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Let K be an arbitrary field with characteristic p > 0, G a finite group of order p"g'
with (p, g') = 1, P a p-Sylow subgroup of G and G' the commutator subgroup of G. For a
ring R denote by J(R) the Jacobson radical of R and by Z(R) the centre of R. We write
KG for the group algebra of G over K.

On the commutativity of J(KG) there are works of D. A. R. Wallace [11] and W.
Hamernik [3]. The first aim of this paper is to investigate the structure of G when J(KG)
is commutative. Our result can be stated as follows: if J(KG) is commutative and
J(KG)2*0, then Na(P) = CG(P) and Na(P) is abelian, where Na(P) and Cc(P) are the
normalizer of P in G and the centralizer of P in G, respectively.

D. A. R. Wallace [11] and W. Hamernik [3] obtained a necessary and sufficient
condition on G for J(KG) to be commutative when p is odd. Indeed, they proved that
when p is odd and when G is a nonabelian group of order divisible by p, J(KG) is
commutative if and only if G'P is a Frobenius group with complement P with kernel G'.
So in the present paper we shall obtain a necessary and sufficient condition of G for
J(KG) to be commutative for any prime number p not necessarily odd. That is to say, we
shall prove that J(KG) is commutative if and only if G is a group of the following two
types: (i) \G\ is not divisible by 22 when p = 2, and \G\ is not divisible by p when p is odd;
(») G is a p-nilpotent group with an abelian p-Sylow subgroup P, b0 = \Op-(G):G'\,
bt = ... = ba_2 - 0, and if p is odd, ba_x = 0, where bk is the number of p-regular conjugate
classes K, of G such that the number of elements of Ks is divisible by pk and not by pk+1

for k = 0 , . . . , a. By [11, Theorem 1] and [3, Corollary 5.2], when p is odd, J(KG) is
commutative if and only if J(KG) £ Z(KG). But when p = 2, this does not hold in general.

Throughout this paper we shall use the following notations. Denote by [V:iC] the
K-dimension of a it-vector space V. If S is a subset of G, \S\ will denote the number of
elements of S, Na(S) and CG(S) will denote the normalizer of S in G and the centralizer
of S in G, respectively, and let S= £ s in KG when S# 0 and let S = 0 in KG when

seS

S = 0 . For a positive integer t and a ring R we write R, for the ring of all t x t matrices
with entries in R.

To begin with we shall study G when J(KG) is commutative.

THEOREM 1. Suppose that \G\ is divisible by 22 when p = 2 and that \G\ is divisible by
p when p is odd. If J(KG) is commutative, then NG(P) = CC(P) and NC(P) is abelian,
where P is a p-Sylow subgroup of G.

Proof. Since KGU(KG) is a separable K-algebra (cf. [4, Proposition 12.11]), J(EG) =
E®KJ(KG) for any extension field E of K. So we may assume that K is algebraically
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closed. Let 1 = £ £ eii be a decomposition of the unit element of KG into a sum of

mutually orthogonal primitive idempotents of KG such that KGe{i = KGeir if and only if
i = i'. Set e, = en, U, = KGeit Ft = UJJ(KG)U, and u, = [17,: K], and hence /, = [F,: K] for
each i. Let Fj be the trivial KG-module, and so /j= 1.

By [11, Theorem 2], G is p-nilpotent and P is abelian. So KG is primary decomposa-
ble from [6, Theorem 1]. Thus each block of KG contains, up to isomorphism, only one

irreducible KG-module. Put B, = £ ^KG^ for each i. B1; ..., Bn are all blocks of KG.

Set H=OP(G), the largest normal subgroup of G of order prime to p. Since G is
p-nilpotent, it follows from [5, Theorems 2,7] that

Bi = KHe'il®KKcPi<8)KKtl, as K-algebras,

where e'n is a centrally primitive idempotent of KH, Gj ={xe G \ x~1e'nx = e'n}, t, =
\G: Gj|, Pj is a p-Sylow subgroup of Gt and KcPt is a twisted group ring of Pf over K with
respect to the factor set c for each i = 1 , . . . , n. Since K is an algebraically closed field
with characteristic p > 0 and Pt is a p-group, KcPj = KP? as K-algebras for each i (cf. [7,
Lemma 2.1]). Hence

Bf = KHea®KKPj®KKv as K-algebras.

