defined
based on the real energy transfer properties of turbulence. Notice that, for notational
simplicity, we henceforth omit the time dependence.

The spectral eddy viscosity can be modelled based on classical two-point closures
such as TFM (Kraichnan 1976; Herring 1979, 1990) and EDQNM (Leslie & Quarini
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1979; Chollet & Lesieur 1981; Chasnov 1991; Lesieur & Métais 1996). These closures
predict that H(k) can be written as the sum of two terms: Hmod(k) = H+

mod(k)−Umod(k).
The first term, H+

mod(k), is positive and contains a factor equal to k2E<(k), that is to
say, it can be written as H+

mod(k) = 2ν+
mod(k, k∆)k2E<(k). The second term, −Umod(k),

is negative and does not contain a factor proportional to E<(k). U(k) is commonly
referred to as the backscatter spectrum. When both terms (H+

mod(k) and −Umod(k)) are
combined, the resulting ‘net’ spectral eddy viscosity implied by the closures is simply
νmod(k, k∆) = ν+

mod(k, k∆)−Umod(k)[2k2E<(k)]−1. For a spectral cutoff filter, as k → k∆,
the net viscosity νmod(k, k∆) displays an upward ‘cusp’, while for low wavenumbers
(about k < 0.3k∆), νmod(k, k∆) is essentially equal to a non-zero constant.

For graded filters, such as the Gaussian or the top-hat filter, the EDQNM cal-
culation of Leslie & Quarini (1979) (carried out for the Gaussian filter) shows that
the cusp near k∆ is replaced by a downward trend, i.e. scales near ∆ transfer less
energy into the SGS range than predicted by a constant eddy viscosity. At low k,
again, a non-zero plateau is obtained. The cusp depends also upon details of the
low-wavenumber limit of the energy spectrum (Leslie & Quarini 1979; Chollet &
Lesieur 1981, see also discussion in McComb 1990, § 10.3). The prediction of a cusp
for the case of a spectral cutoff filter has been verified in direct numerical simulation
(DNS) by Domaradski et al. (1987). In these DNS it is observed that ν(k, k∆) → 0
at k → 0, without a constant region. This behaviour can be attributed to the low
Reynolds numbers of those simulations. More recent results (Langford & Moser
1999) show that at higher Reynolds number (based on DNS with 2563 modes) the
plateau does indeed occur. These authors show that the plateau and cusp behaviour
of spectral eddy viscosity for the cutoff filter also arises as the result of an optimiza-
tion process that minimizes the error between the real stress divergence and linear
two-point functionals of resolved velocity. By analysing the results of LES (with a
spectral eddy-viscosity model) filtered at a scale well above the numerical resolution
(in the inertial range), Métais & Lesieur (1992) obtained also a constant plateau
region for the effective spectral viscosity. Renormalization group techniques show
that the effects of randomly stirred small scales of fluid motion (Yakhot, Orszag &
Yakhot 1989; McComb 1990) can be described, in the limit k → 0 (away from the
cutoff scale), by a constant effective viscosity.

As reviewed in Lesieur & Métais (1996), the notion of spectral eddy viscosity can
be naturally used in LES of homogeneous flows using the pseudospectral method. A
working fit to the theoretical predictions, due to Chollet & Lesieur (1981) and Chollet
(1985), is

ν(k, k∆) = C
−3/2
K

[
a1 + a2 exp

(
−3.03

k∆

k

)]√
E<(k∆)

k∆
(a1 = 0.441, a2 = 15.3).

(1.7)

This fit has also been used by Briscolini & Santangelo (1994) in LES of homogeneous
turbulence. In LES of non-homogeneous flows, which are typically formulated with
physical space discretizations such as finite-volume or finite-difference methods, the
implementation of a wavenumber-dependent eddy viscosity is not easy. A possible
approach is to use hyper viscosity, by including higher-order Laplacians of the
velocity as SGS models. For instance, Chollet & Lesieur (1981) argue that the cusp
of the spectral eddy viscosity described earlier may be represented in practice with
an additional hyper-viscous term of the form τij ∼ −∇4S̃ij . Borue & Orszag (1995,
1998) perform simulations with a hyper-viscous term, to produce an inertial range
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that is wider than with regular viscosity. Hyper viscosity has been proposed to damp
simulations of two-dimensional flows (see discussion in Lesieur & Métais 1996). A
mixed Smagorinsky plus hyper-viscous (τij ∼ ∇2S̃ij) model has seen initial applications
in conjunction with the dynamic procedure (Dantinne et al. 1998).

Thus, considerable theoretical and computational insights into spectral and hyper-
viscosity models exist. Unfortunately, so far no experimental measurements have been
performed of the SGS dissipation spectrum Hre(k, t), of the spectral eddy viscosity
νre(k, k∆), or of parameters associated with hyper-viscosity terms. Hence, there is a
lack of empirical information about these concepts for high-Reynolds-number flows.
The main objective of this paper is to present and interpret such direct experimental
measurements.

Before giving an outline of this paper, it is important to point out well-known
limitations of the basic eddy-viscosity concept, and to give arguments as to why it
is still important to continue to study its spectral properties through experiments.
As is well known, the lack of scale-separation in turbulent flows violates the central
assumption used to justify eddy-viscosity concepts. Not surprisingly then, when the
SGS stress tensor τij is compared to the filtered strain-rate tensor in individual
realizations of the flow in a priori tests, the agreement is quite poor (Clark, Ferziger
& Reynolds 1979; Bardina, Ferziger & Reynolds 1980; Liu, Meneveau & Katz
1994). A related problem is that eddy-viscosity models do not include backscatter
of energy from small to large scales. For this purpose, it has been proposed to
add stochastic forcing terms (Leith 1990; Chasnov 1991; Mason & Thomson 1992;
Mason 1994; Schumann 1995) to the eddy-viscosity model. Another class of models,
the similarity models (Bardina et al. 1980; Liu et al. 1994) can be motivated by
observations of similarity among localized flow phenomena occurring at different
scales (Liu et al. 1994), and by conditional averaging (Piomelli, Yu & Adrian 1996;
O’Neil & Meneveau 1997; Meneveau & Katz 1999). The similarity models also include
backscatter. Experience with such models, however, dictates that some eddy-viscosity
term must typically be added in order to prevent unphysical solutions and possibly
numerical instability. Mixed models (Bardina 1983), consisting of a similarity and
an eddy-viscosity term, have been shown to combine the positive features of both
approaches (Liu et al. 1994). As reviewed in Meneveau & Katz 2000, a growing
number of numerical applications using variants of the mixed model provide improved
predictions in LES (e.g. Zang et al. 1993; Vreman, Geurts & Kuerten 1997; Akhavan
et al. 2000; Sarghini, Piomelli & Balaras 1999). New-generation SGS closures, that
have emerged as alternatives to the eddy-viscosity and similarity models, include the
velocity estimation model (Domaradski & Saiki 1997), the fractal model (Scotti &
Meneveau 1999) and the vortex model (Misra & Pullin 1997). These models do not
assume a specific form for the stress tensor but rather, for the subgrid velocity field.

In any of these new modelling approaches, it is important to understand how energy
dissipation acts on different scales of motion. Such understanding can be furthered
by measuring the real SGS dissipation spectrum Hre(k) or the real eddy viscosity
νre(k, k∆) and, subsequently, by comparing with SGS dissipation spectra implied by
the models. Hence, such measurements are relevant not only in the context of the
spectral eddy-viscosity model, but also for other closure approaches. In this paper
we present direct measurements of Hre(k, t) and νre(k, k∆) obtained from hot-wire
measurements on the centreline of a turbulent wake behind a cylinder at Reynolds
numbers up to Rλ ∼ 450. The focus of this paper is on documenting Hre(k, t) and
νre(k, k∆) for real turbulence at high Reynolds numbers and on comparing with the
trends predicted by the classical two-point closures.
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In § 2 we describe the experimental set-up and briefly review the hot-wire array that
permits us to measure signals of the SGS stress and resolved strain-rate tensors. Sec-
tion 3 presents the main results, consisting of measured SGS dissipation spectra and
the corresponding spectral eddy-viscosity distributions. For applications of LES with
physical-space discretizations, it is of interest to examine the ability of hyper-viscosity
models to reproduce the dissipation characteristics of turbulence. As shown in § 4,
hyper-viscosity models naturally arise in formulating equilibrium between production
and SGS dissipation of resolved enstrophy. There we also show that the skewness
factor of the filtered velocity derivative is an important ingredient in the balance
between production and SGS dissipation of resolved enstrophy. Measurements of the
skewness coefficient are used to quantify the trends of hyper-viscosity terms at high
Reynolds number. A discussion of these results and concluding remarks are presented
in § 5.

2. Instrumentation and experiment in cylinder wake
As outlined in § 1, to measure the spectral distribution of SGS dissipation we

must measure the SGS stress and filtered strain rate in high-Reynolds-number tur-
bulence. For this purpose, velocity measurements must be spatially filtered. In LES,
what is represented on a computational grid are fields filtered in three dimensions.
Earlier experimental work (Meneveau 1994; O’Neil & Meneveau 1997) used hot-
wire measurements to study variables relevant to SGS modelling and was based on
one-dimensional filtering in the streamwise direction (in reality, time filtering using
the Taylor hypothesis). While qualitative trends are believed to be captured with the
one-dimensional approach, quantitatively more accurate results can be obtained using
two-dimensional filtering (see Murray, Piomelli & Wallace (1996) and Tong, Wyn-
gaard & Brasseur (1998) for comparisons of one-dimensional and two-dimensional
filtering using numerical data and Porté-Agel et al. (2000a) using atmospheric field
data). Planar particle image velocimetry (PIV) (Liu et al. 1994, 1995, 1999; Bastiaans,
Rindt & Van Steenhoven 1998) allows the measurement of a two-dimensional veloc-
ity field, from which two-dimensional filtered quantities can be evaluated. However,
using PIV, the measurement of converged high-order statistics (such as the SGS
stress–strain rate co-spectra required here) is challenging owing to present difficulties
in accumulating the very long data records needed to achieve statistical convergence.
In this work, we use an array of hot wires (Cerutti 1999; Cerutti & Meneveau 2000)
which allows us to approximate to a reasonable accuracy a two-dimensional box filter,
and to accumulate the long data records needed to achieve statistical convergence.

