ON SELF-INTERSECTION NUMBER OF A SECTION ON A RULED SURFACE

MASAYOSHI NAGATA

To Professor K. Ono for his sixtieth birthday

Let E be a non-singular projective curve of genus $g \ge 0$, P the projective line and let F be the surface $E \times P$. Then it is well known that a ruled surface F^* which is birational to F is biregular to a surface which is obtained by successive elementary transformations from F (for the notion of an elementary transformation, see [3]). The main purpose of the present article is to prove the following

THEOREM 1. For any such F^* , there is a section (i.e., an irreducible curve s on F such that (s, l) = 1 for a fibre l of F^*) such that its self-intersection number (s, s) is not greater than g.

In classifying ruled surface F^* , as was noted by Atiyah [1], it is important to know the minimum value of self-intersection numbers (s, s) of sections of F^* . Our Theorem 1 is important in the respect.

The following is a key to our proof of Theorem 1:

Theorem 2. Let d be a non-negative rational integer. If Q_1, \dots, Q_{g+2d+1} are points²⁾ of F, then there is a positive divisor D of F such that (i) D goes through Q_1, \dots, Q_{g+2d+1} and (ii) D is linearly equivalent to $E \times P + \sum_{i=1}^{g+d} R_i \times P$ with a $P \in P$ and suitable $R_i \in E$.

In connection with this Theorem 2, we prove the following theorem too:

Received October 11, 1968

¹⁾ Atiyah proved that the minimum value is not greater than 2g-1 if g>0. On the other hand, it was remarked by M. Maruyama that there is an F (for every E) which carries only sections s such that $(s,s) \ge g$ (see [2]).

²⁾ In this theorem, these Q_i need not be ordinary points, namely, some of these Q_i may be infinitely near points of some ordinary points. For the definition of the term "go through" in such a case, see [3].

THEOREM 3. Let Q_1^* , \cdots , Q_{t+1}^* be independent generic points of F over a field of definition k of F. Let S^* be the set of positive divisors D of F such that (i) D goes through Q_1^* , \cdots , Q_{t+1}^* and (ii) D is linearly equivalent to $E \times P + \sum_{i=1}^t R_i \times P$ with a $P \in P$ and suitable $R_i \in E$. If $t \leq g$, then S^* is not empty and S^* dose not contain any algebraic family of positive dimension.

In appendix, we add some remarks on dimensions of algebraic families.

1. Some preliminary results, notation.

Since the case where g=0 is obvious, we assume that $g\geq 1$. P (or P') denotes a point of P. R (or R_i , R'_j , R^*_i , etc.) denotes a point of E. Q (or Q_i , Q'_j , etc.) denotes a point of F. k is a field of definition for E and F, and for the sake of simplicity, we assume that k is algebraically closed. $L(R_1, \dots, R_s)$ is the complete linear system $|E \times P + \sum_{i=1}^s R_i \times P|$. Specializations are understood with reference to k. For fundamentals on specializations of cycles, see [4] and [5].

LEMMA 1. Let d be the dimension of the complete linear system $|\sum_{i=1}^s R_i|$ on E. Let $\sum_{i=1}^s R_i^*$ be a generic member of the linear system over a field containing k and let C^* be a generic member of $L(R_1, \dots, R_s)$ over $k(R_1^*, \dots, R_s^*)$. Then

- (i) dim $L(R_1, \dots, R_s) = 2d + 1$,
- (ii) trans. $\deg_k k(C^*) = d + 1 + \text{trans. } \deg_k k(R_1^*, \dots, R_s^*),$
- (iii) if dim $|\sum_{i=1}^s R'_i| = d$ and if (R'_1, \dots, R'_s) is a specialization of (R_1^*, \dots, R_s^*) then every member of $L(R'_1, \dots, R'_s)$ is a specialization of C^* over the specialization $(R_1^*, \dots, R_s^*) \to (R'_1, \dots, R'_s)$.

