REMARKS ON THE COMMUTATIVITY OF THE RADICALS OF GROUP ALGEBRAS

by SHIGEO KOSHITANI

(Received 15 August, 1977)
Let K be an arbitrary field with characteristic $p>0, G$ a finite group of order $p^{a} g^{\prime}$ with $\left(p, g^{\prime}\right)=1, P$ a p-Sylow subgroup of G and G^{\prime} the commutator subgroup of G. For a ring R denote by $J(R)$ the Jacobson radical of R and by $Z(R)$ the centre of R. We write $K G$ for the group algebra of G over K.

On the commutativity of $J(K G)$ there are works of D. A. R. Wallace [11] and W. Hamernik [3]. The first aim of this paper is to investigate the structure of G when $J(K G)$ is commutative. Our result can be stated as follows: if $J(K G)$ is commutative and $J(K G)^{2} \neq 0$, then $N_{G}(P)=C_{G}(P)$ and $N_{G}(P)$ is abelian, where $N_{G}(P)$ and $C_{G}(P)$ are the normalizer of P in G and the centralizer of P in G, respectively.
D. A. R. Wallace [11] and W. Hamernik [3] obtained a necessary and sufficient condition on G for $J(K G)$ to be commutative when p is odd. Indeed, they proved that when p is odd and when G is a nonabelian group of order divisible by $p, J(K G)$ is commutative if and only if $G^{\prime} P$ is a Frobenius group with complement P with kernel G^{\prime}. So in the present paper we shall obtain a necessary and sufficient condition of G for $J(K G)$ to be commutative for any prime number p not necessarily odd. That is to say, we shall prove that $J(K G)$ is commutative if and only if G is a group of the following two types: (i) $|G|$ is not divisible by 2^{2} when $p=2$, and $|G|$ is not divisible by p when p is odd; (ii) G is a p-nilpotent group with an abelian p-Sylow subgroup $P, b_{0}=\mid O_{p}(G)$: $G^{\prime} \mid$, $b_{1}=\ldots=b_{a-2}=0$, and if p is odd, $b_{a-1}=0$, where b_{k} is the number of p-regular conjugate classes K_{j} of G such that the number of elements of K_{j} is divisible by p^{k} and not by p^{k+1} for $k=0, \ldots, a$. By [11, Theorem 1] and [3, Corollary 5.2], when p is odd, $J(K G)$ is commutative if and only if $J(K G) \subseteq Z(K G)$. But when $p=2$, this does not hold in general.

Throughout this paper we shall use the following notations. Denote by $[V: K]$ the K-dimension of a K-vector space V. If S is a subset of $G,|S|$ will denote the number of elements of $S, N_{G}(S)$ and $C_{G}(S)$ will denote the normalizer of S in G and the centralizer of S in G, respectively, and let $\hat{S}=\sum_{s \in S} s$ in $K G$ when $S \neq \varnothing$ and let $\hat{S}=0$ in $K G$ when $S=\varnothing$. For a positive integer t and a ring R we write R_{t} for the ring of all $t \times t$ matrices with entries in R.

To begin with we shall study G when $J(K G)$ is commutative.
Theorem 1. Suppose that $|G|$ is divisible by 2^{2} when $p=2$ and that $|G|$ is divisible by p when p is odd. If $J(K G)$ is commutative, then $N_{G}(P)=C_{G}(P)$ and $N_{G}(P)$ is abelian, where P is a p-Sylow subgroup of G.

Proof. Since $K G / J(K G)$ is a separable K-algebra (cf. [4, Proposition 12.11]), $J(E G)=$ $E \otimes_{K} J(K G)$ for any extension field E of K. So we may assume that K is algebraically
closed. Let $1=\sum_{i=1}^{n} \sum_{j=1}^{f_{1}} e_{i j}$ be a decomposition of the unit element of $K G$ into a sum of mutually orthogonal primitive idempotents of $K G$ such that $K G e_{i j} \cong K G e_{i^{\prime} j^{\prime}}$ if and only if $i=i^{\prime}$. Set $e_{i}=e_{i}, U_{i}=K G e_{i}, F_{i}=U_{i} J J(K G) U_{i}$ and $u_{i}=\left[U_{i}: K\right]$, and hence $f_{i}=\left[F_{i}: K\right]$ for each i. Let F_{1} be the trivial $K G$-module, and so $f_{1}=1$.

