REMARKS ON THE COMMUTATIVITY OF THE RADICALS OF GROUP ALGEBRAS

by SHIGEO KOSHITANI

(Received 15 August, 1977)

Let K be an arbitrary field with characteristic p > 0, G a finite group of order $p^a g'$ with (p, g') = 1, P a p-Sylow subgroup of G and G' the commutator subgroup of G. For a ring R denote by J(R) the Jacobson radical of R and by Z(R) the centre of R. We write KG for the group algebra of G over K.

On the commutativity of J(KG) there are works of D. A. R. Wallace [11] and W. Hamernik [3]. The first aim of this paper is to investigate the structure of G when J(KG) is commutative. Our result can be stated as follows: if J(KG) is commutative and $J(KG)^2 \neq 0$, then $N_G(P) = C_G(P)$ and $N_G(P)$ is abelian, where $N_G(P)$ and $C_G(P)$ are the normalizer of P in G and the centralizer of P in G, respectively.

D. A. R. Wallace [11] and W. Hamernik [3] obtained a necessary and sufficient condition on G for J(KG) to be commutative when p is odd. Indeed, they proved that when p is odd and when G is a nonabelian group of order divisible by p, J(KG) is commutative if and only if G'P is a Frobenius group with complement P with kernel G'. So in the present paper we shall obtain a necessary and sufficient condition of G for J(KG) to be commutative for any prime number p not necessarily odd. That is to say, we shall prove that J(KG) is commutative if and only if G is a group of the following two types: (i) |G| is not divisible by 2^2 when p = 2, and |G| is not divisible by p when p is odd; (ii) G is a p-nilpotent group with an abelian p-Sylow subgroup P, $b_0 = |O_{p'}(G):G'|$, $b_1 = \ldots = b_{a-2} = 0$, and if p is odd, $b_{a-1} = 0$, where b_k is the number of p-regular conjugate classes K_i of G such that the number of elements of K_i is divisible by p^k and not by p^{k+1} for $k = 0, \ldots, a$. By [11, Theorem 1] and [3, Corollary 5.2], when p is odd, J(KG) is commutative if and only if $J(KG) \subseteq Z(KG)$. But when p = 2, this does not hold in general.

Throughout this paper we shall use the following notations. Denote by [V:K] the K-dimension of a K-vector space V. If S is a subset of G, |S| will denote the number of elements of S, $N_G(S)$ and $C_G(S)$ will denote the normalizer of S in G and the centralizer of S in G, respectively, and let $\hat{S} = \sum_{s \in S} s$ in KG when $S \neq \emptyset$ and let $\hat{S} = 0$ in KG when

 $S = \emptyset$. For a positive integer t and a ring R we write R_t for the ring of all $t \times t$ matrices with entries in R.

To begin with we shall study G when J(KG) is commutative.

THEOREM 1. Suppose that |G| is divisible by 2^2 when p = 2 and that |G| is divisible by p when p is odd. If J(KG) is commutative, then $N_G(P) = C_G(P)$ and $N_G(P)$ is abelian, where P is a p-Sylow subgroup of G.

Proof. Since KG/J(KG) is a separable K-algebra (cf. [4, Proposition 12.11]), $J(EG) = E \bigotimes_{K} J(KG)$ for any extension field E of K. So we may assume that K is algebraically

Glasgow Math. J. 20 (1979) 63-68.

SHIGEO KOSHITANI

closed. Let $1 = \sum_{i=1}^{n} \sum_{j=1}^{f_i} e_{ij}$ be a decomposition of the unit element of KG into a sum of mutually orthogonal primitive idempotents of KG such that $KGe_{ij} \cong KGe_{i'j'}$ if and only if i = i'. Set $e_i = e_{i1}$, $U_i = KGe_i$, $F_i = U_i/J(KG)U_i$ and $u_i = [U_i:K]$, and hence $f_i = [F_i:K]$ for each *i*. Let F_1 be the trivial KG-module, and so $f_1 = 1$.