2.1. Hot-wire probe array and two-dimensional filtering

An array of four X-probes has been designed and built in-house to allow us to
approximate filtering of data in the direction transverse to the flow (x2), in addition
to time filtering (i.e. filtering in the streamwise (x1) direction using Taylor’s hypothesis).
The centres of the four X-probes are positioned h = 2.286 mm apart. Each probe
is made of a 7.62 cm long, 1.575 mm diameter alumina tube with four 0.406 mm
longitudinal holes for the steel prongs, whose centres form a 0.491 mm × 0.491 mm
square. The probe is spot-welded with eight platinum-plated, 2.5 µm diameter tungsten
sensor wires. More details about the probe geometry and its construction are presented
in Cerutti (1999) and Cerutti & Meneveau (2000). Throughout this paper, the filter
size ∆ is kept equal to twice the inter-probe distance h, i.e. ∆ = 2h = 4.58 mm. Filtering
in the x1 streamwise direction is performed using the trapezoidal rule evaluated on
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the successive time samples. The latter are separated by a time f−1
s or a distance

〈u1〉f−1
s , where fs is the sampling frequency and 〈u1〉 is the mean streamwise velocity.

Filtering over a scale ∆ in the x2-direction involves the signal at four neighbouring
points, which are combined to produce a single filtered signal assigned to the geometric
centre of the probe. Let x(A)

2 , x(B)
2 , x(C)

2 , and x(D)
2 denote the transverse positions of the

four probes in the array. The centre position of the probe (i.e. the mid-point between
x

(B)
2 and x

(C)
2 ) is denoted by x

(O)
2 . For filtering with a top-hat filter of size ∆ = 2h

centred at point x(O)
2 , we apply the trapezoidal rule to the available points:

ũi(x1, x
(O)
2 ) ' 1

16
[ui(x1, x

(A)
2 ) + 7 ui(x1, x

(B)
2 ) + 7 ui(x1, x

(C)
2 ) + ui(x1, x

(D)
2 )]. (2.1)

The same expression is used to evaluate the filtered product ũ1u1 needed to evaluate the
(longitudinal) SGS stress term τ11. The combination of the x1 and x2 filter operations is
denoted as the ‘array’ two-dimensional filter. The quantity S̃11 = ∂ũ1/∂x1 is evaluated
using a finite-difference approximation over a distance equal to the mean streamwise
velocity divided by the data acquisition frequency. Other tensor components such as
∂ũ1/∂x2, ∂ũ2/∂x1, ∂ũ2/∂x2, and τ12, τ22 can be evaluated (see Cerutti & Meneveau
2000). In the present paper we focus on the longitudinal components since derivatives
in the cross-stream direction involve larger errors.

The under-resolution in the cross-stream direction, where only a few points are
available, and the additional filtering from the length of the wires generates an error
in the array filter as compared to an ideal two-dimensional box filter. In Cerutti
& Meneveau (2000), the expected differences between results for an ideal box filter
and the discrete array filter are quantified based on an assumed isotropic turbulence
spectrum and characteristic lengthscales close to those encountered in the experiments.
The results are that the r.m.s. of the ∂ũ1/∂x1 component differs from the ideal two-
dimensional box filter by about 2%, and that the trace of the SGS tensor differs by
5%. We have performed further tests based on earlier two-dimensional PIV data sets
in the far field of a turbulent jet (Liu et al. 1994). These data have equally good spatial
resolution in two directions, with vector spacings at about 5η. We first computed an
SGS stress field with a box filter at a scale of 60η (i.e. using 13× 13 vectors in each
box). Then, a stress field was computed with a 13× 4 vector array covering a box of
the same size (60η), in which in the x2-direction only every 4th vector (separated by
20η) was used to mimic the coarse sampling with our array of discrete point sensors.
The correlation between the two stress fields was 97%. The r.m.s. of these fields
differed by about 3%, which is comparable to the analytical results. When comparing
the gradients of the stresses, the correlation was still 95%, indicating very good
agreement even at the smallest scales of the stress fields. The good agreement is due
to the fact that the SGS stress is dominated by the largest of the unresolved scales.
We conclude that the array of sensors gives a sufficiently good representation of a
two-dimensional box filter for the purposes of the present study. It is stressed that the
good agreement applies to a box filter. For filters with wider spatial support such as
the spectral cutoff filter, many more measurement points would probably be needed.

An eight-channel, constant-temperature hot-wire anemometer system (TSI IFA-
300) is used to drive the probe in all the experiments. Each X-wire in the array is
calibrated using an external compressed air calibrator stage (TSI 1128A) including a
specially designed 25 mm diameter round nozzle. By varying the exit speed between
0 and 27 m s−1, and the angle of the array in a range between −30◦ and 30◦, the
calibration is performed separately for each X-wire probe in the array. A fourth-
order calibration polynomial (Oster & Wygnanski 1982) is fitted to each set of
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Average r.m.s. r.m.s.
Data u1 u′1 u′2 ` ε η
set (m s−1) (m s−1) (m s−1) (cm) (m2 s−3) Rλ (10−4 m) ∆/η

10V 11.2 0.780 0.652 19.8 4.60 289 1.60 28.5
15V 15.6 1.07 0.898 18.8 11.6 342 1.27 35.9
20V 20.1 1.38 1.16 18.5 23.4 400 1.07 42.8
25V 24.5 1.67 1.41 18.3 40.3 447 0.933 49.0

Table 1. Data sets for the cylinder experiment. All data sets consist of 10.5 million points per
channel, except for 20V which has 51.4 million each. The characteristic values in this table are
obtained by averaging over the four X-wire readings.

measurements. In calibration tests described in Cerutti (1999), it is found that the
r.m.s. of the errors between the measured and real velocities over the calibration
domain is typically about 0.3% of the velocity, or about 5% of the r.m.s. of turbulent
velocities. While not negligible, these calibration errors are strongly correlated from
one sample to another and, hence, do not significantly affect longitudinal velocity
derivatives and SGS stresses.

2.2. Experimental conditions and data characterization

Experiments are performed in the Corrsin wind tunnel, whose test-section is 10 m
long and cross-section is 1 m× 1.3 m. A 5.08 cm diameter smooth circular cylinder is
placed horizontally, 51 cm downstream of the final 1.27 : 1 contraction at the entrance
of the test section. The probe array is placed 3.05 m downstream of the cylinder, i.e. at
x/D = 60. The line joining the probes of the array (the x2-direction) is perpendicular
to the cylinder axis, so that x2 is the cross-wake direction. The probe is located at
the height of the centreline of the cylinder, to an accuracy of ±1 mm. A Pitot probe
installed upstream of the cylinder provides a velocity measurement of the undisturbed
flow, prior to interaction with the cylinder. A temperature signal from a thermocouple
placed alongside the probe array is used to correct the probe voltages for temperature
changes (Cerutti 1999).

To provide some variation in Reynolds number, data sets are acquired for several
average free-stream velocities: 10, 15, 20 and 25 m s−1. About 10.5 million points per
channel are acquired, except for the 20 m s−1 data set, for which we accumulate 51.4
million points per channel. The acquisition frequency is 50 kHz for all data sets, with
a low-pass filter at 20 kHz. Table 1 contains the parameters of each experimental
data set.

The longitudinal integral scale, `, is calculated using Taylor’s hypothesis and by
integrating the u1 autocorrelation function from the origin to the first zero crossing
(FZC). Since the viscous range is not fully resolved in our measurements, an estimate
for the energy dissipation rate ε is obtained from the third-order structure function.
However, at present Reynolds numbers, the asymptotic scaling of the 4

5
th law is not

achieved owing to large-scale effects (forcing or spatial non-homogeneity). Following
the procedure proposed by Lindborg (1999), such effects are taken into account by
using his equation (6); we find, however, that the standard value Cε2

= 1.92 provides a
better fit to our results. Values of ε obtained in this fashion (typically 15–20% higher
than without the Lindborg (1999) correction) are listed in Table 1. The Taylor-scale
Reynolds number Rλ = u′1 λ/ν is calculated using λ2 = 15 ν u′12/ε, and the Kolmogorov

scale η is evaluated according to η =
(
ν3/ε

)1/4
.
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Figure 1. Longitudinal energy spectra in the cylinder wake at Rλ ∼ 400 (20V data set). (a) Solid
line: premultiplied spectrum. Vertical dotted line: filter wavenumber π/∆. (b) Filtered and unfiltered
spectra. Upper solid line: spectrum of unfiltered data. Lower solid line: spectrum of array filtered
data. Long-dashed line: fit to the unfiltered spectrum. Vertical dotted line: filter wavenumber k∆.
Circles: longitudinal spectrum obtained from the radial spectrum of unfiltered velocity, multiplied
by the transfer function of a radially symmetric top-hat filter in Fourier space.