By [11, Theorem 2], G is p-nilpotent and P is abelian. So $K G$ is primary decomposable from [6, Theorem 1]. Thus each block of $K G$ contains, up to isomorphism, only one irreducible $K G$-module. Put $B_{i}=\sum_{j=1}^{f_{4}} \oplus K G e_{i j}$ for each $i . B_{1}, \ldots, B_{n}$ are all blocks of $K G$. Set $H=O_{p^{\prime}}(G)$, the largest normal subgroup of G of order prime to p. Since G is p-nilpotent, it follows from [5, Theorems 2, 7] that

$$
B_{i} \cong K H e_{i 1}^{\prime} \otimes_{K} K^{c} P_{i} \otimes_{K} K_{t i}, \text { as } K \text {-algebras, }
$$

where $e_{i 1}^{\prime}$ is a centrally primitive idempotent of $K H, G_{i}=\left\{x \in G \mid x^{-1} e_{i 1}^{\prime} x=e_{i 1}^{\prime}\right\}, t_{i}=$ $\left|G: G_{i}\right|, P_{i}$ is a p-Sylow subgroup of G_{i} and $K^{c} P_{i}$ is a twisted group ring of P_{i} over K with respect to the factor set c for each $i=1, \ldots, n$. Since K is an algebraically closed field with characteristic $p>0$ and P_{i} is a p-group, $K^{c} P_{i} \cong K P_{i}$ as K-algebras for each i (cf. [7, Lemma 2.1]). Hence

$$
B_{i} \cong K H e_{i 1}^{\prime} \otimes_{K} K P_{i} \otimes_{K} K_{\psi}, \text { as } K \text {-algebras. }
$$

Put $h_{i}^{2}=\left[K H e_{i 1}^{\prime}: K\right]$ and $h_{i}>0$. By [6, Theorem 3], $f_{i}=h_{i} t_{i}$. This shows that $B_{i} \cong\left(K P_{i}\right)_{f_{i}}$ as K-algebras and that

$$
\begin{equation*}
J\left(B_{i}\right) \cong\left(J\left(K P_{i}\right)\right)_{f_{f}} \tag{}
\end{equation*}
$$

for each i. Now, let us divide B_{1}, \ldots, B_{n} into the following three types:
(a) $J\left(B_{i}\right)=0$.
(b) $J\left(B_{i}\right) \neq 0, J\left(B_{i}\right)^{2}=0$.
(c) $J\left(B_{i}\right)^{2} \neq 0$.

When B_{i} is of type (a) or (b), f_{i} is divisible by p. Indeed, if B_{i} is of type (a), $u_{i}=f_{i}$ and so p^{a} divides f_{i} from [1, (18)]. If B_{i} is of type (b), by [11, Lemma 7], $p=2$ and $u_{i}=2 f_{i}$, and so f_{i} is divisible by 2 since $a \geqq 2$ and 2^{a} divides u_{i} from [1, (18)]. Hence the principal block B_{1} is of type (c). By rearranging the numbers $2, \ldots, n$, we may assume that B_{1}, \ldots, B_{m} are of type (c) and that B_{m+1}, \ldots, B_{n} are of type (a) or (b) for some $m \leqq n$. If B_{i} is of type (c), since $J(K G)$ is commutative, it follows from (*) that $f_{i}=1$ and so $h_{i}=t_{i}=1$. This implies that B_{1}, \ldots, B_{m} are all blocks of $K G$ with defect a.

Next, since P is an abelian p-Sylow subgroup of G and G is p-nilpotent, by [5, §3 (p. 184)], $N_{G}(P)=C_{G}(P)$. Set $N=N_{G}(P)$ and $\tilde{H}=H \cap N=O_{p}(N)$. Since N is $p-$ nilpotent, it follows from [6, Theorem 1] and [5, Lemma 2] that m is equal to the number of blocks of $K N$. Let $1=\sum_{i=1}^{m} \sum_{j=1}^{h_{i}} \bar{e}_{i j}$ be a decomposition of the unit element of $K N$ into a sum of mutually orthogonal primitive idempotents of $K N$ such that $K N \tilde{e}_{i j} \cong K N \tilde{e}_{i^{\prime} j^{\prime}}$ if and only if $i=i^{\prime}$. Put $\tilde{e}_{i}=\tilde{e}_{i 1}, \tilde{U}_{i}=K N \tilde{e}_{i}, \tilde{F}_{i}=\tilde{U}_{i} / J(K N) \tilde{U}_{i}$ and $\tilde{u}_{i}=\left[\tilde{U}_{i}: K\right]$, and hence
$\tilde{f}_{i}=\left[\tilde{F}_{i}: K\right]$ for each i. Set $\tilde{B}_{i}=\sum_{i=1}^{f_{1}} \oplus K N \tilde{e}_{i j}$ for each i, and so $\tilde{B}_{1}, \ldots, \tilde{B}_{m}$ are all blocks of $K N$. Since N is p-nilpotent, as for B_{i}, we can write

