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Construction of spline curves on smooth manifolds by action
of Lie groups

A. P. Pobegailo

Abstract

Polynomials for blending parametric curves in Lie groups are defined. Properties of these
polynomials are proved. Blending parametric curves in Lie groups with these polynomials is
considered. Then application of the proposed technique to construction of spline curves on
smooth manifolds is presented. As an example, construction of spherical spline curves using the
proposed approach is depicted.

1. Introduction

This article deals with the problem of blending parametric curves in Lie groups and application
of the blending technique to construction of spline curves on smooth manifolds. The different
known approaches to construction of spline curves on smooth manifolds and in Lie groups are
mainly based on two techniques. The first technique is that spline curves are constructed in
a linear space provided that the curves belong to the smooth manifold which is embedded
in the linear space. In this case some optimization methods are usually used for fitting the
designed curve on the smooth manifold [1, 3–5, 8, 10]. The second approach uses geodesics
for construction of spline curves on smooth manifolds and Lie groups [2, 7, 9, 12]. These
two techniques usually use sophisticated numerical methods to compute the necessary spline
curves on manifolds or need extensive computations concerned with the exponential mapping.
Therefore the approaches can be used only for off-line applications concerned with construction
of spline curves on smooth manifolds. The approach to construction of spline curves on smooth
manifolds by action of Lie groups was introduced in [11]. The same approach is also presented
in [6] but using the exponential mapping. The paper [13] presents a geometric approach to
interpolating spline curves on Riemannian manifolds which combines the first approach and
the method considered in [6].

The article presents an approach to blending of parametric curves in Lie groups and
construction of spline curves on smooth manifolds by means of blending one-parameter
subgroups acting on the smooth manifold. For blending parametric curves in Lie groups two
classes of polynomials which satisfy specific boundary conditions are introduced. The boundary
conditions of these polynomials ensure the necessary smoothness of a spline curve on a
smooth manifold. The presented approach can be considered as an improvement of the method
proposed in the article [11]. There are two reasons for this improvement. Firstly, the proposed
polynomials have extremal energy properties which ensure optimal transition between blended
parametric curves. Secondly, smoothing polynomials have lower degrees which implies faster
on-line computations of blending parametric curves in Lie groups, especially when parameter
values of the parametric curve are adjusted. The presented approach is aimed at geometric
applications concerned with on-line interpolation on Lie groups and smooth manifolds because
it is computationally simple and the spline curves are constructed locally.
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2. The problem of blending parametric curves in Lie groups

Formally the problem of blending parametric curves in Lie groups can be stated as follows.
Let g1(u) and g2(u), u ∈ [0, 1], be two arbitrary parametric curves which belong to a Lie group
G and satisfy the initial conditions

g1(0) = g2(0) = e (2.1)

where e denotes a unity of the Lie group G. The problem is to construct a parametric curve
g(u) ∈ G, u ∈ [0, 1], that satisfies the boundary conditions

g(0) = g2(0) = e, g(1) = g1(1) (2.2)

g(m)(0) = g
(m)
2 (0), g(m)(1) = g

(m)
1 (1), for all m ∈ {1, 2, . . . , n} (2.3)

where n ∈ N . A parametric curve g(u) which satisfies the conditions is called a parametric
curve blending the parametric curves g1(u) and g2(u). The parametric curve g(u) can also
be considered as a smooth transition from the parametric curve g2(u) to the parametric
curve g1(u). It should be noted that in geometric applications g1(u) and g2(u) are usually
one-parameter subgroups of the matrix Lie group G. This observation clarifies the problem
statement. A description of Lie groups and smooth manifolds can be found in [15].