Put h] = [KHe'n: K] and ht > 0. By [6, Theorem 3], /f = H .̂ This shows that Bt = (KPj)fl as
K-algebras and that

for each i. Now, let us divide Bx,...,Bn into the following three types:

(a) J(B,)=0.
(b) J(B,)*0, /(Bf)

2 = 0.
(c)

When Bj is of type (a) or (b), ft is divisible by p. Indeed, if Bf is of type (a), ut = ft and so
p" divides /f from [1, (18)]. If Bt is of type (b), by [11, Lemma 7], p = 2 and 14 = 2/f, and
so /j is divisible by 2 since a ̂ 2 and 2" divides Uj from [1, (18)]. Hence the principal
block Bx is of type (c). By rearranging the numbers 2 , . . . , n, we may assume that
Bu...,Bm are of type (c) and that B m + 1 , . . . , Bn are of type (a) or (b) for some m ̂  n. If
Bj is of type (c), since J(KG) is commutative, it follows from (*) that ft = 1 and so
hi = fj = 1. This implies that Bu...,Bm are all blocks of KG with defect a.

Next, since P is an abelian p-Sylow subgroup of G and G is p-nilpotent, by [5, §3
(p. 184)], NG(P)=CG(P). Set N = NG(P) and H = H D N = Op.(N). Since N is p-
nilpotent, it follows from [6, Theorem 1] and [5, Lemma 2] that m is equal to the number

m J

of blocks of KN. Let 1 = X £ etj be a decomposition of the unit element of KN into a
i W l

sum of mutually orthogonal primitive idempotents of KN such that KNify = KNeir if
and only if i = i'. Put ef = en, U{ = KNet, Fl = UJJ{KN)Ul and ui = [l/ i :K], and hence
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I = [Ff: K] for each i. Set Bt = £ {BKNe^ for each i, and so Bu ..., Bm are all blocks of

KN. Since N is p-nilpotent, as for Bh we can write

B; s KHe'n ®KKPi ®K^(i, as K-algebras,
where e'n is a centrally primitive idempotent of KH, Gi = {yeN\y~1e'ny = e'n}, fj =
\N: Gj| and Pf is a p-Sylow subgroup of G, for each i = 1 , . . . , m. Since P is normal in N,
all blocks of KN have defect a. Put h? = [KHe'n:K] and fc,>0. By [6, Theorem3],
/i = hji. Hence Ff is not divisible by p and this shows that ff = 1 for all i. This implies that
e'n is a centrally primitive idempotent of KN and that Pf = P for all i.

By rearranging the numbers 1, , m, we can assume that B, corresponds to B,
through the Brauer homomorphism for each i = 1 , . . . , m (cf. [2, Lemma 56.1, Theorem 58.3
(Brauer's first main theorem)]). Fix any i such that 1 g i ^ m. Since tt = 1, e^ is a centrally
primitive idempotent of KG, and so we may write e'n = ei since /f = l. Put B = Bh

e = e'n = eh B = B{ and e = en. Let {Kr} be the set of all conjugate__classes of G. The
Brauer homomorphism or: Z(KG)-+Z(KN) is defined as cr(Kr) = KrC\N for each r. We
know that o-(e) = c. c is a centrally primitive idempotent of KH and e is a centrally
primitive idempotent of KH. Thus, if we let_{L,}_be_the set of all conjugate classes of H
and if we define a': Z(KH)^Z(KH) as a'(L,) = L,HN for each (, it follows that a'(e) = e.
On the other hand, [KHe :K]=l, and so KHe = Ke. Take any h e H. We shall claim that

fie e .Ke. Since KHe = Ke, we can write he = 8e for some S e K. Let e = £ a,. L,, where

a, 6 K Thus, e = o-'(e) = I a,. (L, D,N). Since I a,. hL, = I 8a, ."L7, it is seen that

X a,. h(VVN) + X a,• fc(LA>0 = I Sa,. (Cn'N) + £ Sa,. (LAN),
i i < t

For each x € H, hx € H if and only if x e N. Hence

£ «,. JtaTrTN) = £ sa,. (LTTIN).