$$
\tilde{B}_{i} \cong K \tilde{H} \tilde{e}_{i 1}^{\prime} \otimes_{K} K \tilde{P}_{i} \otimes_{K} K_{\mathfrak{k}}, \text { as } K \text {-algebras }
$$

where $\tilde{e}_{i 1}^{\prime}$ is a centrally primitive idempotent of $K \tilde{H}, \tilde{G}_{i}=\left\{y \in N \mid y^{-1} \tilde{e}_{i 1}^{\prime} y=\tilde{e}_{i 1}^{\prime}\right\}, f_{i}=$ $\left|N: \tilde{G}_{i}\right|$ and \tilde{P}_{i} is a p-Sylow subgroup of \tilde{G}_{i} for each $i=1, \ldots, m$. Since P is normal in N, all blocks of $K N$ have defect a. Put $\tilde{h}_{i}^{2}=\left[K \tilde{H} \tilde{e}_{i 1}^{\prime}: K\right]$ and $\tilde{h}_{i}>0$. By [6, Theorem 3], $\tilde{f}_{i}=\tilde{h}_{i} \tilde{t}_{i}$. Hence \tilde{t}_{i} is not divisible by p and this shows that $\tilde{t}_{i}=1$ for all i. This implies that $\tilde{e}_{i 1}^{\prime}$ is a centrally primitive idempotent of $K N$ and that $\tilde{P}_{i}=P$ for all i.

By rearranging the numbers $1, \ldots, m$, we can assume that B_{i} corresponds to \tilde{B}_{i} through the Brauer homomorphism for each $i=1, \ldots, m$ (cf. [2, Lemma 56.1, Theorem 58.3 (Brauer's first main theorem)]). Fix any i such that $1 \leqq i \leqq m$. Since $t_{i}=1, e_{i 1}^{\prime}$ is a centrally primitive idempotent of $K G$, and so we may write $e_{i 1}^{\prime}=e_{i}$ since $f_{i}=1$. Put $B=B_{i}$, $e=e_{i 1}^{\prime}=e_{i}, \tilde{B}=\tilde{B}_{i}$ and $\tilde{e}=\tilde{e}_{i 1}^{\prime}$. Let $\left\{K_{r}\right\}$ be the set of all conjugate classes of G. The Brauer homomorphism $\sigma: Z(K G) \rightarrow Z(K N)$ is defined as $\sigma\left(\overline{K_{r}}\right)=\widehat{K_{r} \cap N}$ for each r. We know that $\sigma(e)=\tilde{e} . e$ is a centrally primitive idempotent of $K H$ and \tilde{e} is a centrally primitive idempotent of $K \tilde{H}$. Thus, if we let $\left\{L_{t}\right\}$ be the set of all conjugate classes of H and if we define $\sigma^{\prime}: Z(K H) \rightarrow Z(K \tilde{H})$ as $\sigma^{\prime}\left(\overline{L_{t}}\right)=\widehat{L_{t} \cap N}$ for each t, it follows that $\sigma^{\prime}(e)=\tilde{e}$. On the other hand, $[K H e: K]=1$, and so $K H e=K e$. Take any $h \in \tilde{H}$. We shall claim that $h e \tilde{e} \in K e ̃$. Since $K H e=K e$, we can write he $=\delta e$ for some $\delta \in K$. Let $e=\sum_{t} \alpha_{t}, \widehat{L_{t}}$, where $\alpha_{t} \in K$. Thus, $\tilde{e}=\sigma^{\prime}(e)=\sum_{t} \alpha_{i} \cdot\left(\widehat{L_{1} \cap N}\right)$. Since $\sum_{1} \alpha_{t} \cdot h \widehat{L}_{t}=\sum_{1} \delta \alpha_{1} \cdot \widehat{L_{i}}$, it is seen that

$$
\sum_{1} \alpha_{t} \cdot h\left(\widehat{L_{1} \cap N}\right)+\sum_{t} \alpha_{t} \cdot h\left(\widehat{L_{t} \backslash N}\right)=\sum_{t} \delta \alpha_{t} \cdot\left(\widehat{L_{t} \cap N}\right)+\sum_{t} \delta \alpha_{t} \cdot\left(\widehat{L_{t} \backslash N}\right) .
$$