Taking into consideration that G is a Lie group, suppose that a solution of the problem is a
parametric curve of the form

g(u) = g1(f1,n(u))g2(f2,n(u)), u ∈ [0, 1], (2.4)

where f1,n(u) and f2,n(u) are some real functions which provide fulfillment of the conditions
defined by equalities (2.2), (2.3) and have some extremal properties. Therefore the problem
now is to determine the desired real functions f1,n(u) and f2,n(u). In the next sections, two
classes of polynomial functions w1,n(u) and w2,n(u), which solve the problem, are introduced
and extremal properties of the polynomials are proved. Then an application of the presented
technique to construction of spline curves on smooth manifolds is considered.

3. Smoothly increasing polynomials

We introduce the first class of polynomials which will be used for blending parametric curves
in Lie groups. To construct the polynomials consider the following sequences of knot points
on the real line R: (

0, 0, . . . , 0︸ ︷︷ ︸
n+1

,
n + 1

2n + 1
,
n + 2

2n + 1
, . . . ,

2n + 1

2n + 1

)
, n ∈ N.

Using Bernstein polynomials

bn,m(u) =

(
n

m

)
(1− u)n−mum, u ∈ [0, 1],

define the following Bézier curves on the sequences of knot points:

w1,n(u) =

n+1∑
i=1

b2n+1,n+i(u)
n + i

2n + 1
, n ∈ N. (3.1)

It follows from this definition that the polynomials w1,n(u) satisfy the boundary conditions

w1,n(0) = 0, w1,n(1) = 1. (3.2)
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Derivatives of the polynomials w1,n(u) at the boundaries can be computed using expressions
for derivatives of Bézier curves at boundary points [14] as follows:

w
(m)
1,n (0) = 0, for all m ∈ {1, 2, . . . , n} (3.3)

w
(m)
1,n (1) =

(2n + 1)!

(2n + 1−m)!

m∑
i=0

(−1)i
(
m

i

)
2n + 1− i

2n + 1
, for all m ∈ {1, 2, . . . , n}. (3.4)

Determine values of the derivatives which are defined by equality (3.4). A derivative of the
first order can be computed as follows:

w′1,n(1) =
(2n + 1)!

(2n)!

(
2n + 1

2n + 1
− 2n

2n + 1

)
=

(2n)!

(2n)!
= 1.

Using identities with binomial coefficients, which are considered in the appendix, higher-order
derivatives of the polynomials w1,n(u) can be computed as follows:

w
(m)
1,n (1) =

(2n + 1)!

(2n + 1−m)!

m∑
i=0

(−1)i
(
m

i

)
2n + 1− i

2n + 1

=
(2n + 1)!

(2n + 1−m)!

( m∑
i=0

(−1)i
(
m

i

)
− 1

2n + 1

m∑
i=0

(−1)i
(
m

i

)
i

)
= 0

for all m ∈ {2, 3, . . . , n}. Therefore the derivatives of the polynomials w1,n(u) defined by
equality (3.4) have the following values:

w′1,n(1) = 1, w
(m)
1,n (1) = 0, for all m ∈ {2, 3, . . . , n}. (3.5)

The following polynomials of lower degrees

w1,1(u) = 2(1− u)u2 + u3,

w1,2(u) = 6(1− u)2u3 + 4(1− u)u4 + u5

are usually used in geometric applications.
Figure 1 shows graphs of the polynomials w1,n(u). This figure illustrates kinematics features

of these polynomials. It can be seen that the polynomials w1,n(u) can be considered as rather
good approximations of the linear function which has a unity motion speed. In other words
the polynomials w1,n(u) smoothly increase motion speed from zero to a unity on the interval
[0, 1] with the necessary continuity at the boundaries of the interval.

We show that the polynomial w1,n(u) is a minimum of the functional

Jn(f) =

∫1
0

|f (n+1)(u)|2 du, n ∈ N,

where the function f(u), u ∈ [0, 1], satisfies the boundary conditions

f(0) = 0, f(1) = 1, (3.6)

f (m)(0) = 0, for all m ∈ {1, 2, . . . , n} (3.7)

f ′(1) = 1, f (m)(1) = 0, for all m ∈ {2, 3, . . . , n}. (3.8)

Assume that a function g(u) is a minimum of the functional Jn(f). Consider the function

(g − w1,n)(u) = g(u)− w1,n(u).
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Figure 1. Graphs of the polynomials w1,n(u).