Longitudinal energy spectra of unfiltered and filtered velocity signals are computed
by dividing total records into about 640 segments (3136 segments for the 20V data)
of 16 384 points each. The segments are windowed using a Bartlett window. Figure
1(a) shows the resulting spectrum for the 20V data set, premultiplied by 55

18
ε−2/3k5/3.

Also shown as a dotted line is the filter wavenumber π/∆ which falls towards the end
of the inertial range, in the ‘bottleneck’ part of the spectrum, close to the beginning
of the transition to the viscous range.

In Cerutti & Meneveau (2000), a detailed comparison of the effects of filtering in
the x1- and x2-directions is presented. For completeness, in figure 1(b) we present
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Figure 2. Typical segment of SGS stress (τ11, top curve, left-hand scale) and strain-rate signals
(S̃11 bottom curve, right-hand scale), evaluated from the experimental measurements in the cylinder
wake (data set 25V) at Rλ ∼ 450, using the four-probe array.

the longitudinal spectra of unfiltered and filtered streamwise velocity, plotted in non-
dimensional units, using scaling with the filter size. The dotted line at k1∆ = π shows
the filter wavenumber k∆ ≡ π/∆, with ∆ = 4.58 mm. As expected, the array filter
eliminates much of the kinetic energy at small scales. To quantify how closely the
two-dimensional array filter approximates a true three-dimensional top-hat filter, the
longitudinal spectrum of the streamwise velocity filtered in three-dimensions using
a radially symmetric box filter is shown in figure 1(b) as circles. These data are
obtained by assuming local isotropy and evaluating, from the longitudinal spectrum
of unfiltered velocity E11(k1), the corresponding radial three-dimensional spectrum
E(k) using the classical relationship between one-dimensional and three-dimensional
spectra (Batchelor 1953; Monin & Yaglom 1971). This radial spectrum is based on
a smooth fit whose one-dimensional transform agrees with the data, as shown in
figure 1 (long-dashed line). The radial spectrum is then multiplied by the transfer
function of a radial top-hat (box) filter and transformed back into a longitudinal
spectrum (for details see Cerutti & Meneveau 2000). As can be seen by comparing
the circles in figure 1(b) with the spectrum of array-filtered velocity (the lower solid
curve), the latter provides a good approximation for the former, except for a slight
over-prediction near the grid scale. Since the two-dimensional array filter eliminates
less energy than the full three-dimensional filter, an over-prediction is to be expected.
This comparison indicates that the array filter provides a good approximation of
the three-dimensional radial filter as far as longitudinal spectra in the x1-direction is
concerned.

3. SGS dissipation spectrum and spectral eddy viscosity
Our goal is to measure the radial SGS dissipation spectrum H(k), defined in

equation (1.5) in terms of a shell sum in three-dimensional Fourier space. From the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

16
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001671


316 S. Cerutti, C. Meneveau and O. M. Knio

0.015

0.012

0.009

0.006

0.003

0

–0.003
100

k1(m
–1)

H
τS

(k
1)

 (
m

3 
s–3

)

101 102 103 104

Figure 3. Longitudinal co-spectra HτS (k1) of τ11 and S̃11 for the various data sets. From lower to
upper line: 10V, 15V, 20V, and 25V. Significant scatter remains in the data, even after averaging over
10.5 million points for the 10V, 15V, and 25V, and over 51.4 million samples for the 20V data set.
Superimposed on the co-spectra are the fits used to compute the spectral eddy-viscosity. Vertical
dotted line: k∆ = π/∆ ≈ 686 m−1.

experiments outlined in the preceding section, we have signals of filtered velocity ũ1

(and therefore of filtered strain rate S̃11 by taking the streamwise (time) derivative),
and of SGS stress τ11. Figure 2 displays a typical segment of both signals. As found
previously from one-dimensional signals (Meneveau 1994) and three-dimensional
DNS (Cerutti & Meneveau 1998), these variables display strong intermittency, but
low correlation in detail. Note, however, that the full tensor element τ11 is plotted
and not τd11 since we do not measure the trace. Hence, it is non-negative everywhere.
Figure 3 shows the longitudinal co-spectrum HτS (k1) of τ11 and S̃11 for the various
data sets (10V–25V) in dimensional form. HτS (k1) is defined as

HτS (k1) = −2〈τ̂11(k1)
ˆ̃S
∗
(k1)〉 =

1

π

∫ ∞
−∞
BτS (r) e−ik1r dr, (3.1)

where τ̂11(k1) and ˆ̃S
∗
(k1) are the longitudinal Fourier transforms of the SGS stress

and strain-rate signals, respectively, and BτS (r) is the (negative) stress strain-rate
correlation function

BτS (r) ≡ −〈τ11(x) S̃11(x+ re1)〉. (3.2)

Above, e1 is a unit vector in the x1-direction. With the normalization used, the
following applies: ∫ ∞

0

HτS (k1) dk1 = −〈τ11S̃11〉.
In practice, HτS (k1) is computed from the Fourier transforms of τ11(x1) and S̃11(x1)

using standard FFT on 642 segments (3136 in the 20V case) containing 16 384 points
each, and using a Bartlett windowing function. As can be seen in figure 3, HτS (k)
peaks at about a tenth of the filter wavenumber. This is about the same ratio of
scales as occurs between the peak of the molecular dissipation spectrum (2νk2E(k))
and the Kolmogorov wavenumber. Also, note that the peak occurs at nearly the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

16
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001671


Turbulent spectral and hyper eddy viscosity 317

same wavenumber for all Reynolds numbers. This trend is to be expected since ∆/`
remains approximately constant among the data set, and only ∆/η changes.

The integral
∫ ∞

0
HτS (k1) dk1, evaluated using the trapezoidal rule on the measured

co-spectrum, is equal to 0.3658, 0.9612, 2.061, and 3.522 m2 s−3 for the 10V, 15V, 20V,
and 25V data sets, respectively. We also evaluate −〈τ11S̃11〉 directly from the data
in physical space, obtaining 0.3706, 0.9594, 2.065, and 3.534 m2 s−3, respectively. The
small discrepancies with the integral of the co-spectra (typically less than half a per
cent) are due to windowing effects. Assuming SGS isotropy (see the next section for a
discussion of the validity of this assumption in this flow), 〈τij S̃ij〉 = 15

2
〈τ11S̃11〉 (O’Neil

& Meneveau 1997). Hence, the total SGS dissipations implied by the longitudinal
co-spectra are 2.74, 7.21, 15.5, and 26.4 m2 s−3, respectively. Comparing with the
molecular dissipation ε listed in table 1, the present results for the SGS dissipation
are smaller than ε, by about 35%. The difference may be caused by the fact that
molecular viscosity also contributes weakly to energy dissipation, and that conditions
of full equilibrium do not apply to the present shear flow.

3.1. Isotropy relations for SGS dissipation co-spectrum

Since only longitudinal spectra are available from the present data, we must rely
on the assumption of local isotropy in order to relate longitudinal spectra to radial
spectra. This assumption is not strictly valid for our data. In a shear flow, small-scale
isotropy may be expected only asymptotically at very high Reynolds numbers, when
∆� ` (although on the wake centreline the effects of mean shear may be minimized).
Also, the two-dimensional filtering introduces some anisotropy in the filtered and
SGS field, even if the unfiltered fields themselves are isotropic (Kaltenbach 1997). The
comparisons of array-filtered and three-dimensional filtered spectra in the previous
section suggest that isotropy relations may still hold with sufficient accuracy in the
current data.

For energy spectra and third-order velocity correlation functions, the relevant
expressions can be found in the literature (e.g. Batchelor 1953). Here, we require
expressions for the co-spectrum of SGS stress with resolved strain-rate tensor. While
they are of similar form to the two-point third-order velocity correlation function, a
summary of the relevant transformations is presented below for completeness.

The radial SGS dissipation spectrum is related to the stress–strain-rate correlation
function according to

H(k, t)

4πk2
= −〈̂τij(k)̂̃S∗ij(k)〉 = − 1

8π3

∫
〈τij(x)S̃ij(x+ r)〉 e−ik·r d3r

= − 1

2π2k

∫ ∞
0

〈τij(x)S̃ij(x+ r)〉r sin(kr) dr, (3.3)

where the last equality uses the assumption that 〈τij(x)S̃ij(x + r)〉 depends only on
r = |r|. Under the assumption of local isotropy, this function can be related to the
correlation function of the longitudinal stress with the filtered velocity,

Bτu(r) ≡ 〈τ11(x)ũ1(x+ re1)〉 (3.4)

according to

〈τij(x)S̃ij(x+ r)〉 =
7

2

dBτu
dr

+ 4
Bτu

r
+
r

2

d2Bτu

dr2
. (3.5)

This expression is obtained by writing the isotropic form of the third-rank tensor,
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Figure 4 (a, b). For caption see facing page.

expressed as 〈τij(x)ũk(x+ r)〉, duly simplified using the divergence-free property of ũk
and the symmetry in i− j, taking the gradient with respect to r, and performing the
required contraction.

Since HτS (k1) = −2ik1B̂τu, we have

HτS (k1) = −2k1

π

∫ ∞
0

Bτu(r) sin(k1r) dr. (3.6)

Finally, we substitute equation (3.5) into equation (3.3), and integrate by parts
using the fact that Bτu(r) is an odd function with an r3 behaviour near the origin
(Meneveau 1994). Also, it is assumed that Bτu(r) decays to zero fast enough as r →∞.
After using equation (3.6), we arrive at

H(k) = 4HτS (k)− 5
2
k

dHτS

dk
+ 1

2
k2 d2HτS

dk2
(3.7)

which allows us to transform the measurable longitudinal stress–strain-rate co-
spectrum HτS (k1) into the radial SGS dissipation spectrum H(k).