Proof. Consider $E' = E \times P$. Then dim $\operatorname{Tr}_{E'}L(R_1, \dots, R_s) = d = \dim(L(R_1, \dots, R_s) - E')$, from which (i) follows readily. Now, consider loci T and U of $(C^*, R_1^*, \dots, R_s^*)$ and C^* respectively, over k. Then dim $T = \operatorname{trans.deg}_k k(R_1^*, \dots, R_s^*) + \operatorname{trans.deg}_{k(R_1^*, \dots, R_s^*)} k(C^*)$, and on the other hand, letting p denote the natural projection from T onto U, we have dim $p^{-1}(C^*) = \dim |\sum_{i=1}^s R_i| = d$. Therefore trans. $\operatorname{deg}_k k(C^*) = \dim U = \dim T - d = d+1+\operatorname{trans.deg}_k k(R_1^*, \dots, R_s^*)$, which proves (ii). As for (iii), we consider a specialization of $(C^*, R_1^*, \dots, R_s^*)$, which proves (ii). Over the specialization $(R_1^*, \dots, R_s^*) \to (R_1', \dots, R_s')$. $E \times P + \sum_i R_i^* \times P$ is specialized to $E \times P' + \sum_i R_i' \times P$, which must be a member of the specialization L^* of $L(R_1, \dots, R_s)$. Since $\dim L^* = \dim L(R_1, \dots, R_s) = d = \dim L(R_1', \dots, R_s')$ and since all

members of L^* are linearly equivalent to each other,³⁾ we see that $L^* = L(R'_1, \dots, R'_s)$. Thus Lemma 1 is proved.

LEMMA 2. Let V be a surface defined over k. If M_1, \dots, M_n are points of V and if trans. $\deg_k k(M_1, \dots, M_n) \ge 2n - \alpha$, then suitable $n - \alpha$ points among M_1, \dots, M_n are independent generic points of V over k.

Proof. We use induction argument on n. (1) If M_n is a generic point of V over $k(M_1, \dots, M_{n-1})$, then trans. $\deg_k k(M_1, \dots, M_{n-1}) \geq 2(n-1) - \alpha$. Then, by our induction assumption, there are $n-1-\alpha$ independent generic points among M_1, \dots, M_{n-1} and we see the assertion in this case. (2) Otherwise, we have trans. $\deg_k k(M_1, \dots, M_{n-1}) \geq 2(n-1) - (\alpha-1)$, and we completes the proof by our induction assumption.

2. Proof of Theorem 2.

Let R_1^* , \cdots , R_{g+d}^* be independent generic points of E over k and let C^* be a generic member of $L(R_1^*, \cdots, R_{g+d}^*)$ over $k(R_1^*, \cdots, R_{g+d}^*)$. Let Q_1^* , \cdots , $Q_{2g+2d+1}^*$ be independent generic points of C^* over $k(C^*)$. Then by Lemma 1, trans. $\deg_k k(C^*, Q_1^*, \cdots, Q_{2g+2d+1}^*) = \operatorname{trans.} \deg_k k(C^*) + 2g + 2d + 1 = d+1+d+g+2g+2d+1 = 3g+4d+2=2(2g+2d+1)-g$. Now we consider locus T of $(C^*, Q_1^*, \cdots, Q_{2g+2d+1}^*)$ and the natural projection pr from T into the (2g+2d+1)-ple product F'' of F. Since the self-intersection number (C^*, C^*) of C^* is equal to 2g+2d, we see that pr is generically a one-one correspondence between T and pr T, which shows that $\dim T = \dim \operatorname{pr} T$. Therefore, applying Lemma 2 with n=2g+2d+1, we see that there are g+2d+1 independent generic points of F among Q_1^* , \cdots , $Q_{2g+2d+1}^*$. This proves Theorem 2 in the case where $Q_1, \cdots, Q_{g+2d+1}^*$ are independent generic points of F. New we complete the proof making use of specializations.