Then

|(g − w1,n)(n)|2 = |g(n) − w
(n)
1,n|2 = (g(n))2 − 2g(n)w

(n)
1,n + (w

(n)
1,n)2

= (g(n))2 − (w
(n)
1,n)2 − 2(g(n) − w

(n)
1,n)w

(n)
1,n.

It follows from these equations that

Jn(g − w1,n) = Jn(g)− Jn(w1,n)− 2

∫1
0

(g(n+1)(u)− w
(n+1)
1,n (u))w

(n+1)
1,n (u) du.

The last integral can be computed by parts as follows:

∫1
0

(g(n+1)(u)− w
(n+1)
1,n (u))w

(n+1)
1,n (u) du =

∫1
0

w
(n+1)
1,n (u)d(g(n)(u)− w

(n)
1,n(u))

= w
(n+1)
1,n (u)(g(n)(u)− w

(n)
1,n(u))

∣∣1
0
−

∫1
0

(g(n)(u)− w
(n)
1,n(u))w

(n+2)
1,n (u) du

= −
∫1
0

(g(n)(u)− w
(n)
1,n(u))w

(n+2)
1,n (u) du

taking into account that

g(n)(0) = w
(n)
1,n(0) = 0, g(n)(1) = w

(n)
1,n(1) = 0

according to equalities (3.7) and (3.8) respectively. Computing the obtained integrals by parts

recurrently and taking into account that the function w
(2n+1)
1,n (u) is a constant it is obtained

that ∫1
0

(g(n+1)(u)− w
(n+1)
1,n (u))w

(n+1)
1,n (u) du = (−1)n

∫1
0

(g′(u)− w′1,n(u))w
(2n+1)
1,n (u) du

= (−1)n(g(u)− w1,n(u))w
(2n+1)
1,n (u)

∣∣1
0

= 0
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taking into account that

g(0) = w1,n(0) = 0, g(1) = w1,n(1) = 1

according to equalities (3.6). Thus it is proved that

Jn(g − w1,n) = Jn(g)− Jn(w1,n).

The last equation can be rewritten as

Jn(g) = Jn(w1,n) + Jn(g − w1,n).

It follows from the definition of the functional Jn(f) that

Jn(g − w1,n) > 0.

Therefore
Jn(w1,n) 6 Jn(g).

But the function g(u) is a minimum of the functional Jn(f) by assumption, therefore

g(u) = w1,n(u).

Thus it is proved that the polynomial w1,n(u) is a minimum of the functional Jn(f).
Now we prove that this minimum is unique. Suppose the opposite. Let there exist a function

g(u) which satisfies the condition

Jn(g) = Jn(w1,n).

It follows from this equation that
Jn(g − w1,n) = 0

or equivalently

g(n+1)(u) = w
(n+1)
1,n (u), for all u ∈ [0, 1].

It follows from the last equation that

g(u) = w1,n(u) +

n∑
i=0

aiu
i.

But the coefficients ai are equal to zero for all i ∈ {0, 1, . . . , n} taking into account boundary
conditions which must be satisfied by the function g(u). Therefore

g(u) = w1,n(u).

Thus the property is proved. The functional Jn(f) can be considered as energy of the (n+1)th
derivative of the function which satisfies boundary conditions defined by equalities (3.6)–(3.8).