Notice that since 1
3
δij〈τ̂kk(k) ˆ̃S

∗
ij(k)〉 = 0 (due to incompressibility), the final radial

result does not depend on whether the trace is subtracted from τij or not. Isotropy
conditions relating longitudinal co-spectra to radial ones can be applied to either
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Figure 4. Longitudinal co-spectrum HτS (k1) for the (a) 20V and (b) 25V data sets (shown
as scattered dots) and the fit of equation (3.8) (solid line). Both are divided by the factor
α1 exp[−1.9(log10(k1∆ + 0.47)2] so as to highlight details of the important region near the filter
wavenumber k∆, indicated by the vertical dotted line. (c) Sensitivity analysis with respect to fitting
parameters. Dots: original data for 25V. Long and short dashed lines: 32 different functions (equa-
tion (3.8)) using 32 sets of parameters. In each set, each of the 9 parameters involved in the fit is
chosen randomly within 10% of its baseline value. The long dashes are characterized by a weighted
quadratic error below 2 × 10−6, short dashes have a larger error. (d) The same 32 fits of part (c)
divided by the exponential factor used in part (a).

〈τ̂ij ˆ̃S
∗
ij〉(k) or 〈τ̂dij ˆ̃S

∗
ij〉(k), leading to the same result for the final contraction. However,

the longitudinal spectrum 〈τ̂11
ˆ̃S11〉(k1) that includes the trace need not be the same as

〈τ̂d11
ˆ̃S11〉(k1), where the trace has been subtracted from the SGS stress.

3.2. Radial SGS dissipation co-spectrum

In order to apply equation (3.7), the function HτS (k1) must be differentiated twice. For
this purpose, a smooth function is fitted through the measurements. The functional
form chosen is in the form

Hfit
τS (k1)/ε∆ = α1 exp[−1.9(log10(k1∆) + 0.47)2]

×[0.5− 0.33 arctan [8.5(log10(k1∆)− 0.6)]

+0.2 exp[−6(log10(k1∆)− 0.26)2]], (3.8)
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where the first exponential takes care of the principal functional variation, the
arctangent mimics the transition to zero as the grid size is traversed (see figure
4a, b), and the final exponential takes into account the little hump right before the
grid wavenumber. The parameters for the four data sets at different velocities are
chosen to be equal, except the α terms which are quite close: for 10V, α1 = 0.046;
for 15V, α1 = 0.049; for 20V, α1 = 0.050; and for 25V, α1 = 0.053. Figures 4(a)
and 4(b) show the data and the fit for the 20V and 25V data sets, divided by
α1 exp[−1.9(log10(k1∆) + 0.47)2] so as to highlight the most relevant region near
the filter scale. Good agreement is observed, except for some oscillations at high
wavenumbers. This discrepancy is irrelevant to our discussion, since the oscillations
occur at wavenumbers significantly above the filter wavenumber k∆. The smooth solid
lines in figure 3 show the four fits superimposed on the raw co-spectra.

Since the numerical parameters appearing in equation (3.8) are chosen by visual
inspection, a detailed description of the sensitivity of the fit to the choice of parameters
is performed. Results are shown in figures 4(c) and 4(d). They show a set of 32
curves (dashed lines) generated with equation (3.8), with the 9 numerical parameters
perturbed randomly around their baseline values. Specifically, 32 different sets of 9
parameters are generated. In each set, each of the 9 parameters is chosen randomly
with uniform distribution within a range of ±10% of the coefficient’s baseline value
that appears in equation (3.8). Each parameter is chosen independently from the
others. As can be seen in figure 4(c), the baseline case provides a good fit but,
typically, a 10% change in the parameters produces somewhat poorer fits. In order
to quantify the quality of the fits, the weighted least-squares error

E2 =
∑
n

[HτS (kn)− F(kn)]
2

kn

/∑
n

1

kn

is evaluated, where HτS (kn) are all the data points, and F(kn) the corresponding fit.
The term 1/kn corresponds to a logarithmic spacing of wavenumbers. Out of the
32 random fits, the baseline case has the smallest E2 (E2 = 1.89 × 10−6). We divide,
arbitrarily, the fits into two categories: (i) better, defined as those with E2 < 2× 10−6

and shown as long-dashed lines, and (ii) worse, defined as those with E2 > 2 × 10−6

and shown as short dashed lines (the worst has E2 = 3.05 × 10−6). When plotted in
premultiplied fashion in figure 4(d), it can be seen that the better fits remain very close
to the baseline case for k1∆ > 0.1, but may differ significantly from the baseline case
at lower k1. We conclude that the proposed baseline fit is quite robust to parameters
down to about k1∆ ∼ 0.1, but becomes questionable at lower wavenumbers. At any
rate, as is visible in figures 4(a) and 4(b), the scatter in the data is very strong there.
In addition to the sensitivity to the fit, there is experimental error. We recall that
our error estimate for r.m.s. velocity is about 5% (stemming mostly from calibration
uncertainty, see Cerutti & Meneveau 2000). Since the dissipation spectrum is a third-
order moment of velocity, we estimate the error level at about ±3× 5 = ±15%. It is
not shown in figure 4 since it is smaller than the sensitivity to parameters of the fits,
but this error level should also be kept in mind.

Figure 5 shows the radial co-spectrum Hre(k) for the four data sets, obtained from
applying equation (3.7) to the fits through the longitudinal co-spectra. The peak is
now closer to the filter wavenumber (at about two octaves). The level of sensitivity to
parameter fits and experimental error is similar to that of the data shown in figure 4.

In order to compute the spectral eddy-viscosity, we also require the radial en-
ergy spectrum of filtered velocity. As in Cerutti & Meneveau (2000), the following
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Figure 5. Radial co-spectrum Hre(k) obtained from the fitted longitudinal co-spectrum, assuming
isotropy. Solid line: 25V; dotted line: 20V; short-dashed line: 15V; long-dashed line: 10V. Values
are normalized with ε and ∆. The vertical dotted line is the value π. The level of sensitivity to
parameters (not shown) is similar to that in figure 4(c).

expression for the radial spectrum is used:

E<(k) = β1ε
2/3k−5/3

(
k`√

k2`2 + β2

)11/3

e−β3(k∆)4

, (3.9)

with β1 = 1.5, β2 = 10 for all spectra, and β3 = 1.7 × 10−3, 1.5 × 10−3, 1.3 × 10−3,
or 1.0 × 10−3 for the data sets 10V, 15V, 20V, and 25V, respectively. The accuracy
of this fit is verified by transforming equation (3.9) to a longitudinal direction and
comparing (visually) the result with the measured longitudinal spectrum of ũ1 (Cerutti
& Meneveau 2000).

Figure 6(a) shows the resulting spectral eddy-viscosity distributions for the four
data sets. Results are normalized with the inertial-range scaling of viscosity, ε1/3∆4/3.
We have also added error bars which are based on the estimate of ±15% error
for third-order moments. Figure 6(b) displays the sensitivity of the result to 10%
random variations on the parameters used for the fit to the measured co-spectrum
(see figure 4c).

Within the scatter associated with parameter sensitivity and experimental error,
the results suggest a plateau behaviour in the range 0.06 < k∆ < 0.7. Within the
overall plateau behaviour, some weak variations may be discerned (although they
fall below the scatter): there is a small peak at k∆ ≈ 0.4, before decreasing at higher
wavenumbers. However, we recall that at k∆ < 0.1 the fits become more questionable.
As the high-wavenumber limit k∆ ∼ π is approached, the spectral eddy-viscosity
decreases to almost zero. Such a decreasing trend was also predicted for the Gaussian
filter from the EDQNM analysis of Leslie & Quarini (1979) (squares). While they do
not report the analysis for a box filter, they argue that in many important respects the
box filter and the Gaussian filter are similar. Their curve (squares with long dashes
in figure 6a) falls above the present measurements since the figure is scaled to give
the total SGS dissipation equal to ε, whereas the measured total SGS dissipation is
lower. The squares and dot-dashed line represent the EDQNM prediction of Leslie
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Figure 6. Spectral eddy-viscosity distributions normalized with ε1/3∆4/3, obtained from dividing the
measured radial co-spectra by 2k2E<(k). (a) Solid line: 25V; dotted line: 20V; short-dashed line:
15V; long-dashed line: 10V. The vertical dotted line is the value π. Error bars (shown only for the
25V case) reflect the expected ±15% error level associated with calibration uncertainty (it applies
also to the other 3 data sets). Squares: Predictions from EDQNM theory (as read off figure 3 of
Leslie & Quarini 1979) for the Gaussian filter. The upper curve (squares and long dashes) is the
original prediction. In the lower one (squares and dot-dashed line) the EDQNM result is rescaled
so that the integral of 2νk2E< equals our measured SGS dissipation instead of the molecular
dissipation, ε. (b) Sensitivity to varying randomly the parameters used in equation (3.8). Circles
show the baseline case (for the 25V data). The 32 long and short dashed lines correspond to the
same lines of figures 4(c) and 4(d).

& Quarini (1979) but rescaled so as to give the measured SGS dissipation. Taken
together with the sensitivity to fitting parameters and experimental error, we conclude
that the experimental results agree well with the EDQNM calculation.