This implies that heeKe. Hence KHe^Ke and so KHe = Ke. Therefore [KHe:K]= 1.
Consequently, hf = 1 for all i. This shows that every irreducible KH-module is of

K-dimension one, and so H is abelian. Hence N is abelian since N = H*P. This
completes the proof.

REMARK 1. Assume \P\ - 2 or 1 if p = 2, and assume \P\ = 1 if p is odd. In this case,
from [10, Theorem] and the proof of Theorem 1, J(KG)2=0, and so J(KG) is commuta-
tive. Sinlce G is a p-nilpotent group with an abelian p-Sylow subgroup P, by the proof of
Theoreml, NG(P) = CG(P). But NG(P) is nonabelian in general. Indeed, if we set that H
is a nonabelian finite group of order prime to p and that G = HxP, then G-NC(P) =
CG(P) and NG(P) is nonabelian.

Next, we shall have the following main theorem of this paper. This gives a group-
theoretical condition of G for J(KG) to be commutative.
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THEOREM 2. For an arbitrary prime number p, J(KG) is commutative if and only if G is
a group of the following two types:

(i) \G\ is not divisible by 22 when p = 2, and \G\ is not divisible by p when p is odd.
(ii) G is a p-nilpotent group with an abelian p-Sylow subgroup P. 60 = |Op-(G):G'|,

bx =.. . = ba_2 = 0, and if p is odd, ba^1 = 0, where \P\ = pa and bk is the number of
p-regular conjugate classes K, of G such that \Kj\ is divisible by pk and not by pk+1 for
k = 0 , . . . . a.

Proof. From the proof of Theorem 1 we can assume that K is algebraically closed. So
we use notations n, Uh Ff, uf and /• as in the proof of Theorem 1. Put H= OP'(G).

Suppose that J(KG) is commutative and that \G\ is divisible by 22 when p = 2, and is
divisible by p when p is odd. By [11, Theorem 2], G is a p-nilpotent group with an
abelian p-Sylow subgroup P. From the proof of Theorem 1, the number of blocks of KG
with defect a is equal to the number of nonisomorphic irreducible KG-modules Ft such
that /, = 1. Thus, by [1, Theorem 2] and [1, p. 588], b0 = \G: G'P\ = \Op.(G): G'\. Since G
is p-nilpotent, we use notations Bh Pit h; and tt as in the proof of Theorem 1. Let
C = (cii')isu'sn b e the Cartan matrix for KG. It follows from [6, Theorem 3] that /• = hfi
and Uj = pah{ = /f |Pj|, hence cu = \P\ and ciV = 0 if i? i'. Since p" = tt \Pt\ and {hh p) = 1, a
block Bj has defect d if and only if \P{\ = pd. Put \Pt\ = pd< for each i. We say that Bf is of
type (a), (b) or (c) as in the proof of Theorem 1. If Bt is of type (a), B, has defect 0 since
p" divides uf = /;. If Bj is of type {b), by [11, Lemma 7], p = 2 and uf = 2/j, and so Bt has
defect 1 since 2" divides u;. If Bt is of type (c), Bt has defect a from the proof of Theorem
1. Let {Ki,..., Kn} be the set of all p-regular conjugate classes of G and let K, have
p-defect kh that is to say, \Kt\ is divisible by pa~k' and not by p""ki+1, for each i.