3. Proof of Theorem 1.

As was noted at the beginning, F^* is obtained by successive elementary transformations with centers, say, P_1, \dots, P_m from F. If $m \le g$, then the proper transform of an $E \times P$ has self-intersection number $\le g$. Therefore we assume that m > g. Then there is d such that m = g + 2d or m = g + 2d + 1. By virtue of Theorem 2, there is a positive divisor D of F such that (i)

³⁾ Note that if D and D' are divisors which are linearly equivalent to each other, and if they are specialized to D_1 and D'_1 under the same specialization, then D_1 is linearly equivalent to D'_1 .

D goes through P_1, \dots, P_m and (ii) D is linearly equivalent to $E \times P + \sum_{i=1}^{g+d} R_i \times P$. Then the proper transform D' of D, or more precisely, the divisor of F^* which is the transform of $D - \sum P_i$, has self-intersection number 2g + 2d - m, which is either g or g - 1. D' has a section s of F^* as a component, and $(s, s) \leq g$. This completes our proof of Theorem 1.

4. Proof of Theorem 3.

Let P and $R_i(i = 1, \dots, t)$ be such that $Q_i^* \in R_i \times P$ and $Q_{i+1}^* \in E \times P$. Then $E \times P + \sum_{i=1}^{t} R_i \times P$ is in S^* , and therefore S^* is not empty. Assume now that there is an irreducible algebraic family S of positive dimension contained in S*. Let C be a generic member of S over $k(Q_1^*, \dots, Q_{t+1}^*)$ and let R'_i be such that $C \in L(R'_1, \dots, R'_t)$. Let $\sum_{i=1}^t R''_i$ be a generic member of $|\sum_i R_i'|$ over $k(Q_1^*, \dots, Q_{t+1}^*, R_1', \dots, R_t')$ and let C'' be a generic member of $L(R'_1, \dots, R'_t)$ over $k(Q_1^*, \dots, Q_{t+1}^*, R'_1, \dots, R'_t, R''_1,$ Let U be the locus of C'' over k and set $d = \dim |\sum_{i=1}^t R_i'|$. Lemma 1 shows that dim $U = \text{trans. deg}_k k(C'') = d+1 + \text{trans. deg}_k k(R''_1, \cdots,$ Set $u = \text{trans. deg}_k k(R''_1, \dots, R''_i)$. Then we may assume that R''_1 , \cdots , R''_u are independent generic points of E over k. Since $t \leq g$, dim $|\sum_{i=1}^{u} R_i''| = 0$, whence $d = \dim |\sum_{i=1}^{t} R_i''| \le t - u$. Thus we have that $\dim U \le t - u + 1 + u = t + 1$. Since U is defined over k and since $Q_1^*, \dots,$ Q_{t+1}^* are independent generic points, dim $S \le t + 1 - (t+1) = 0$. This completes our proof of Theorem 3.

Appendix

Our proof of Theorem 2 above really gives a proof of the following fact:

THEOREM A1. Let \mathcal{F} be an algebraic family of positive divisors on a projective variety V. If $\dim \mathcal{F} \geq d$ and if P_1, \dots, P_d are points of V, then there is a member D of \mathcal{F} such that $P_i \in D$ for all i.

If $\mathfrak F$ is a linear system, then, for a point P of V, $\{D \in \mathfrak F | P \in D\}$ forms a hyperplane of $\mathfrak F$ if $\mathfrak F$ is viewed as a projective space of dimension d. Therefore if $\mathfrak F$ is a linear system, then Theorem A1 is obvious and is well known. But, in the general case, the same reasoning cannot be given. Furthermore, if $\mathfrak F$ is an algebraic family of r-cycles (\neq divisors), then the dimension defect by the condition to go through one point is not uniform. For instance, let V be the projective space of dimension n and let $\mathfrak F$ be the family of m points which are colinear ($m \ge 3$), then dim $\mathfrak F = 2(n-1) + m$.