For each $x \in H, h x \in \tilde{H}$ if and only if $x \in N$. Hence

$$
\sum_{t} \alpha_{t} \cdot h\left(\widehat{L_{t} \cap N}\right)=\sum_{t} \delta \alpha_{t} \cdot\left(\widehat{L_{i} \cap N}\right)
$$

This implies that $h \tilde{e} \in K \tilde{e}$. Hence $K \tilde{H} \tilde{e} \subseteq K \tilde{e}$ and so $K \tilde{H} \tilde{e}=K \tilde{e}$. Therefore $[K \tilde{H} \tilde{e}: K]=1$.
Consequently, $\tilde{h}_{i}=1$ for all i. This shows that every irreducible $K \tilde{H}$-module is of K-dimension one, and so \tilde{H} is abelian. Hence N is abelian since $N=\tilde{H} \times P$. This completes the proof.

Remark 1. Assume $|P|=2$ or 1 if $p=2$, and assume $|P|=1$ if p is odd. In this case, from [10, Theorem] and the proof of Theorem $1, J(K G)^{2}=0$, and so $J(K G)$ is commutative. Since G is a p-nilpotent group with an abelian p-Sylow subgroup P, by the proof of Theorem1, $N_{G}(P)=C_{G}(P)$. But $N_{G}(P)$ is nonabelian in general. Indeed, if we set that H is a nonabelian finite group of order prime to p and that $G=H \times P$, then $G=N_{G}(P)=$ $C_{G}(P)$ and $N_{G}(P)$ is nonabelian.

Next, we shall have the following main theorem of this paper. This gives a grouptheoretical condition of G for $J(K G)$ to be commutative.

Theorem 2. For an arbitrary prime number $p, J(K G)$ is commutative if and only if G is a group of the following two types:
(i) $|G|$ is not divisible by 2^{2} when $p=2$, and $|G|$ is not divisible by p when p is odd.
(ii) G is a p-nilpotent group with an abelian p-Sylow subgroup P. $b_{0}=\left|O_{p}(G): G^{\prime}\right|$, $b_{1}=\ldots=b_{a-2}=0$, and if p is odd, $b_{a-1}=0$, where $|P|=p^{a}$ and b_{k} is the number of p-regular conjugate classes K_{j} of G such that $\left|K_{j}\right|$ is divisible by p^{k} and not by p^{k+1} for $k=0, \ldots, a$.

Proof. From the proof of Theorem 1 we can assume that K is algebraically closed. So we use notations n, U_{i}, F_{i}, u_{i} and f_{i} as in the proof of Theorem 1. Put $H=O_{p^{\prime}}(G)$.

Suppose that $J(K G)$ is commutative and that $|G|$ is divisible by 2^{2} when $p=2$, and is divisible by p when p is odd. By [11, Theorem 2], G is a p-nilpotent group with an abelian p-Sylow subgroup P. From the proof of Theorem 1, the number of blocks of $K G$ with defect a is equal to the number of nonisomorphic irreducible $K G$-modules F_{i} such that $f_{\mathrm{i}}=1$. Thus, by [1, Theorem 2] and [1, p. 588], $b_{0}=\left|G: G^{\prime} P\right|=\left|O_{p},(G): G^{\prime}\right|$. Since G is p-nilpotent, we use notations B_{i}, P_{i}, h_{i} and t_{i} as in the proof of Theorem 1. Let $C=\left(c_{i i}\right)_{1 \leqq i, i^{\prime} \leq n}$ be the Cartan matrix for $K G$. It follows from [6, Theorem 3] that $f_{i}=h_{i} t_{i}$ and $u_{i}=p^{a} h_{i}=f_{i}\left|P_{i}\right|$, hence $c_{i i}=\left|P_{i}\right|$ and $c_{i i}=0$ if $i \neq i^{\prime}$. Since $p^{a}=t_{i}\left|P_{i}\right|$ and $\left(h_{i}, p\right)=1$, a block B_{i} has defect d if and only if $\left|P_{i}\right|=p^{d}$. Put $\left|P_{i}\right|=p^{d_{i}}$ for each i. We say that B_{i} is of type $(a),(b)$ or (c) as in the proof of Theorem 1. If B_{i} is of type $(a), B_{i}$ has defect 0 since p^{a} divides $u_{i}=f_{i}$. If B_{i} is of type (b), by [11, Lemma 7], $p=2$ and $u_{i}=2 f_{i}$, and so B_{i} has defect 1 since 2^{a} divides u_{i}. If B_{i} is of type (c), B_{i} has defect a from the proof of Theorem 1. Let $\left\{K_{1}, \ldots, K_{n}\right\}$ be the set of all p-regular conjugate classes of G and let K_{i} have p-defect k_{i}, that is to say, $\left|K_{i}\right|$ is divisible by $p^{a-k_{1}}$ and not by $p^{a-k_{1}+1}$, for each i.