4. Smoothly decreasing polynomials

We introduce the second class of polynomials which will be used for blending parametric curves
in Lie groups. To construct the polynomials consider the following sequences of knot points
on the real line R: (

0,
1

2n + 1
,

2

2n + 1
, . . . ,

n

2n + 1
, 0, 0, . . . , 0︸ ︷︷ ︸

n+1

)
, n ∈ N.

https://doi.org/10.1112/S1461157014000473 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000473


222 a. p. pobegailo

Using Bernstein polynomials bn,m(u), u ∈ [0, 1], define the following Bézier curves on the
sequences of knot points:

w2,n(u) =

n∑
i=1

b2n+1,i(u)
i

2n + 1
, n ∈ N. (4.1)

It follows from this definition that the polynomials w2,n(u) satisfy the boundary conditions

w2,n(0) = 0, w2,n(1) = 0. (4.2)

Derivatives of the polynomials w2,n(u) at the boundaries can be computed using expressions
for derivatives of Bézier curves at boundary points [14] as follows:

w
(m)
2,n (0) =

(2n + 1)!

(2n + 1−m)!

m∑
i=0

(−1)m−i
(
m

i

)
i

2n + 1
, for all m ∈ {1, 2, . . . , n} (4.3)

w
(m)
2,n (1) = 0, for all m ∈ {1, 2, . . . , n}. (4.4)

We determine values of the derivatives which are defined by equality (4.3). A derivative of the
first order can be computed as follows:

w′2,n(0) =
(2n + 1)!

(2n)!

1

2n + 1
=

(2n)!

(2n)!
= 1.

Using identities with binomial coefficients, which are considered in the appendix, higher-order
derivatives of the polynomials w2,n(u) can be computed as follows:

w
(m)
2,n (1) =

(2n + 1)!

(2n + 1−m)!

m∑
i=0

(−1)m−i
(
m

i

)
i

2n + 1

=
(2n + 1)!

(2n + 1−m)!

(−1)m

2n + 1

m∑
i=0

(−1)i
(
m

i

)
i = 0

for all m ∈ {2, 3, . . . , n}. Therefore the derivatives of the polynomials w2,n(u) defined by
equality (4.3) have the following values:

w′2,n(0) = 1, w
(m)
2,n (0) = 0, for all m ∈ {2, 3, . . . , n}. (4.5)

The polynomials of lower degrees,

w2,1(u) = (1− u)2u,

w2,2(u) = (1− u)2u3 + 4(1− u)u4,

are usually used in geometric applications.
Figure 2 shows graphs of the polynomials w2,n(u). This figure illustrates kinematics features

of these polynomials. It can be seen that the polynomials w2,n(u) smoothly decrease motion
speed from a unity to zero on the interval [0, 1] with the necessary continuity at the boundaries
of the interval.

The polynomial w2,n(u) is a minimum of the functional

Jn(f) =

∫1
0

|f (n+1)(u)|2 du, n ∈ N,
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Figure 2. Graphs of the polynomials w2,n(u).

where the function f(u), u ∈ [0, 1], satisfies the boundary conditions

f(0) = 0, f(1) = 0,

f ′(0) = 1, f (m)(0) = 0, for all m ∈ {2, 3, . . . , n},
f (m)(1) = 0, for all m ∈ {1, 2, . . . , n}.

This property can be proved by analogy with the corresponding property of the polynomials
w1,n(u) which was considered in § 3.

5. Blending parametric curves in matrix Lie groups

Now we solve the problem of blending parametric curves in Lie groups which was stated in § 2.
For this purpose consider two arbitrary parametric curves g1(u) and g2(u), u ∈ [0, 1], which
belong to a matrix Lie group G and satisfy the initial conditions defined by equalities (2.1).
It should be noted that since any point g ∈ G can be chosen as a unity of the group G by
transition to another coordinate system, use of e as the initial point is not important. The
problem is to construct a parametric curve g(u) ∈ G, u ∈ [0, 1], that satisfies the boundary
conditions defined by equalities (2.2) and (2.3).

In order to solve the problem construct a parametric curve g(u) using polynomials w1,n(u)
and w2,n(u) defined by equalities (3.1) and (4.1) as follows:

g(u) = g1(w1,n(u))g2(w2,n(u)), u ∈ [0, 1], (5.1)

taking into account equality (2.4). Show that the parametric curve g(u) satisfies the boundary
conditions defined by equalities (2.2) and (2.3).