For $\mathfrak{F}' = \{D \in \mathfrak{F} | P \in D\}$ (where P is a point of V), $\dim \mathfrak{F}' = \dim \mathfrak{F} - n$. For $\mathfrak{F}'' = \{D \in \mathfrak{F}' | P' \in D\}$ (where P' is a point of V which is different from P), $\dim \mathfrak{F}'' = \dim \mathfrak{F}' - n$. But then, if P'' is a point of V which is different from P, P', (i) if P'' is in outside of the line going through P, P', then $\mathfrak{F}^* = \{D \in \mathfrak{F}'' | \mathfrak{F}'' \in D\}$ is empty, (ii) otherwise, $\dim \mathfrak{F}^* = \dim \mathfrak{F}'' - 1$.

Here we shall discuss such dimension defect in the general case. Our result will give another proof of Theorem A1 above.

From now on, let V be a projective variety of dimension n and let \mathfrak{F} be an (irreducible) algebraic family of positive r-cycles on V. We fix an algebraically closed, common field of definition k for V and \mathfrak{F} . Let C^* be a generic member of \mathfrak{F} over k and let P be a point of V. Denote by $\mathfrak{F} - P$ the set $\{C \in \mathfrak{F} | P \in C\}$.

Assume that there is a member C of $\mathcal{F}-P$. Then there is a point P^* of C^* such that (C^*, P^*) is specialized to (C, P). Let U be the locus of P^* over k. Then

THEOREM A2. There is an algebraic family \mathfrak{F}' such that (1) $C \in \mathfrak{F}' \subseteq \mathfrak{F} - P$ and (2) $\dim \mathfrak{F}' = \dim \mathfrak{F} + \dim (U \cap C^*) - \dim U$.

Proof. To begin with, we may assume that P^* is a generic point of an arbitrarily fixed component of $C^* \cap U$ over $k(C^*)$, whence we may assume that $\dim(U \cap C^*) = \operatorname{trans.deg}_{k(C^*)} k(C^*, P^*)$. Let W and T be the locus of C^* over $k(P^*)$ and the locus of (C^*, P^*) over k respectively. Then $\dim U + \dim W = \operatorname{trans.deg}_{k(P^*)} + \operatorname{trans.deg}_{k(P^*)} k(P^*, C^*) = \dim T = \dim F + \dim(U \cap C^*)$. Thus $\dim W = \dim F + \dim(U \cap C^*) - \dim U$. Consider a specialization $W \to W'$ over $(C^*, P^*) \to (C, P)$. Then, since $C^* \in W$, we have $C \in W'$. Thus it is enough to set $\mathfrak{F}' = W'$.

From our Theorem A2, we get the following result immediately:

Let C_i^* $(i = 1, \dots, t)$ be all of the irreducible components of C^* and let P_i^* be a generic point of C_i^* over $k(C_1^*, \dots, C_i^*)$. Let V_i be the locus of P_i^* over k for each i. Then

THEOREM A3. For $P \in V$, we have

- (1) if P is not in any of V_i , then $\mathfrak{F}-P$ is empty,
- (2) otherwise, let p be the maximum of $\dim U_i$ where U_i ranges over all V_i which goes through P, then the dimension of every component of F-P is not less than $\dim \mathcal{F} + r p$.

Now, our Theorem A1 is a corollary to this.

REFERENCES

- [1] M.F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc. (3) 5 (1955), 407–434.
- [2] M. Maruyama, On classification of ruled surfaces, forthcoming in Lect. Math. Kyoto Univ.
- [3] M. Nagata, On rational surfaces I, Mem. Coll. Sci. Univ. Kyoto, (A Math.) 32-3 (1960), 351-370.
- [4] Y. Nakai- M. Nagata, Algebraic geometry, Kyoritsu, Tokyo 1957 (in Japanese).
- [5] O. Zariski, Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Mem. A.M.S. 5 (1951).

Department of Mathematics Kyoto University