Case 1. $p=2$. Since every d_{i} is 0,1 or a and

$$
C=\left[\begin{array}{ccc}
2^{d_{1}} & & 0 \\
\ddots & & \\
0 & & 2^{d_{n}}
\end{array}\right],
$$

it follows from $[\mathbf{1}, \S 16]$ that every k_{i} is also 0,1 or a. This implies that $b_{1}=\ldots=b_{a-2}=0$.
Case 2. p is odd. Since every d_{i} is 0 or a, as in Case 1 , every k_{i} is also 0 or a. Hence $b_{1}=\ldots=b_{a-2}=b_{a-1}=0$.

Conversely, suppose that (i) or (ii) holds. If (i) holds, by [10, Theorem], $J(K G)^{2}=0$, and so $J(K G)$ is commutative. So we can assume that (ii) holds. Since G is p-nilpotent, we use notations B_{i} and P_{i} as in the proof of Theorem 1. From (ii), [1, Theorem 2] and [1, p. 588] we have that the number of blocks of $K G$ with defect a is equal to the number of nonisomorphic irreducible $K G$-modules F_{i} such that $f_{i}=1$. This shows that for a block B_{i}, B_{i} has defect a if and only if $f_{i}=1$. From the proof of Theorem $1, B_{i} \cong\left(K P_{i}\right)_{f_{i}}$ for each i. If B_{i} has defect $0, J\left(B_{i}\right)=0$. If $p=2$ and B_{i} has defect $1,\left|P_{i}\right|=2$ and so $J\left(B_{i}\right)^{2} \cong\left(J\left(K P_{i}\right)^{2}\right)_{f_{i}}=0$ from [10, Theorem]. If B_{i} has defect $a, f_{i}=1$ and hence $J\left(B_{i}\right) \cong$ $J(K P)$.

Case 1. $p=2$. From (ii) every block B_{i} of $K G$ has defect 0,1 or a. Hence $J(K G)$ is commutative.

Case 2. p is odd. By (ii), every block B_{i} of $K G$ has defect 0 or a, and so $J(K G)$ is commutative. This finishes the proof of Theorem 2.

Remark 2. When p is odd, by [11, Theorem 1] (cf. [3, Corollary 5.2]), $J(K G)$ is commutative if and only if $J(K G) \subseteq Z(K G)$. But when $p=2$, this does not hold in general. We can assume that K is algebraically closed from the proof of Theorem 1. Though $J(K G)$ is commutative, $J(K G) \nsubseteq Z(K G)$ if $a \geqq 2$ and there exists a block B_{i} of $K G$ of type (b) (cf. the proof of Theorem 1). Indeed, suppose that $a \geqq 2, J(K G)$ is commutative and there is a block B_{i} of $K G$ of type (b). By [11, Lemma 7], $p=2$. Since $J(K G)$ is commutative and $a \geqq 2$, we use notations n, m, B_{i} ald P_{i} as in the proof of Theorem 1. We can write $J(K G)=\sum_{i=1}^{n} \oplus J\left(B_{i}\right)$. Since there is a block B_{i} of type $(b), \sum_{i=m+1}^{n} \oplus J\left(B_{i}\right) \neq 0$. It follows from the proof of Theorem 2 that $m=\left|G: G^{\prime} P\right|$. If B_{i} is of type (c), by the proofs of Theorems 1 and 2, it is seen that $J\left(B_{i}\right) \cong J(K P)$, and so $\left[J\left(B_{i}\right): K\right]=2^{a}-1$. Thus $[J(K G): K]=\sum_{i=1}^{m}\left[J\left(B_{i}\right): K\right]+\sum_{i=m+1}^{n}\left[J\left(B_{i}\right): K\right]>m\left(2^{a}-1\right)=\left|G: G^{\prime} P\right|\left(2^{a}-1\right)$. Hence $\left[J\left(K\left(G^{\prime} P\right)\right): K\right]>2^{a}-1$ by the proof of [11, Theorem 1]. Therefore $J(K G) \nsubseteq Z(K G)$ by [8, Theorem 2] and [9, Theorem].