It follows from the initial conditions defined by equalities (2.1) that

g(0) = g1(w1,n(0))g2(w2,n(0)) = g1(0)g1(0) = e ◦ e = e

and

g(1) = g1(w1,n(1))g2(w2,n(1)) = g1(1)g2(0) = g1(1) ◦ e = g1(1),
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taking into account that the polynomials w1,n(u) and w2,n(u) satisfy the boundary conditions
defined by equalities (3.2) and (4.2) respectively. Thus the equalities (2.2) are fulfilled.

Now we prove the equalities (2.3). For this purpose firstly compute higher-order derivatives
of parametric curves g1(w2,n(u)) and g2(w1,n(u)) at the boundaries using the expression for
higher-order derivatives of a composite function considered in the appendix. It is obtained
using equalities (4.2), (4.4) and (4.5) that

(g2(w2,n(u)))(m)(0)

=

(∑ m!

k1!k2! . . . km!
g
(k)
2 (w2,n(u))

(
w′2,n(u)

1!

)k1
(
w′′2,n(u)

2!

)k2

. . .

(
w

(m)
2,n (u)

m!

)km
)

(0)

=
∑ m!

k1!k2! . . . km!
g
(k)
2 (0)

(
w′2,n(0)

1!

)k1
(
w′′2,n(0)

2!

)k2

. . .

(
w

(m)
2,n (0)

m!

)km

= g
(m)
2 (0)(w′2,n(0))m = g

(m)
2 (0)

and

(g2(w2,n(u)))(m)(1)

=

(∑ m!

k1!k2! . . . km!
g
(k)
2 (w2,n(u))

(
w′2,n(u)

1!

)k1
(
w′′2,n(u)

2!

)k2

. . .

(
w

(m)
2,n (u)

m!

)km
)

(1)

=
∑ m!

k1!k2! . . . km!
g
(k)
2 (1)

(
w′2,n(1)

1!

)k1
(
w′′2,n(1)

2!

)k2

. . .

(
w

(m)
2,n (1)

m!

)km

= 0

for all m ∈ {1, 2, . . . , n}. Analogously it can be obtained using equalities (3.2), (3.3) and (3.5)
that

(g1(w1,n(u)))(m)(0) = 0, (g1(w1,n(u)))(m)(1) = g
(m)
1 (1), for all m ∈ {1, 2, . . . , n}.

Now compute higher-order derivatives of the parametric curve g(u) at its boundaries. It is
obtained taking into account the computed higher-order derivative values of the parametric
curves g1(w2,n(u)) and g2(w1,n(u)) that

g(m)(0) = (g1(w1,n(u))g2(w2,n(u)))(m)(0)

=
m∑

k=0

(
m

k

)
(g1(w1,n(u)))(k)(0)(g2(w2,n(u)))(m−k)(0)

= g1(w1,n(u))(0)(g2(w2,n(u)))(m)(0) = g1(0)g
(m)
2 (0)

= e ◦ g(m)
2 (0) = g

(m)
2 (0)

and analogously

g(m)(1) = g
(m)
1 (1)

for all m ∈ {1, 2, . . . , n}. Thus equalities (2.3) are also proved.
In this section, for simplicity, only matrix Lie groups were considered. But taking into

account that any Lie group is locally homeomorphic to a matrix Lie group through exponential
mapping the obtained results can be expanded on abstract Lie groups. Therefore the presented
approach can be also used for construction of blending parametric curves g(u), which satisfies
the conditions defined by equalities (2.1)–(2.3) on abstract Lie groups. But this is not important
in geometric applications where only matrix transformations are used.
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6. Blending parametric curves on smooth manifolds