The low-wavenumber limit of the approximate plateau behaviour corresponds to
k` ∼ 1

2
π, i.e. the non-zero eddy viscosity extends to lengthscales of the order of the

integral scale ` (slighly larger, in fact). Interestingly, at even lower wavenumbers, there
is a region where Hre(k) (and hence νre(k, k∆)) is negative. This trend corresponds
to backscatter of energy from the SGS scales towards the very largest scales of
the flow from distant interactions, as also observed in low-Reynolds-number DNS
(Domaradski et al. 1987). However, the negative region of Hre(k) must be interpreted
with caution since at low k the assumption of isotropy used to infer Hre(k) from HτS (k1)
does not hold in this shear flow. Still, some support to the notion of backscatter via
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Figure 7. Longitudinal co-spectrum HτS (k1) of τ11 and S̃11 measured from the (a) 20V and (b) 25V
data sets, using a mixed cutoff filter (spectral cutoff filter in the streamwise direction and array box
filter in the cross-stream direction). A cusp near the filter wavenumber k1 = k∆ is clearly visible.
The solid lines are the proposed fits (equation (3.10)).

distant interactions at least along the streamwise direction in Fourier space is provided
by the negative values observed for HτS (k1) at low k1, which is measured directly and
does not rely on the assumption of local isotropy.

As outlined in § 1, the first prediction of spectral eddy viscosity was made by
Kraichnan (1976) for the spectral cutoff filter. His result showed an upward trend
(cusp) towards the grid scale, as opposed to the downward trend observed here
for the box filter. The limited number of probes in our array precludes us from
approximating a spectral cutoff filter in the cross-stream (x2) direction. However, in
time (or streamwise direction, x1) there is no difficulty in approximating a spectral
cutoff filter from the current data. While of only qualitative value, we wish to explore
whether a mixed filter (spectral in x1 and box filter in x2) displays a cusp-like trend
in eddy viscosity when approaching the filter scale. Figure 7 shows the longitudinal
co-spectrum for this type of filter for the 20V and 25V data sets. Also shown is a
smooth fit of the form

Hfit
τS (k1)/ε∆ = α1 exp

[−1.9(log10(k1∆) + 0.45)2
]× (1− 0.1

(log10(k1∆)− 0.53)

)
(3.10)

with α1 = 0.041 for the 20V set, and α1 = 0.045 for the 25V data set.
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Figure 8. Longitudinal energy spectrum measured from the 25V data set using a mixed cutoff filter
(spectral cutoff filter in the streamwise direction and array box filter in the cross-stream direction).
The long-dashed line is the proposed fit (equation (3.11)).

A cusp near the grid-filter scale k1∆ ∼ π is clearly apparent. The energy spectrum
E<(k1) for the 25V data, processed with this mixed filter, is shown in figure 8, also
including a smooth fit which in radial form is given by

E<(k) = β1ε
2/3k−5/3

(
k`√

k2`2 + β2

)11/3

e−β3(k∆)4

, (3.11)

with β1 = 1.5, β2 = 10 and β3 = 5.0 × 10−4. The fit is constructed, as before,
by transforming equation (3.11) to longitudinal axes and comparing it with the
measured spectrum of filtered velocity. The spectral eddy viscosity is evaluated by
transforming equation (3.10) according to equation (3.7), and dividing the result by
2k2E<(k). Results are shown in figure 9. As is evident, and consistent with the upward
cusp behaviour of the measured co-spectrum, the spectral eddy viscosity has a sharp
increase immediately before the grid scale. As a comparison, the fit to the EDQNM
prediction of equation (1.7) is shown as a dot-dashed line, where the recommended
value a1 = 0.441 is used, and our measured value β1 = 1.5 is used for CK . As in
the case of the Gaussian filter, we also show this expression after rescaling so that it
integrates to the measured SGS dissipation (long-dashed curve). As can be seen, both
theoretical and experimental results display a cusp behaviour, although the latter
is narrower. The sensitivity to parameters (not shown) is similar to the case of the
Gaussian filter (figure 6b).

As opposed to the predictions of the two-point closures, the measured νre(k, k∆)
decreases from its peak value in the inertial range before rising again in the cusp.
Considering that none of the analyses of DNS (Domaradski et al. 1987; Langford
& Moser 1999) and LES results (Métais & Lesieur 1992) show such an intermediate
dip in spectral eddy viscosity, it is quite possible that it is caused by the mixed filter
(a box filter in the cross-stream direction) employed in the experiments. On the other
hand, the plateau from EDQNM (0.064, or 0.05 after rescaling) is quite consistent
with the experimental results which range between 0.05 and 0.1.
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Figure 9. Spectral eddy-viscosity distribution measured from the 25V (solid line) and 20V (short
dashed line) data sets using a mixed cutoff filter (spectral cutoff filter in the streamwise direction
and array box filter in the cross-stream direction). Error bars (shown only for the 25V case)
reflect the expected ±15% error level associated with calibration uncertainty (the same level also
applies to the 20V data set). The results are normalized with ε1/3∆4/3. The dash-dotted line is
the EDQNM prediction, the long-dashed line the same prediction multiplied by 0.78 (so that the
integral

∫ π/∆
0

2νk2E< dk equals the measured SGS dissipation). The vertical dotted line is the cutoff
filter wavenumber. The level of sensitivity to parameters (not shown) is similar to that in figure 4(d).

Finally, we point out that the measured distributions of spectral eddy viscosity
correspond to the ‘net’ viscosity which, as summarized in § 1, include both forward
dissipation and a negative backscatter term, U(k), according to the predictions of two-
point closures (Kraichnan 1976; Leslie & Quarini 1979). While such a decomposition
arises naturally in the closures, and is easy to implement in spectral simulations
of homogeneous turbulence (Chasnov 1991), it is not clear how to perform such a
decomposition on the experimental data. Decompositions into a deterministic and
stochastic part – along the lines proposed by Langford & Moser (1999) or Farge,
Schneider & Kevlahan (1999) – provide a promising framework, but they are not
equivalent to the decomposition that arises from the closures. For instance, it is
unlikely that the deterministic part would correspond to the eddy-viscosity term and
that the stochastic part would account for only backscatter. Also, the other definition
of backscatter commonly used in physical space (when −τij S̃ij < 0 locally, see e.g.
Piomelli et al. 1991; Liu et al. 1994) appears to bear little relation to the spectral
backscatter term U(k) that arises in the closures.

We now turn to hyper viscosity and its relationship to SGS dissipation of enstrophy
and spectral eddy viscosity.

4. Hyper viscosity and SGS dissipation of resolved enstrophy
As outlined in § 1, in order to reproduce a wavenumber-dependent eddy viscosity

in physical space, higher-order Laplacians, or hyper viscosity may be used. In general,
hyper-viscosity terms, of the form (−1)n+1νn(∇2)nũ in the momentum equation, can
be of arbitrary order n. However, motivated by analogy to SGS energy dissipation
for the Smagorinsky model (n = 1), we show in § 4.1 that n = 2 arises naturally
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from consideration of SGS dissipation of resolved enstrophy. Hence, we focus on the
case n = 2, but without necessarily ruling out other values. Assuming local isotropy,
the coefficient of the hyper-viscosity term is related to the derivative skewness in
§ 4.2. Measurements of derivative skewness and implications for model parameters
are presented in § 4.3.

4.1. Enstrophy equilibrium condition

The basic methodology to be employed is motivated by Lilly’s (1967) classic analysis
of the Smagorinsky model in isotropic turbulence. There, the evolution of the mean
turbulent kinetic energy is examined, either large-scale fluctuating kinetic energy
K = 1

2
(〈ũ2

i 〉 − 〈ũi〉2), or small-scale (subgrid) energy k = 1
2
(〈ũ2

i 〉 − 〈ũ2
i 〉). Assuming

homogeneous and steady-state statistics, a large Reynolds number, and a filter scale
well within the inertial range, equilibrium is obtained between energy injection (equal
to ε, the mean molecular dissipation under conditions of equilibrium) and SGS
dissipation of resolved kinetic energy,

ε = −〈τij S̃ij〉. (4.1)

Since ε > 0, the tensor τij must be anti-correlated with S̃ij . This ‘empirical’ fact may be
used as a simple-minded justification for eddy viscosity: the simplest modelling that
explicitly guarantees that such a correlation exists is to set τij proportional to −S̃ij .
The proportionality coefficient is twice the eddy viscosity. To evaluate the coefficient
cs, Lilly proposed to use the requirement that ũi follow the Kolmogorov spectrum
down to k∆. This condition allows the evaluation of 〈S̃ij S̃ij〉 in terms of ε, ∆, and cK .
Coupled with the resolved energy equilibrium condition (equation (4.1)), this yields a
relationship between cs and the (empirically known) universal Kolmogorov constant
cK , namely c2

s ≈ π−2( 3
2
cK)−3/2.