By [11, Theorem 2], G is p-nilpotent and P is abelian. So KG is primary decomposable from [6, Theorem 1]. Thus each block of KG contains, up to isomorphism, only one irreducible KG-module. Put $B_i = \sum_{j=1}^{f_i} \bigoplus KGe_{ij}$ for each *i*. B_1, \ldots, B_n are all blocks of KG. Set $H = O_{p'}(G)$, the largest normal subgroup of G of order prime to p. Since G is p-nilpotent, it follows from [5, Theorems 2, 7] that

$$B_i \cong KHe'_{i1} \otimes_K K^c P_i \otimes_K K_i$$
, as K-algebras,

where e'_{i1} is a centrally primitive idempotent of KH, $G_i = \{x \in G \mid x^{-1}e'_{i1}x = e'_{i1}\}, t_i = |G:G_i|, P_i$ is a p-Sylow subgroup of G_i and K^cP_i is a twisted group ring of P_i over K with respect to the factor set c for each i = 1, ..., n. Since K is an algebraically closed field with characteristic p > 0 and P_i is a p-group, $K^cP_i \cong KP_i$ as K-algebras for each i (cf. [7, Lemma 2.1]). Hence

$$B_i \cong KHe'_{i1} \otimes_K KP_i \otimes_K K_i$$
, as K-algebras.

Put $h_i^2 = [KHe'_{i1}: K]$ and $h_i > 0$. By [6, Theorem 3], $f_i = h_i t_i$. This shows that $B_i \cong (KP_i)_{f_i}$ as K-algebras and that

$$J(B_i) \cong (J(KP_i))_{f_i} \tag{(*)}$$

for each *i*. Now, let us divide B_1, \ldots, B_n into the following three types:

(a) $J(B_i) = 0$. (b) $J(B_i) \neq 0$, $J(B_i)^2 = 0$. (c) $J(B_i)^2 \neq 0$.

When B_i is of type (a) or (b), f_i is divisible by p. Indeed, if B_i is of type (a), $u_i = f_i$ and so p^a divides f_i from [1, (18)]. If B_i is of type (b), by [11, Lemma 7], p = 2 and $u_i = 2f_i$, and so f_i is divisible by 2 since $a \ge 2$ and 2^a divides u_i from [1, (18)]. Hence the principal block B_1 is of type (c). By rearranging the numbers $2, \ldots, n$, we may assume that B_1, \ldots, B_m are of type (c) and that B_{m+1}, \ldots, B_n are of type (a) or (b) for some $m \le n$. If B_i is of type (c), since J(KG) is commutative, it follows from (*) that $f_i = 1$ and so $h_i = t_i = 1$. This implies that B_1, \ldots, B_m are all blocks of KG with defect a.

Next, since P is an abelian p-Sylow subgroup of G and G is p-nilpotent, by [5, §3 (p. 184)], $N_G(P) = C_G(P)$. Set $N = N_G(P)$ and $\tilde{H} = H \cap N = O_{p'}(N)$. Since N is p-nilpotent, it follows from [6, Theorem 1] and [5, Lemma 2] that m is equal to the number of blocks of KN. Let $1 = \sum_{i=1}^{m} \sum_{j=1}^{\tilde{I}_i} \tilde{e}_{ij}$ be a decomposition of the unit element of KN into a sum of mutually orthogonal primitive idempotents of KN such that $KN\tilde{e}_{ij} \cong KN\tilde{e}_{i'j'}$ if and only if i = i'. Put $\tilde{e}_i = \tilde{e}_{i,1}$, $\tilde{U}_i = KN\tilde{e}_i$, $\tilde{F}_i = \tilde{U}_i/J(KN)\tilde{U}_i$ and $\tilde{u}_i = [\tilde{U}_i:K]$, and hence

RADICALS OF GROUP ALGEBRAS

 $\tilde{f}_i = [\tilde{F}_i : K]$ for each *i*. Set $\tilde{B}_i = \sum_{j=1}^{f_i} \bigoplus KN\tilde{e}_{ij}$ for each *i*, and so $\tilde{B}_1, \ldots, \tilde{B}_m$ are all blocks of KN. Since N is p-nilpotent, as for B_i , we can write

$$\tilde{B}_i \cong K \tilde{H} \tilde{e}'_{i1} \otimes_K K \tilde{P}_i \otimes_K K_L$$
, as K-algebras,

where \tilde{e}'_{i1} is a centrally primitive idempotent of $K\tilde{H}$, $\tilde{G}_i = \{y \in N \mid y^{-1}\tilde{e}'_{i1}y = \tilde{e}'_{i1}\}$, $\tilde{t}_i = |N:\tilde{G}_i|$ and \tilde{P}_i is a p-Sylow subgroup of \tilde{G}_i for each i = 1, ..., m. Since P is normal in N, all blocks of KN have defect a. Put $\tilde{h}_i^2 = [K\tilde{H}\tilde{e}'_{i1}:K]$ and $\tilde{h}_i > 0$. By [6, Theorem 3], $\tilde{f}_i = \tilde{h}_i \tilde{t}_i$. Hence \tilde{t}_i is not divisible by p and this shows that $\tilde{t}_i = 1$ for all *i*. This implies that \tilde{e}'_{i1} is a centrally primitive idempotent of KN and that $\tilde{P}_i = P$ for all *i*.