Consider a smooth manifold M and let G be a Lie group acting on M . Choose two arbitrary
different points p1 and p2 which lie on the smooth manifold M and suppose that the points
are connected by two different smooth parametric curves q1(u) and q2(u) which are defined as
follows:

qj(u) = gj(u)p1, u ∈ [0, 1], j ∈ {1, 2}

where g1(u) and g2(u) are some parametric curves in the Lie group G which satisfy the initial
conditions defined by equality (2.1). It follows from this definition that

qj(0) = gj(0)p1 = p1, qj(1) = gj(1)p1 = p2, j ∈ {1, 2}. (6.1)

The problem is to construct a parametric curve q(u) ∈ M which satisfies the following
boundary conditions:

q(0) = p1, q(1) = p2, (6.2)

q(m)(0) = q
(m)
2 (0), q(m)(1) = q

(m)
1 (1), m ∈ {1, 2, . . . , n} (6.3)

where n ∈ N . In order to solve the problem define the parametric curve q(u) as follows:

q(u) = g1(w1,n(u))g2(w2,n(u))p1 = g(u)p1, u ∈ [0, 1], (6.4)

taking into account equality (5.1). It is obvious that the parametric curve q(u) belongs to the
manifold M because the parametric curve g(u) lies in the Lie group G. In § 5 it was proved
that the parametric curve g(u) satisfies equalities (2.2) and (2.3). Show that the parametric
curve q(u) satisfies the boundary conditions defined by equalities (6.2) and (6.3).

It follows from equalities (2.2) that

q(0) = g(0)p1 = g2(0)p1 = p1,

q(1) = g(1)p1 = g1(1)p1 = p2.

Thus equalities (6.2) are fulfilled, that is, the parametric curve q(u) connects the points p1
and p2.

Now we prove equalities (6.3). Taking into account that the parametric curve g(u) satisfies
equalities (2.3) it is obtained that

q(m)(0) = g(m)(0)p1 = g
(m)
2 (0)p1 = q

(m)
2 (0),

q(m)(1) = g(m)(1)p1 = g
(m)
1 (1)p1 = q

(m)
1 (1)

for any m ∈ {1, 2, . . . , n}. Thus equalities (6.3) are also proved.
Since the parametric curves q1(u) and q2(u) differ only in the parametric curves g1(u) and

g2(u) which are blended, the parametric curve q(u) can be considered as a parametric curve
defined by blending the parametric curves q1(u) and q2(u).

7. Construction of spline curves on smooth manifolds

In this section a general scheme for construction of spline curves on smooth manifolds by
acting Lie groups is considered. A segment of the spline curve is constructed by blending
two parametric curves of the Lie group acting on the smooth manifold. It can be supposed
that the blending parametric curves are one-parameter subgroups of the Lie group. This
is reasonable because one-parameter subgroups are geodesics and can be considered as the
simplest parametric curves on Lie groups.
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Figure 3. Spline curve segment on the sphere S2.

Consider a sequence of points (pi)
k
i=1 which lie on a smooth manifold M and a Lie group G

acting on M . The problem is to construct a Cn continuous spline curve (qi(u))k−1i=1 , u ∈ [0, 1],
on the smooth manifold M which interpolates the points pi. Using equality (6.4), a segment
qi(u) of the spline curve can be constructed by blending two parametric curves

qi,j(u) = gi,j(u)pi, u ∈ [0, 1], j ∈ {1, 2},

which lie on the smooth manifold M and connect the points pi and pi+1, as follows:

qi(u) = gi,1(w1,n(u))gi,2(w2,n(u))pi = gi(u)pi, u ∈ [0, 1],

for all i ∈ {2, 3, . . . , k − 2}. In accordance with the proposed approach the initial and final
segments can be defined by

q1(u) = q1,1(u) = g1,1(u)p1, u ∈ [0, 1],

qk−1(u) = qk−1,2(u) = gk−1,2(u)pk−1, u ∈ [0, 1].

For example, if a spline curve segment qi(u) is constructed on the sphere S2 then the
parametric curves qi,1(u) and qi,2(u) are small circular arcs obtained by actions of some
orthogonal rotations gi,1(u) and gi,2(u) on the point pi. Figure 3 illustrates the example.