We extend this approach to the resolved enstrophy field defined as X = 1
2
ω̃2
i , where

ω̃i is the filtered vorticity field (Mansfield, Knio & Meneveau 1998). We begin with the
transport equation for the filtered vorticity field (the curl of the filtered Navier–Stokes
equation):

∂ω̃i

∂t
+ ũj

∂ω̃i

∂xj
= ω̃j

∂ũi

∂xj
+ ν

∂2ω̃i

∂x2
j

− εijk ∂
2τkl

∂xj∂xl
+ εijk

∂fk

∂xj
. (4.2)

Multiplying by ω̃i and rearranging yields

∂X
∂t

+ ũj
∂X
∂xj

= ω̃iω̃j S̃ij − τij∇2S̃ij + ω̃iεijk
∂fk

∂xj
+

∂

∂xi
Qi − ν

(
∂ω̃i

∂xj

)2

, (4.3)

where

Qi = ω̃jεijk
∂τlk

∂xl
− τilεljk ∂ω̃k

∂xj
+ ν

∂X
∂xi

is the ‘enstrophy flux’. We consider the case of statistically homogeneous and steady
turbulence, in the limit of very large Reynolds number. Upon averaging, and assuming
that the filter size ∆ is well inside the inertial range where viscous and forcing effects
are negligible, we obtain

〈ω̃iω̃j S̃ij〉 = 〈τij∇2S̃ij〉. (4.4)

The left-hand side represents production of resolved vorticity fluctuations, while the
right-hand side represents dissipation of these fluctuations by the action of the SGS
stress tensor τij .
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Since it is known that the resolved velocity field is characterized by three-
dimensional vorticity fluctuations (i.e. non-zero enstrophy), there must typically
be non-zero production of enstrophy, that is, 〈ω̃iω̃j S̃ij〉 > 0. This implies that

〈τij∇2S̃ij〉 > 0. Enstrophy is thus dissipated by the SGS stress through its corre-
lation with the Laplacian of the strain-rate tensor, in much the same way as energy
is dissipated by the correlation of the SGS stress with −S̃ij . The required correlation

can be established by setting the stress proportional to ∇2S̃ij (i.e. n = 2). In order to
also reproduce a non-zero constant eddy-viscosity behaviour at low wavenumbers, a
standard Smagorinsky term should be added to the hyper-viscosity term, according to

τmodij = −2c1∆
2|S̃ |S̃ij + c2∆

4|S̃ |∇2S̃ij . (4.5)

As mentioned before, other authors have considered hyper-viscosity models, mostly
of higher order. For now, we continue to examine the weaker ∇2S̃ij form, since it is
directly motivated by SGS enstrophy dissipation, equation (4.4).

It is simple to show analytically that, in the inertial range, S̃ij and ∇2S̃ij are
strongly correlated. Hence, it turns out that addition of a hyper-viscosity term to
the Smagorinsky model does not improve (Appendix D in Cerutti 1999) the local
realism of the model as measured by correlation coefficients between the real SGS
stress τij and τmodij . As with the simple eddy-viscosity model, hyper viscosity has to
be understood merely in a statistical sense, and only used to generate the correct
mean SGS dissipation of selected variables. Below, we continue with this restricted
interpretation.

4.2. Parameter values and filtered derivative skewness

In order to evaluate c1 and c2, we replace the expression for τmodij , equation (4.5),
into the equilibrium condition between production and SGS dissipation of resolved
kinetic energy (equation (4.1)) and enstrophy (equation (4.4)). The result is

ε = 2c1∆
2〈|S̃ |S̃2

ij〉 − c2∆
4〈|S̃ |S̃ij∇2S̃ij〉, (4.6)

〈ω̃iω̃j S̃ij〉 = −2c1∆
2〈|S̃ |S̃ij∇2S̃ij〉+ c2∆

4〈|S̃ |(∇2S̃ij)
2〉. (4.7)

In order to relate the moments appearing on the right-hand side to second-order
moments (which can be evaluated based on the velocity spectrum) we introduce the
following three coefficients,

α ≡ 〈∂kS̃ij ∂k(S̃ij
√
S̃mnS̃mn)〉

〈S̃ij S̃ij〉1/2〈(∂kS̃mn)2〉 , (4.8)

β ≡ 〈(S̃ij S̃ij)
3/2〉

〈S̃ij S̃ij〉3/2 , (4.9)

γ ≡ 〈(S̃ij S̃ij)
1/2(∇2S̃mn)

2〉
〈S̃ij S̃ij〉1/2〈(∇2S̃mn)2〉 . (4.10)

On dimensional grounds, we may expect these parameters to be of order one, so
they will be set to exactly one at first; their numerical values will be evaluated later
from DNS data (in his analysis, Lilly (1967) set β = 1). Next, second-order moments
of S̃ij and its gradients are expressed in terms of the isotropic radial energy spectrum

E(k) = cKε
2/3 k−5/3 (4.11)

where cK is the Kolmogorov constant. This constant typically ranges between 1.6 and
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2.1, with low values characteristic of experimental data, and DNS yielding higher
values. We will explore the effect of this range of cK values on our results. Using
isotropy, the enstrophy production term can be written as

〈ω̃iω̃j S̃ij〉 = − 35
2
S∆
〈(

∂ũ1

∂x1

)2
〉3/2

, (4.12)

where S∆ is the skewness coefficient of the filtered velocity derivative,

S∆ =

〈(
∂ũ1

∂x1

)3
〉

〈(
∂ũ1

∂x1

)2
〉3/2

. (4.13)

The two balance conditions for energy and enstrophy can be written as

ε = 2
√

2[c1∆
2β〈S̃ij S̃ij〉3/2 + c2∆

4 α
2
〈S̃ij S̃ij〉1/2〈(∇S̃ij)2〉] (4.14)

− 7

3
√

15
S∆〈S̃ij S̃ij〉 = 2c1∆

2α〈(∇S̃ij)2〉+ c2∆
4γ〈(∇2S̃ij)

2〉, (4.15)

respectively. By expressing the second-order moments in terms of the Kolmogorov
spectrum, after some algebra, we obtain the following linear system in the two
unknowns c1 and c2:

c1βIf(
1
3
) + c2

α
2
π2If(

7
3
) =

[
2π2c

3/2
K

√
2If(

1
3
)
]−1

,

c12αIf(
7
3
) + c2γπ

2If(
13
3

) = − 7S∆
3π2
√

15
If(

1
3
).

 (4.16)

The function If(x) is defined by

If(x) =

∫ +∞

0

∣∣∣Ĝf∆ ( π∆K)∣∣∣2 Kx dK
(
K = k

∆

π

)
, (4.17)

and depends on the filter type f. Symbolically, we use f = b, f = g, and f = c to
indicate the box, Gaussian, and spectral cutoff filters, respectively.

The present analysis cannot be completed for the box filter since Ib(
7
3
) and Ib(

13
3

)
diverge (this simply means that the filtered high-order derivatives depend on the
viscous dissipation range because of the box filter’s slow 1/k decay in wavenumber).
A similar difficulty was noted in Leslie & Quarini (1979), but they argue that
consideration of the Gaussian filter should yield qualitatively similar results in the
analysis. For the Gaussian three-dimensional filter, Gg∆(k) = exp (−k2∆2/24), we have

Ig(x) =

√
3Γ ((x+ 1)/2)12x/2

πx+1
. (4.18)

where Γ is the regular Gamma function. We also consider the spectral cutoff filter
defined as Ĝc∆(k) = 1 if |k| < π/∆, and zero otherwise. In that case

Ic(x) =
1

x+ 1
. (4.19)

As a consistency check, by setting c2 = 0 in (4.16) and solving the first equation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

16
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001671


Turbulent spectral and hyper eddy viscosity 329

0.05

0.04

0.03

0.02

0.01

0

–0.01

3∆

–0.6 –0.4–0.7 –0.5 –0.3 –0.2 –0.1 0

c1

c2

Figure 10. Model coefficients c1 and c2 as a function of the skewness coefficient S∆, for Gaussian
filter. The high c1 line corresponds to a value of cK = 1.6, the low line to cK = 2.1. The low c2 line
corresponds to a value of cK = 1.6, the high line to cK = 2.1.

for c1 yields

c1 =
1

β(2If(
1
3
)cK)3/2π2

' 0.027

β
(4.20)

for the cutoff filter and cK = 1.6. This gives the traditional value of cs = 0.16 (Lilly
1967) for β = 1, with c1 = c2

s .
Returning to the system of equations for the Gaussian filter, and setting α = 1,

β = 1 and γ = 1, the solution is

c1 = 0.044 + 0.025S∆,
c2 = −0.0044− 0.0063S∆,

}
(4.21)

for cK = 1.6, or

c1 = 0.029 + 0.025S∆,
c2 = −0.0029− 0.0063S∆,

}
(4.22)

for cK = 2.1. These linear dependences are shown in figure 10.
Several features in this plot are noteworthy; when S∆ ' −0.5, the coupled equilib-

rium conditions imply that c2 ' 0, and c1 is positive. This means that if the filtered
field had the same skewness coefficient as the full velocity field (whose skewness
is known to be near −0.5), the balance conditions for the Gaussian filter imply
that the Smagorinsky model alone would dissipate both energy and enstrophy at
approximately the correct rate. Indeed, with c2 = 0, the enstrophy equation leads to

c1 = − 7S∆If( 1
3
)

6απ2If(
7
3
)
√

15
' −0.038

S∆
α
, (4.23)

and to cs = 0.16 if we choose S∆ = −0.5 (with α = 1). This result might suggest that
the Smagorinsky model alone suffices to produce the correct enstrophy dissipation.
However, this is not the case, since as will be shown based on data, −S∆ is less
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Figure 11. Model coefficients c1 and c2 as a function of the skewness coefficient S∆, for the mixed
cutoff filter (a cutoff filter in the streamwise direction and box filter in the cross-stream direction).
The high c1 line corresponds to a value of cK = 1.6, the low line to cK = 2.1. The low c2 line
corresponds to a value of cK = 1.6, the high line to cK = 2.1.

than 0.5 in the inertial range. In this case, figure 10 shows that, typically, c2 < 0,
corresponding to a negative hyper viscosity.

For the cutoff filter and α = 1, β = 1 and γ = 1, the solution to the system of
equations (4.16) is

c1 = 0.076 + 0.14S∆,
c2 = −0.025− 0.069S∆,

}
(4.24)

for cK = 1.6, or

c1 = 0.050 + 0.14S∆,
c2 = −0.016− 0.069S∆,

}
(4.25)

for cK = 2.1. These linear dependences are shown in figure 11. Now, when S∆ ' −0.5,
the coupled equilibrium conditions imply that c1 is close to zero, while c2 is positive,
namely that the traditional Smagorinsky term is not needed, and that the hyper-
viscosity model alone could correctly dissipate both energy and enstrophy. Again,
however, this is not the case since (as will be shown later) −S∆ is also less than 0.5
in the inertial range for the cutoff filter. There exists a significant range in skewness
values for which both c1 and c2 are typically positive (about −0.5 <S∆ < −0.3).