An example of the above case is as follows.
Example. Assume that K is algebraically closed and $p=2$. Put $G=\langle x, y| x^{4}=y^{3}=1$, $\left.x^{-1} y x=y^{2}\right\rangle$. G is a 2 -nilpotent group with a cyclic 2 -Sylow subgroup $P=\langle x\rangle$. The decomposition matrix D for G and the Cartan matrix C for $K G$ are given as

$$
D=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

We use notations U_{i}, f_{i}, B_{i} and P_{i} as in the proof of Theorem 1. From the proof of Theorem $2,\left|P_{1}\right|=4$ and $\left|P_{2}\right|=2$. Hence $B_{1} \cong K P$ and $B_{2} \cong\left(K P_{2}\right)_{2}$. This shows that $J(K G)$ is commutative by [10, Theorem]. On the other hand, we have that $f_{1}=1, f_{2}=2$, $K G \cong U_{1} \oplus U_{2} \oplus U_{2}, B_{1}$ is of type (c) and B_{2} is of type (b). Since $y^{-1} x^{-1} y x=y$ and $G / O_{2^{\prime}}(G) \cong P$, it follows that $O_{2^{\prime}}(G)=G^{\prime}$, and so $G^{\prime} P=G$. Hence $\left[J\left(K\left(G^{\prime} P\right)\right): K\right]=$ $[J(K G): K]=|G|-\left(f_{1}^{2}+f_{2}^{2}\right)=7>3=2^{2}-1$. Thus $J(K G) \nsubseteq Z(K G)$ by [8, Theorem 2] and [9, Theorem]. Indeed, $\left\{(1+x) e,\left(1+x^{2}\right) e,\left(1+x^{3}\right) e, 1+x^{2}, x\left(1+x^{2}\right), x\left(1+x^{2}\right) y,\left(1+x^{2}\right) y^{2}\right\}$ is a K-basis of $J(K G)$, where $e=1+y+y^{2}$. Using this we have that $J(K G)$ is commutative but $J(K G) \nsubseteq Z(K G)$ since $\left\{x\left(1+x^{2}\right)\right\} y \neq y\left\{x\left(1+x^{2}\right)\right\}$.

REFERENCES

1. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
2. L. Dornhoff, Group representation theory (part B), (Dekker, 1972).
3. W. Hamernik, Group structure and properties of block ideals of the group algebra, Glasgow Math. J. 16 (1975), 22-28.
4. G. O. Michler, Blocks and centers of group algebras, in Lectures on rings and modules, Lecture Notes in Mathematics 246 (Springer-Verlag, 1972), 429-563.
5. K. Morita, On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. of Tokyo Bunrika Daigaku A 4 (1951), 177-194.
6. M Osima, On primary decomposable group rings, Proc. Phys.-Math. Soc. Japan 24 (1942), 1-9.
7. D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc. (3) 20 (1970), 409-437.
8. D. A. R. Wallace, Note on the radical of a group algebra, Proc. Cambridge Philos. Soc. 54 (1958), 128-130.
9. D. A. R. Wallace, Group algebras with central radicals, Proc. Glasgow Math. Assoc. 5 (1962), 103-108.
10. D. A. R. Wallace, Group algebras with radicals of square zero, Proc. Glasgow Math. Assoc. 5 (1962), 158-159.
11. D. A. R. Wallace, On the commutativity of the radical of a group algebra, Proc. Glasgow Math. Assoc. 7 (1965), 1-8.

Department of Mathematics

Tsukuba University
Sakura-mura, Ibaraki
300-31, JAPAN