In order to ensure Cn parametric continuity of the spline curve (qi(u))k−1i=1 at the knot
points pi, i ∈ {2, 3, . . . , k − 1}, the parametric curves qi,1(u) and qi+1,2(u), which are used for
construction of the segments qi(u) and qi+1(u) respectively, must be at least Cn continuously
joined at the knot point pi+1, that is

q
(m)
i,1 (1) = q

(m)
i+1,2(0), m ∈ {1, 2, . . . , n}.

Usually it is difficult to meet the last requirement provided that the parametric curves qi,1(u)
and qi+1,2(u) have a normal parametrization. In order to avoid this difficulty some non-normal
parametrization of the parametric curves can be chosen. That is, some knot parameter values
ti are assigned to each knot point pi, i ∈ {1, 2, . . . , k} and the parameterizations

u(t) =
t− ti

ti+1 − ti
, t ∈ [ti, ti+1],
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Figure 4. C2 continuous spline curve on the sphere S2.

are used for parametric curves qi,1(u) and qi,2(u). The parameter values ti should be chosen
in such a way that the continuity conditions

q
(m)
i,1 (ti+1) = q

(m)
i+1,2(ti+1), m ∈ {1, 2, . . . , n}

are fulfilled.
Suppose that the parametric curves qi,1(u) and qi+1,2(u) are defined as follows:

qi,1(u) = gi,1(uϕi,1)pi, u ∈ [0, 1], i ∈ {1, 2, . . . , k − 2},

and

qi+1,2(u) = gi+1,2(uϕi+1,2)pi+1, u ∈ [0, 1], i ∈ {2, 3, . . . , k − 1},

where gi,1(uϕi,1) and gi+1,2(uϕi+1,2) are parametric curves which belong to the same one-
parameter subgroup of the Lie group G. For example, if the smooth manifold is the sphere
S2, then the parametric curves gi,1(uϕi,1) and gi+1,2(uϕi+1,2) describe orthogonal rotations
about the same axis but with different angles ϕi,1 and ϕi+1,2 respectively. Then in order to
ensure Cn parametric continuity of the spline curve, the parameter values ti can be defined as
follows:

t1 = 0, t2 = ϕ1,1,

ti+1 = ti +
ϕi+1,2

ϕi,1
(ti − ti−1), i ∈ {2, 3, . . . , k − 1}.

It can be seen that in this case(
t− ti

ti+1 − ti

)′
ϕi+1,2 =

ϕi+1,2

ti+1 − ti
=

ϕi,1

ti − ti−1
=

(
t− ti−1
ti − ti−1

)′
ϕi,1

and therefore the parametric curves qi,1(u(t)) and qi+1,2(u(t)) are Cn continuously joined at
the knot point pi+1. Then it follows from equality (6.3) that the constructed spline curve
(qi(t))

k−1
i=1 , t ∈ [t1, tk], is Cn continuous.

Figure 4 shows the C2 continuous spline curve constructed by the proposed approach on the
sphere S2.
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8. Conclusions

Polynomials for blending parametric curves in Lie groups are introduced. Extremal properties
of these polynomials are proved. The technique of blending parametric curves in Lie groups
with these polynomials is considered. Then the proposed technique is applied to construction
of spline curves on the smooth manifolds by action of Lie groups. It should be noted that the
presented technique enables generation of Cn continuous spline curves which are constructed
locally. This feature makes it possible to use the proposed technique in on-line geometric
applications. The presentation of the material is illustrated by figures which show examples of
the proposed polynomials and spline curves constructed by means of the proposed approach
on the sphere S2. These illustrations confirm validity of the proposed technique.

Appendix. Auxiliary binomial identities and formulas for higher-order derivatives

In order to compute higher-order derivatives of the polynomials used for blending parametric
curves in a Lie group the following two identities with binomial coefficients are used:

m∑
i=0

(−1)i
(
m

i

)
= 0,

m∑
i=0

(−1)i
(
m

i

)
i = 0.