By rearranging the numbers $1, \ldots, m$, we can assume that B_i corresponds to \tilde{B}_i through the Brauer homomorphism for each $i = 1, \ldots, m$ (cf. [2, Lemma 56.1, Theorem 58.3 (Brauer's first main theorem)]). Fix any *i* such that $1 \le i \le m$. Since $t_i = 1$, e'_{i1} is a centrally primitive idempotent of KG, and so we may write $e'_{i1} = e_i$ since $f_i = 1$. Put $B = B_i$, $e = e'_{i1} = e_i$, $\tilde{B} = \tilde{B}_i$ and $\tilde{e} = \tilde{e}'_{i1}$. Let $\{K_r\}$ be the set of all conjugate classes of G. The Brauer homomorphism $\sigma: Z(KG) \to Z(KN)$ is defined as $\sigma(K_r) = K_r \cap N$ for each *r*. We know that $\sigma(e) = \tilde{e}$. *e* is a centrally primitive idempotent of KH and \tilde{e} is a centrally primitive idempotent of $K\tilde{H}$. Thus, if we let $\{L_i\}$ be the set of all conjugate classes of H and if we define $\sigma': Z(KH) \to Z(K\tilde{H})$ as $\sigma'(\widehat{L_t}) = \widehat{L_t} \cap N$ for each *t*, it follows that $\sigma'(e) = \tilde{e}$. On the other hand, [KHe:K] = 1, and so KHe = Ke. Take any $h \in \tilde{H}$. We shall claim that $h\tilde{e} \in K\tilde{e}$. Since KHe = Ke, we can write $he = \delta e$ for some $\delta \in K$. Let $e = \sum_i \alpha_i$. $\widehat{L_i}$, where $\alpha_i \in K$. Thus, $\tilde{e} = \sigma'(e) = \sum_i \alpha_i$. $(\widehat{L_t} \cap N)$. Since $\sum_i \alpha_i \cdot h\widehat{L_t} = \sum_i \delta \alpha_i$. $\widehat{L_t}$, it is seen that

$$\sum_{t} \alpha_{t} \cdot h(\widehat{L_{t} \cap N}) + \sum_{t} \alpha_{t} \cdot h(\widehat{L_{t} \setminus N}) = \sum_{t} \delta \alpha_{t} \cdot (\widehat{L_{t} \cap N}) + \sum_{t} \delta \alpha_{t} \cdot (\widehat{L_{t} \setminus N}).$$

For each $x \in H$, $hx \in \tilde{H}$ if and only if $x \in N$. Hence

$$\sum_{t} \alpha_{t} \cdot h(\widehat{L_{t} \cap N}) = \sum_{t} \delta \alpha_{t} \cdot (\widehat{L_{t} \cap N}).$$

This implies that $h\tilde{e} \in K\tilde{e}$. Hence $K\tilde{H}\tilde{e} \subseteq K\tilde{e}$ and so $K\tilde{H}\tilde{e} = K\tilde{e}$. Therefore $[K\tilde{H}\tilde{e}:K] = 1$.

Consequently, $\tilde{h_i} = 1$ for all *i*. This shows that every irreducible $K\tilde{H}$ -module is of K-dimension one, and so \tilde{H} is abelian. Hence N is abelian since $N = \tilde{H} \times P$. This completes the proof.

REMARK 1. Assume |P|=2 or 1 if p=2, and assume |P|=1 if p is odd. In this case, from [10, Theorem] and the proof of Theorem 1, $J(KG)^2=0$, and so J(KG) is commutative. Since G is a p-nilpotent group with an abelian p-Sylow subgroup P, by the proof of Theorem1, $N_G(P) = C_G(P)$. But $N_G(P)$ is nonabelian in general. Indeed, if we set that H is a nonabelian finite group of order prime to p and that $G = H \times P$, then $G = N_G(P) = C_G(P)$ and $N_G(P)$ is nonabelian.

Next, we shall have the following main theorem of this paper. This gives a group-theoretical condition of G for J(KG) to be commutative.

SHIGEO KOSHITANI

THEOREM 2. For an arbitrary prime number p, J(KG) is commutative if and only if G is a group of the following two types:

(i) |G| is not divisible by 2^2 when p = 2, and |G| is not divisible by p when p is odd.