Case 1. p = 2. Since every d{ is 0, 1 or a and

C =
0

.0

it follows from [1, §16] that every kt is also 0, 1 or a. This implies that bx =... = ba_2 = 0.
Case 2. p is odd. Since every dt is 0 or a, as in Case 1, every k; is also 0 or a. Hence

b, = ... = ba_2=ba_1 = O.
Conversely, suppose that (i) or (ii) holds. If (i) holds, by [10, Theorem], J(KG)2=0,

and so J(KG) is commutative. So we can assume that (ii) holds. Since G is p-nilpotent,
we use notations B, and P{ as in the proof of Theorem 1. From (ii), [1, Theorem 2] and [1,
p. 588] we have that the number of blocks of KG with defect a is equal to the number of
nonisomorphic irreducible KG-modules Ft such that ft = 1. This shows that for a block Bt,
Bj has defect a if and only if ft = 1. From the proof of Theorem 1, B; = (KPi)fi for each i.
If Bf has defect 0, J(Bf) = 0. If p = 2 and Bf has defect 1, |Pf| = 2 and so
J(Bi)

2s(J(KPj)
2)/i=0 from [10, Theorem]. If B, has defect a, /, = 1 and hence J(Bt) =

J(KP).
Case 1. p = 2. From (ii) every block Bf of KG has defect 0, 1 or a. Hence J(KG) is

commutative.
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Case 2. p is odd. By (»), every block Bf of KG has defect 0 or a, and so J(KG) is
commutative. This finishes the proof of Theorem 2.

REMARK 2. When p is odd, by [11, Theorem 1] (cf. [3, Corollary 5.2]), J{KG) is
commutative if and only if J(KG) <i Z{KG). But when p = 2, this does not hold in general.
We can assume that K is algebraically closed from the proof of Theorem 1. Though
J(KG) is commutative, J(KG) ^ Z(KG) if a s 2 and there exists a block Bf of KG of type
(b) (cf. the proof of Theorem 1). Indeed, suppose that a ^ 2 , J(KG) is commutative and
there is a block Bf of KG of type (b). By [11, Lemma 7], p = 2. Since J(KG) is
commutative and a §2 , we use notations n, m, Bf and Pf as in the proof of Theorem 1.

We can write J(KG) = £ © J(Bj). Since there is a block Bf of type (b), I ©/(B;) * 0.
i = l i = m + l

It follows from the proof of Theorem 2 that m = |G:G'P|. If Bf is of type (c), by
the proofs of Theorems 1 and 2, it is seen that J(Bt) = J(KP), and so [J(Bf):K] = 2 a - l .

m n

Thus [J(KG):K] = I [J(B.):K]+ I [/(BJ:K]> m(2a -1) = \G: G'P| (2a -1). Hence
i = l i = m + l

[J(K(G'P)) :K]>2a- l by the proof of [11, Theorem 1]. Therefore J(KG)£Z(KG) by
[8, Theorem 2] and [9, Theorem].

An example of the above case is as follows.

EXAMPLE. Assume that K is algebraically closed and p = 2. Put G = (x, y | x4 = y3 = 1,
x~1yx = y2). G is a 2-nilpotent group with a cyclic 2-Sylow subgroup P = (x). The
decomposition matrix D for G and the Cartan matrix C for KG are given as

D =

We use notations Ut, ft, Bf and Pt as in the proof of Theorem 1. From the proof of
Theorem 2, |Pi| = 4 and |P2| = 2. Hence BX = KP and B2 = (KP2)2. This shows that J(KG)
is commutative by [10, Theorem]. On the other hand, we have that ^ = 1, /2 = 2,
K G s U ! © ^ © ^ , Bj is of type (c) and B2 is of type (b). Since y"1x"1yx = y and
GIO2{G) = P, it follows that O2(G)=G', and so G'P=G. Hence [J(K(G'P)):K] =
[J(KG):K] = \G\-(f2

l + fl) = l>3 = 22-l. Thus J(KG)£Z(KG) by [8, Theorem2] and
[9, Theorem]. Indeed, {(1 + x)c, (1 + x2)e, (1 + x3)e, 1 + x2, x(l + x2), x(l + x2)y, (1 + x2)y2}
is a K-basis of J(KG), where e = 1 + y + y2. Using this we have that J(KG) is commutative
but J(KG)£Z(KG) since {x(l + x2)}y* y{x(l + x2)}.
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