Next, we examine the spectral eddy viscosity that is implied by the mixed hyper-
viscosity model. Starting from equation (4.5) for the modelled SGS stress, taking its
divergence and neglecting the spatial fluctuations of |S̃ | (replacing |S̃ | with 〈|S̃ |〉), the
SGS term that appears in the Fourier-transformed filtered Navier–Stokes equations
has the form νhyp(k, k∆)k2û, where

νhyp(k, k∆) = ∆2〈|S̃ |〉 [c1 + 1
2
c2(∆k)

2
]
. (4.26)

Hence, c2 < 0 corresponds to a downward trend of νhyp(k, k∆) at large k where the
second term, c2(∆k)

2, begins to dominate. Alternatively, when c2 > 0, an upward
(cusp-like) behaviour is obtained at high k.
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Figure 12. Skewness coefficient of filtered velocity derivatives evaluated from the probe array data
in the cylinder wake as a function of the Reynolds number, using different graded filters. Open
symbols: box filter. Closed symbols: approximated Gaussian filter. Skewness of ∂ũ1/∂x1 (circles), of
∂ũ2/∂x2 (squares), of ∂ũ1/∂x2 (triangles), and of ∂ũ2/∂x1 (stars). The experimental error level (not
shown) is at ±15%.

Recapitulating up to this point, we have shown that from simple coupled equilib-
rium conditions of kinetic energy and enstrophy, basic qualitative trends in spectral
eddy viscosity can be predicted. Specifically, if −S∆ at high-Reynolds-number tur-
bulence with ∆ in the inertial range is below the classical value of 0.5 (but above
0.3), it turns out that these trends are in agreement with the predictions of classical
two-point closures: near the filter wavenumber, the spectral eddy viscosity implied
by the mixed hyper-viscous model has a downward trend for the Gaussian filter, and
an upward cusp for the cutoff filter. In the next section, S∆ is measured from the
data.

4.3. Derivative skewness of filtered turbulence

The skewness coefficients of filtered velocity derivatives, evaluated from the probe-
array measurements in the cylinder wake described in § 2.1, are shown in figure 12.
Results are presented for the four different Reynolds numbers (data sets 10V–25V).
The open symbols are for the approximate two-dimensional box filter already used in
§ 3. Also shown in figure 12 is the skewness of ∂ũ2/∂x2 and of the transverse gradients
∂ũ1/∂x2 and ∂ũ2/∂x1. The derivatives in the x2-direction are evaluated using finite
differences over a distance ∆/2 based on a three-point formula for the box-filtered
velocity, as in Cerutti & Meneveau (2000). It is apparent that the results are consistent
with local isotropy; both longitudinal skewness coefficients are approximately equal,
and the transverse skewnesses are near zero. The skewness of filtered longitudinal
derivatives is near −0.3. Since the skewness is a third-order moment, we associate
again a 15% error level to these experimental results (not shown in the figures).

The preceding result is, however, for the box filter, for which the analysis of § 4.2
does not apply because the integrals Ib(

7
3
) and Ib(

13
3

) diverge. The analysis of the
experimental data is thus repeated for an approximation of the Gaussian filter. In
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Figure 13. Skewness coefficient of filtered longitudinal velocity derivative ∂ũ1/∂x1 as function of
filter scale. Symbols: experimental results obtained from the probe array data in the cylinder wake
at various Rλ. Lines: results from DNS at Rλ ∼ 150. Solid line: Gaussian two-dimensional filter.
Dotted line: Gaussian three-dimensional filter. Dashed line: three-dimensional spectral cutoff filter.

one dimension, the physical space expression for the Gaussian filter is

G∆(x1) =
1

∆

√
6

π
exp (−6(x1/∆)2), (4.27)

whose implementation in the streamwise direction poses no difficulties owing to the
high-frequency sampling of the data. Conversely, in the cross-stream direction, only
an approximation to the Gaussian filter can be applied based on the data from the
probe array. Taking, as before, a filter size ∆ equal to twice the inter-probe distance,
the approximated cross-stream Gaussian-filtered velocity at the probe mid-point x(O)

2

(see § 2.1 for a description of probe coordinates) is given by

ũi(x1, x
(O)
2 ) ' 1

2 exp (−27/8) + 2 exp (−3/8)
[exp (−27/8)ui(x1, x

(A)
2 )

+ exp (−3/8)ui(x1, x
(B)
2 ) + exp (−3/8)ui(x1, x

(C)
2 )

+ exp (−27/8)ui(x1, x
(D)
2 )]

=
ui(x1, x

(A)
2 ) + exp (3)ui(x1, x

(B)
2 ) + exp (3)ui(x1, x

(C)
2 ) + ui(x1, x

(D)
2 )

2 + 2 exp (3)
.

(4.28)

A similar formula applies to a three-point average, which is used to evaluate deriva-
tives in the x2-direction (Cerutti & Meneveau 2000). The solid symbols in figure 12
show the resulting skewness coefficients in the different directions. Comparison with
open symbols of the box filter shows that the results are almost identical.

In figure 13, the experimental results for the skewness are plotted as a function
of ∆/η. Data at different Reynolds numbers have different η, although ∆ is kept
constant since the same probe array is used at the different speeds.
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Figure 14. Correction coefficients α (circles), β (squares), and γ (triangles) as measured from forced
DNS of isotropic turbulence on 2563 modes at Rλ ∼ 150. The filter type is a spectral cutoff filter.

We also analyse DNS of forced isotropic turbulence. The DNS (Cerutti & Meneveau
1998) uses 2563 modes and involves constant energy injection. The Reynolds number
is Rλ ∼ 150. Various types of filters are applied to the DNS velocity field, including
a three-dimensional and a two-dimensional Gaussian filter, and a three-dimensional
spectral cutoff filter. Before reporting results for the longitudinal derivative skewness,
we use the filtered DNS to evaluate the coefficients α, β and γ (defined in equations
(4.8), (4.9) and (4.10)) as function of filter scale. Results plotted in figure 14 for the
spectral filter show that in the inertial range (∆/η ∼ 40) all three coefficients are near
1.2, i.e. of order one. We have checked that taking the values implied by the DNS
results (e.g. α = 1.19, β = 1.19 and γ = 1.11 for the spectral cutoff filter) does not
change the results appreciably. For instance, for cK = 1.6, the solution to the system
of equations is

c1 = 0.073 + 0.14S∆,
c2 = −0.025− 0.071S∆,

}
(4.29)

instead of equation (4.24). (Note that the coefficients increase significantly as the
viscous range is approached.) The growth of β as ∆→ η could explain the observation
in Meneveau & Lund (1997) that the Smagorinsky coefficient as determined a priori
from DNS differs from a theoretical prediction as ∆→ η (see their figures 1 and 2).

Next, S∆ is computed from the filtered DNS as a function of the filter scale. The
results, shown in figure 13, demonstrate that the skewness is a function of filter scale
and filter type. As ∆/η → 1, S∆ tends to the classical value of −0.5 for unfiltered
turbulence. At larger scales, |S∆| is lower than 0.5. We also see that −S∆ for the
Gaussian filter is larger than for the spectral cutoff filter, and that for the three-
dimensional filter, −S∆ is larger than for the two-dimensional filter although the
main trends are similar. Also, for the Gaussian filter, the experimental results are
lower than those of the two-dimensional filtered DNS. These differences illustrate the
sensitivity of S∆ to details of the filter type and filter scale. This sensitivity prevents
us from assigning a unique value to S∆ in the inertial range. Nevertheless, taken
together, the results show that −S∆ for ∆ in the inertial range is smaller than 0.5, and,
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Figure 15. Spectral eddy viscosity of the mixed hyper-viscosity model. Different lines correspond
to different cases: solid lines are for the Gaussian filter; dashed lines are for the cutoff filter (in both
cases, upper line: cK = 1.6, lower line: cK = 2.1).

for the Gaussian filter, the results appear to fall in a broad range of S∆ ∼ −0.4± 0.1,
while for the cutoff filter the result is slightly lower, nearer to S∆ ∼ −0.35.

4.4. Interpretation

Examination of figures 10 and 11 with the measured values ofS∆ leads us to conclude
that c2 < 0 for the Gaussian filter and c2 > 0 for the cutoff filter. Hence, according
to equation (4.26), the Fourier-space behaviour of the mixed hyper-viscosity model is
an upward cusp near the filter scale for the cutoff filter and a decreasing trend for the
graded filters. More quantitatively, we may evaluate equation (4.26) by approximating
〈|S̃ |〉 by 〈2S̃ij S̃ij〉1/2 and evaluating this term as before using a Kolmogorov spectrum.
The result is

νhyp(k, k∆) = ε1/3∆4/3π2/3
√

2cKIf(
1
3
)
[
c1 + 1

2
c2(∆k)

2
]
, (4.30)

where If(x) depends on the filter type and is given by equation (4.17). For the Gaussian
filter, using S∆ = −0.4, we obtain c1 = 0.034 and c2 = −0.002 from equations
(4.21), and therefore νhyp(k, k∆)/(ε1/3∆4/3) = 3.37[0.034− 0.001(k∆)2] for cK = 1.6. For
cK = 2.1 and from equation (4.22), we obtain c1 = 0.019 and c2 = −0.0004, and
hence νhyp(k, k∆)/(ε1/3∆4/3) = 3.86[0.019 − 0.0002(k∆)2]. The two solid lines in figure
15 display these results. The relative downward trend near the filter scale is stronger
in the cK = 1.6 case. In comparing with figure 6, we observe that details of the
two spectral eddy-viscosities differ. By construction, the hyper-viscosity model cannot
reproduce both a local peak in the inertial range plateau and a decrease near the filter
scale observed in the real spectral eddy viscosity of figure 6. However, it is noteworthy
that the overall level of measured spectral eddy viscosities (real and hyper viscous) are
comparable among themselves, as is the fact that both decrease near the filter scale.