(ii) G is a p-nilpotent group with an abelian p-Sylow subgroup P. $b_0 = |O_p(G): G'|$, $b_1 = \ldots = b_{a-2} = 0$, and if p is odd, $b_{a-1} = 0$, where $|P| = p^a$ and b_k is the number of p-regular conjugate classes K_j of G such that $|K_j|$ is divisible by p^k and not by p^{k+1} for $k = 0, \ldots, a$.

Proof. From the proof of Theorem 1 we can assume that K is algebraically closed. So we use notations n, U_i , F_i , u_i and f_i as in the proof of Theorem 1. Put $H = O_{p'}(G)$.

Suppose that J(KG) is commutative and that |G| is divisible by 2^2 when p = 2, and is divisible by p when p is odd. By [11, Theorem 2], G is a p-nilpotent group with an abelian p-Sylow subgroup P. From the proof of Theorem 1, the number of blocks of KGwith defect a is equal to the number of nonisomorphic irreducible KG-modules F_i such that $f_i = 1$. Thus, by [1, Theorem 2] and [1, p. 588], $b_0 = |G:G'P| = |O_{p'}(G):G'|$. Since Gis p-nilpotent, we use notations B_i , P_i , h_i and t_i as in the proof of Theorem 1. Let $C = (c_{ii'})_{1 \le i, i' \le n}$ be the Cartan matrix for KG. It follows from [6, Theorem 3] that $f_i = h_i t_i$ and $u_i = p^a h_i = f_i |P_i|$, hence $c_{ii} = |P_i|$ and $c_{ii'} = 0$ if $i \ne i'$. Since $p^a = t_i |P_i|$ and $(h_i, p) = 1$, a block B_i has defect d if and only if $|P_i| = p^d$. Put $|P_i| = p^{d_i}$ for each i. We say that B_i is of type (a), (b) or (c) as in the proof of Theorem 1. If B_i is of type (a), B_i has defect 0 since p^a divides $u_i = f_i$. If B_i is of type (b), by [11, Lemma 7], p = 2 and $u_i = 2f_i$, and so B_i has defect 1 since 2^a divides u_i . If B_i is of type (c), B_i has defect a from the proof of Theorem 1. Let $\{K_1, \ldots, K_n\}$ be the set of all p-regular conjugate classes of G and let K_i have p-defect k_i , that is to say, $|K_i|$ is divisible by p^{a-k_i} and not by p^{a-k_i+1} , for each i.

Case 1. p = 2. Since every d_i is 0, 1 or a and

$$C = \begin{bmatrix} 2^{d_1} & 0 \\ \cdot & \cdot \\ 0 & 2^{d_n} \end{bmatrix},$$

it follows from [1, §16] that every k_i is also 0, 1 or a. This implies that $b_1 = \ldots = b_{a-2} = 0$.

Case 2. p is odd. Since every d_i is 0 or a, as in Case 1, every k_i is also 0 or a. Hence $b_1 = \ldots = b_{a-2} = b_{a-1} = 0$.

Conversely, suppose that (i) or (ii) holds. If (i) holds, by [10, Theorem], $J(KG)^2=0$, and so J(KG) is commutative. So we can assume that (ii) holds. Since G is p-nilpotent, we use notations B_i and P_i as in the proof of Theorem 1. From (ii), [1, Theorem 2] and [1, p. 588] we have that the number of blocks of KG with defect a is equal to the number of nonisomorphic irreducible KG-modules F_i such that $f_i = 1$. This shows that for a block B_i , B_i has defect a if and only if $f_i = 1$. From the proof of Theorem 1, $B_i \cong (KP_i)_{f_i}$ for each i. If B_i has defect 0, $J(B_i)=0$. If p=2 and B_i has defect 1, $|P_i|=2$ and so $J(B_i)^2 \cong (J(KP_i)^2)_{f_i} = 0$ from [10, Theorem]. If B_i has defect a, $f_i = 1$ and hence $J(B_i) \cong$ J(KP).

Case 1. p = 2. From (ii) every block B_i of KG has defect 0, 1 or a. Hence J(KG) is commutative.

Case 2. p is odd. By (ii), every block B_i of KG has defect 0 or a, and so J(KG) is commutative. This finishes the proof of Theorem 2.