The binomial identities can be proved using Newton’s binomial formula

(a + b)m =

m∑
i=0

(
m

i

)
ambm−i = am +

(
m

1

)
am−1b +

(
m

2

)
am−2b2 + . . . +

(
m

m− 1

)
abm−1 + bm.

In order to prove the first identity it is sufficient to expand the sum

(1− 1)m =

m∑
i=0

(−1)i
(
m

i

)
= 0

using Newton’s binomial formula. The second of the identities is proved using the following
two relations between binomial coefficients:(

m

i

)
=

(
m

m− i

)
,

(
m

i

)
=

m

i

(
m− 1

i− 1

)
.

It is obtained that

m∑
i=0

(−1)i
(
m

i

)
i =

(
m

0

)
0−

(
m

1

)
1 +

(
m

2

)
2− . . .−

(
m

m− 1

)
(m− 1) +

(
m

m

)
m

=

(
m

0

)
m

2
−
(
m

1

)
m

2
+

(
m

2

)
m

2
− . . .−

(
m

m− 1

)
m

2
+

(
m

m

)
m

2

=
m

2

m∑
i=0

(−1)i
(
m

i

)
= 0

for all even m ∈ N . And analogously

m∑
i=0

(−1)i
(
m

i

)
i =

(
m

0

)
0−

(
m

1

)
1 +

(
m

2

)
2− . . . +

(
m

m− 1

)
(m− 1)−

(
m

m

)
m

= −
(
m

0

)
m

2
+

(
m

1

)
m− 2

2
−
(
m

2

)
m− 4

2
+ . . . +

(
m

m− 1

)
m− 2

2
−
(
m

m

)
m

2
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= −
(
m

0

)
m

2
+

(
m

1

)
m

2
−
(
m

2

)
m

2
+ . . . +

(
m

m− 1

)
m

2
−
(
m

m

)
m

2

−
(
m

1

)
1 +

(
m

2

)
2−

(
m

3

)
3 + . . . +

(
m

m− 2

)
2−

(
m

m− 1

)
1

= −m

2

m∑
i=0

(−1)i
(
m

i

)
−
(
m− 1

0

)
m +

(
m− 1

1

)
m

−
(
m− 1

2

)
m + . . . +

(
m− 1

m− 2

)
m−

(
m− 1

m− 1

)
m

= −m

2

m∑
i=0

(−1)i
(
m

i

)
−m

m−1∑
i=0

(−1)i
(
m− 1

i

)
= 0

for all odd m ∈ N . Thus the second identity with binomial coefficients is also proved.
In order to compute higher-order derivatives of blending parametric curves it is necessary

to use two expressions for higher derivatives of composite functions and matrix products.
It is known from the real analysis that a higher-order derivative of the composite function

f(g(u)) can be determined using the chain rule as follows:

(f(g(u)))(n) =
∑ n!

k1!k2! . . . kn!
f (k)(g(u))

(
g′(u)

1!

)k1
(
g′′(u)

2!

)k2

. . .

(
g(n)(u)

n!

)kn

where the sum is over all nonnegative integer solutions of the Diophantine equation

k1 + 2k2 + . . . + nkn = n

and
k = k1 + k2 + . . . + kn.

For our purposes it is sufficient to note that the tuple

(k1, k2, . . . , kn) = (n, 0, . . . 0)

is always a solution of the Diophantine equation and all other solutions imply that
corresponding terms of the sum contain higher-order derivatives of the function g(u).

Let f(u) and g(u) be two square matrices of the same order depending on the real
parameter u. It is known from matrix calculus that a higher-order derivative of the matrix
product f(u)g(u) can be determined as follows:

(f(u)g(u))(n) =

n∑
k=0

(
n

k

)
f (n−k)(u)g(k)(u).
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