The comparison is repeated for the spectral cutoff filter. We use S∆ = −0.35 and
obtain, from equations (4.24), that c1 = 0.027 and c2 = 0, and, therefore, νhyp(k, k∆)/
(ε1/3∆4/3) = 3.32[0.027 + 0(k∆)2] for cK = 1.6. For cK = 2.1 and from equation
(4.25), we obtain c1 = 0.001 and c2 = 0.00815, and, hence, νhyp(k, k∆)/(ε1/3∆4/3) =
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3.8[0.001 + 0.0041(k∆)2]. The dashed lines in figure 15 show these results. While not
apparent from this plot, the total SGS dissipation implied by these different cases (i.e.
the integral of 2νhyp(k, k∆)k2E<(k)) is equal among them (up to a difference consistent
with the different values of cK). An essentially flat eddy viscosity exists at cK = 1.6
(recall that for the latter case, equation (4.24) gave c2 ≈ 0). At higher cK-values there
is an upward cusp that becomes very strong in the cK = 2.1 case. Again, comparison
with figure 7 shows significant differences in the details of the curves. For instance,
the directly measured spectral eddy viscosity decreases before the cusp. Some of these
differences could be due to the different implementations of the cutoff filter. Broadly,
however, both approaches lead to a positive cusp behaviour.

It is not surprising if the details of the hyper-viscous model do not agree with
the direct measurements of spectral eddy viscosity. The latter involves much more
information, i.e. the full stress–strain-rate correlation function at all r, while the mixed
hyper-viscous model considered here only involves two scalar quantities, kinetic energy
and enstrophy (these are related to the value and curvature of the stress–strain-rate
correlation function at r = 0). For the case of the cutoff filter, both the experimental
results and EDQNM calculation yield a steeper cusp behaviour than the k2 tail of
the hyper-viscosity model studied here. Recall that Chollet & Lesieur (1981) (see
also Lesieur & Métais 1996) have proposed to approximate the cusp by iterating
a Laplacian operator three times. This form corresponds to a k4 behaviour of the
spectral eddy viscosity, which is closer to the observed behaviour near the cutoff
wavenumber. This suggests that, at least for the spectral cutoff-filter, improved results
could be obtained by considering SGS dissipation of higher-order gradients of the
velocity (e.g. the palenstrophy), in addition to energy and enstrophy.

5. Conclusions
Multi-probe hot-wire measurements of wake turbulence at moderately high

Reynolds numbers were analysed to determine experimentally the spectral eddy
viscosity of the flow. The spectral eddy viscosity describes the rate at which energy
is transferred from a particular wavenumber in the resolved range towards all scales
below the filter size. The present experiments correspond to a filter scale at the lower
end of the inertial range. Two approaches were employed. The more direct approach
deduced the spectral eddy viscosity from measured longitudinal co-spectra of SGS
stress and filtered strain rate. The other approach was based on an ansatz of hyper
viscosity. While less general than the direct approach, it was shown that the latter
could be motivated from considering the expressions for SGS dissipation of enstrophy
of filtered turbulence. The observed trends were that for the spatially local filters, such
as the box or Gaussian filters, the spectral eddy viscosity decreases as the filter scale
is approached. For the spectrally sharp cutoff filter, there was evidence of an upward
cusp near the filter scale. The main qualitative difference between the predictions of
two-point closures and experiments was for the cutoff filter, in which case the mea-
sured spectral eddy viscosity decreases before rising in the cusp at high wavenumbers.
However, given the fact that the experimental filter was not a spectral cutoff filter
in all directions, the discrepancy does not invalidate the theoretical predictions. We
believe that, combined, the empirical results support the general trends predicted by
the classical two-point closures (Kraichnan 1976; Leslie & Quarini 1979; Chollet
& Lesieur 1981), now at Reynolds numbers significantly higher than achievable in
earlier tests using DNS.

After having established the feasibility of experimental measurements of spectral
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eddy viscosity in turbulence, a number of other questions could now be addressed.
For instance, it would be interesting to measure the spectral eddy-viscosity properties
of various models, such as the similarity and nonlinear mixed models. Other recently
proposed closures such as the velocity estimation model (Domaradski & Saiki 1997),
the fractal model (Scotti & Meneveau 1999) and the vortex model (Misra & Pullin
1997) can also be tested in terms of their ability to reproduce the measured spectral
eddy viscosity. Finally, the technique of approximating a filter using an array of point
sensors can be applied to flows at much higher Reynolds numbers. As shown in
Porté-Agel et al. (2000a, b) and Tong et al. 1999, arrays of sonic anemometers can be
used in atmospheric flows to measure subgrid fluxes and filtered velocity gradients.
Such data could be used to evaluate stress and strain-rate co-spectra and gradient
skewness coefficients to deduce the spectral distribution of eddy viscosity in very
high-Reynolds-number turbulence.

The authors express their gratitude to the three referees, who contributed to this
paper with useful comments. This research is sponsored by the National Science
Foundation, under grant CTS-9803385. Computations were supported in part by an
NSF equipment grant (CTS-9506077).

REFERENCES

Akhavan, R., Ansari, A., Kang, S. & Mangiavacchi, N. 2000 Subgrid-scale interactions in a
numerically simulated planar turbulent jet and implications for modelling. J. Fluid Mech. 408,
83–120.

Bardina, J. 1983 Improved turbulence models based on large eddy simulation of homogeneous,
incompressible, turbulent flows. PhD thesis, Rep. TF-19, Mechanical Engineering, Stanford
University.

Bardina, J., Ferziger, J. & Reynolds, W. 1980 Improved subgrid scale models for large eddy
simulation. AIAA Paper 80-1357.

Bastiaans, R., Rindt, C. & van Steenhoven, A. 1998 Experimental analysis of a confined transi-
tional plume with respect to subgrid-scale modelling. Intl J. Heat Mass Transfer 41, 3989–4007.

Batchelor, G. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.

Borue, V. & Orszag, S. 1995 Numerical study of three-dimensional Kolmogorov flow at high
Reynolds numbers. J. Fluid Mech. 306, 293–324.

Borue, V. & Orszag, S. 1998 Local energy flux and subgrid-scale statistics in three-dimensional
turbulence. J. Fluid Mech. 366, 1–31.

Briscolini, M. & Santangelo, P. 1994 The non-Gaussian statistics of the velocity field in low-
resolution large-eddy simulations of homogeneous turbulence. J. Fluid Mech. 270, 199–217.

Cerutti, S. 1999 Statistics of filtered turbulence: experiments and simulations. PhD thesis, Johns
Hopkins University.

Cerutti, S. & Meneveau, C. 1998 Intermittency and relative scaling of the subgrid dissipation rate
in turbulence. Phys. Fluids 10, 928–937.

Cerutti, S. & Meneveau, C. 2000 Statistics of filtered turbulence in grid and wake turbulence.
Phys. Fluids, 12, 1143–1165.

Chasnov, J. 1991 Simulation of the Kolmogorov inertial subrange using an improved subgrid model.
Phys. Fluids A 3, 188–200.

Chollet, J. 1985 Two point closure used for a sub-grid scale model in LES. In Turbulent Shear
Flows 4 (ed. J. L. Bradbury, F. Durst, B. Launder, F. Schmidt & J. Whitelaw), pp. 62–72.
Springer.

Chollet, J. & Lesieur, M. 1981 Parametrization of small scales of three-dimensional isotropic
turbulence utilizing spectral closures. J. Atmos. Sci. 38, 2747–2757.

Clark, R. A., Ferziger, J. H. & Reynolds, W. C. 1979 Evaluation of subgrid models using an
accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

16
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001671


Turbulent spectral and hyper eddy viscosity 337

Dantinee, G., Jeanmart, H., Winckelmans, G. & Legat, V. 1998 Hyperviscosity and vorticity-based
models for subgrid scale modeling. Appl. Sci. Res. 59, 409–420.

Domaradski, J., Metcalfe, R., Rogallo, R. & Riley, J. 1987 Analysis of subgrid-scale eddy
viscosity with use of results from direct numerical simulation. Phys. Rev. Lett. 58, 547–550.

Domaradski, J. & Saiki, E. 1997 A subgrid-scale model based on the estimation of unresolved
scales of turbulence. Phys. Fluids 9, 1–17.

Farge, M., Schneider, K. & Kevlahan, N. 1999 Nongaussianity and coherent vortex simulations
for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11,
2187–2201.

Germano, M., Piomelli, U., Moin, P. & Cabat, W. H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A 3, 1760–1765.

Herring, J. 1979 Sub-grid scale modeling – introduction and overview. Turbulent Shear Flows I,
pp. 347–352. Springer.

Herring, J. 1990 Comparison of closure to spectral-based large eddy simulations. Phys. Fluids A
2, 979–983.

Kaltenbach, H. 1997 Cell aspect ratio dependence of anisotropy measures for resolved and sub-grid
scale stresses. J. Comput. Phys. 136, 399–410.

Kraichnan, R. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536.

Langford, J. & Moser, R. 1999 Optimal LES formulations for isotropic turbulence. J. Fluid Mech.
398, 321.

Leith, C. 1990 Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys.
Fluids A 2, 297–299.
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