REMARK 2. When p is odd, by [11, Theorem 1] (cf. [3, Corollary 5.2]), J(KG) is commutative if and only if $J(KG) \subseteq Z(KG)$. But when p = 2, this does not hold in general. We can assume that K is algebraically closed from the proof of Theorem 1. Though J(KG) is commutative, $J(KG) \notin Z(KG)$ if $a \ge 2$ and there exists a block B_i of KG of type (b) (cf. the proof of Theorem 1). Indeed, suppose that $a \ge 2$, J(KG) is commutative and there is a block B_i of KG of type (b). By [11, Lemma 7], p = 2. Since J(KG) is commutative and $a \ge 2$, we use notations n, m, B_i and P_i as in the proof of Theorem 1. We can write $J(KG) = \sum_{i=1}^{n} \bigoplus J(B_i)$. Since there is a block B_i of type (b), $\sum_{i=m+1}^{n} \bigoplus J(B_i) \neq 0$. It follows from the proof of Theorem 2 that m = |G:G'P|. If B_i is of type (c), by the proofs of Theorems 1 and 2, it is seen that $J(B_i) \cong J(KP)$, and so $[J(B_i):K] = 2^a - 1$. Thus $[J(KG):K] = \sum_{i=1}^{m} [J(B_i):K] + \sum_{i=m+1}^{n} [J(B_i):K] > m(2^a - 1) = |G:G'P| (2^a - 1)$. Hence $[J(K(G'P)):K] > 2^a - 1$ by the proof of [11, Theorem 1]. Therefore $J(KG) \notin Z(KG)$ by [8, Theorem 2] and [9, Theorem].

An example of the above case is as follows.

EXAMPLE. Assume that K is algebraically closed and p = 2. Put $G = \langle x, y | x^4 = y^3 = 1$, $x^{-1}yx = y^2 \rangle$. G is a 2-nilpotent group with a cyclic 2-Sylow subgroup $P = \langle x \rangle$. The decomposition matrix D for G and the Cartan matrix C for KG are given as

$$D = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$$

We use notations U_i , f_i , B_i and P_i as in the proof of Theorem 1. From the proof of Theorem 2, $|P_1| = 4$ and $|P_2| = 2$. Hence $B_1 \cong KP$ and $B_2 \cong (KP_2)_2$. This shows that J(KG) is commutative by [10, Theorem]. On the other hand, we have that $f_1 = 1$, $f_2 = 2$, $KG \cong U_1 \oplus U_2 \oplus U_2$, B_1 is of type (c) and B_2 is of type (b). Since $y^{-1}x^{-1}yx = y$ and $G/O_{2'}(G) \cong P$, it follows that $O_{2'}(G) = G'$, and so G'P = G. Hence $[J(K(G'P)):K] = [J(KG):K] = |G| - (f_1^2 + f_2^2) = 7 > 3 = 2^2 - 1$. Thus $J(KG) \notin Z(KG)$ by [8, Theorem 2] and [9, Theorem]. Indeed, $\{(1+x)e, (1+x^2)e, (1+x^3)e, 1+x^2, x(1+x^2), x(1+x^2)y, (1+x^2)y^2\}$ is a K-basis of J(KG), where $e = 1 + y + y^2$. Using this we have that J(KG) is commutative but $J(KG) \notin Z(KG)$ since $\{x(1+x^2)\}y \neq y\{x(1+x^2)\}$.

REFERENCES

1. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.

2. L. Dornhoff, Group representation theory (part B), (Dekker, 1972).

3. W. Hamernik, Group structure and properties of block ideals of the group algebra, Glasgow Math. J. 16 (1975), 22-28.

4. G. O. Michler, Blocks and centers of group algebras, in Lectures on rings and modules, Lecture Notes in Mathematics 246 (Springer-Verlag, 1972), 429-563.

5. K. Morita, On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. of Tokyo Bunrika Daigaku A 4 (1951), 177-194.

6. M Osima, On primary decomposable group rings, Proc. Phys.-Math. Soc. Japan 24 (1942), 1-9.

7. D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc. (3) 20 (1970), 409-437.

8. D. A. R. Wallace, Note on the radical of a group algebra, Proc. Cambridge Philos. Soc. 54 (1958), 128-130.

9. D. A. R. Wallace, Group algebras with central radicals, Proc. Glasgow Math. Assoc. 5 (1962), 103-108.

10. D. A. R. Wallace, Group algebras with radicals of square zero, Proc. Glasgow Math. Assoc. 5 (1962), 158-159.

11. D. A. R. Wallace, On the commutativity of the radical of a group algebra, Proc. Glasgow Math. Assoc. 7 (1965), 1-8.

Department of Mathematics Tsukuba University Sakura-mura, Ibaraki 300–31, Japan