Baker-Type Estimates for Linear Forms in the Values of q-Series

Keijo Väänänen and Wadim Zudilin

Abstract

We obtain lower estimates for the absolute values of linear forms of the values of generalized Heine series at non-zero points of an imaginary quadratic field \mathbb{I}, in particular of the values of q-exponential function. These estimates depend on the individual coefficients, not only on the maximum of their absolute values. The proof uses a variant of classical Siegel's method applied to a system of functional Poincaré-type equations and the connection between the solutions of these functional equations and the generalized Heine series.

1 Introduction

Let II denote the field of rational numbers or an imaginary quadratic field. In the present paper we are interested in linear independence measures for the values of the function

$$
\begin{equation*}
\phi(z)=1+\sum_{n=1}^{\infty} \frac{q^{-\operatorname{snn}(n-1) / 2}}{\mathcal{P}(1) \mathcal{P}\left(q^{-1}\right) \cdots \mathcal{P}\left(q^{-(n-1)}\right)} z^{n}, \tag{1}
\end{equation*}
$$

where s is a positive integer, q is an integer in \mathbb{I} with $|q|>1$, and the polynomial $\mathcal{P}(z) \in \mathbb{H}[z]$ of degree $\leq s$ satisfies the conditions $\mathcal{P}(0) \neq 0$ and $\mathcal{P}\left(q^{-k}\right) \neq 0$ for $k=0,1, \ldots$ Two interesting special cases are the Tschakaloff function [Tsch]

$$
T_{q}(z)=\sum_{n=0}^{\infty} q^{-n(n+1) / 2} z^{n}
$$

and the q-exponential function

$$
E_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q-1) \cdots\left(q^{n}-1\right)}=\prod_{n=1}^{\infty}\left(1+\frac{z}{q^{n}}\right)
$$

There are many results on linear independence measures of the values of $T_{q}(z)$, for these we refer to $[\mathrm{Bu}]$. Already Stihl [St] was able to obtain linear independence measure for the values of $\phi(z)$, if $\mathcal{P}(z)=\left(1-a_{1} z\right) \cdots\left(1-a_{t} z\right)$ with non-zero $a_{i} \in \mathbb{I}$ and $t<s$. From Bézivin [Be] we obtain linear independence of the values of $\phi(z)$ also in the case $\operatorname{deg} \mathcal{P}=s$, in particular, of the values of $E_{q}(z)$, but his proof is based

[^0]on Borel-Dwork-type rationality criteria, see [A], and is not quantitative (at least until now). The first quantitative linear independence measure for the values of general $\phi(z)$ was obtained in [Va2]. This paper uses Siegel's method applied to a system of functional equations of Poincaré-type and the connection between the solutions of these functional equations and $\phi(z)$ applied already in [AKV]. Another essential ingredient is the use of Padé-type approximations of the second kind for these solutions.

A variant of Siegel's method can be used to get for the values of Siegel E - and G-functions, a linear independence measure depending not only on the maximum of the absolute values of the coefficients but on individual coefficients. Baker [Ba] was the first to obtain such a result for the values of exponential function, and there are a lot of later works of this type, see, e.g., [Fe1, Fe2, Ma, Va1, So, Zu]. Such measures are not known for the values of q-series, and our aim in the present work is to give a linear independence measure depending on individual coefficients of the linear form in the values of $\phi(z)$. Our approach is mainly based on the ideas used in [Va2] and [So]. More precisely, we prove the following general result.

Theorem 1 Suppose that $\alpha_{1}, \ldots, \alpha_{m}$ are non-zero elements of II satisfying $\alpha_{i} \neq \alpha_{j} q^{l}$, $l \in \mathbb{Z}$, for all $i \neq j$. Further, suppose that either $\operatorname{deg} \mathcal{P}(z)<s$ or $\operatorname{deg} \mathcal{P}(z)=s$ and $\alpha_{i} \neq \mathcal{P}_{s} q^{n}, i=1, \ldots, m ; n=1,2, \ldots$, where \mathcal{P}_{s} is the leading coefficient of $\mathcal{P}(z)$. Then for any given $\epsilon>0$, there exists a positive constant $C=C(\epsilon)$ such that for all integers $l_{0}, l_{1}, \ldots, l_{m}$ of \mathbb{I}, not all zero, we have

$$
\begin{equation*}
\left|l_{0}+l_{1} \phi\left(\alpha_{1}\right)+\cdots+l_{m} \phi\left(\alpha_{m}\right)\right|>C\left(\bar{l}_{1} \cdots \bar{l}_{m}\right)^{-\mu(m, s)-\epsilon} \tag{2}
\end{equation*}
$$

where $\bar{l}_{i}=\max \left\{1,\left|l_{i}\right|\right\}, i=1, \ldots, m$, and

$$
\mu(m, s)=\frac{4 s \rho_{0}^{2}+4(s+2) \rho_{0}+(s+17)}{4 \rho_{0}-13 m}
$$

with

$$
\begin{equation*}
\rho_{0}=\rho_{0}(m, s)=\frac{13 m}{4}+\sqrt{\left(\frac{13 m}{4}\right)^{2}+\frac{13 m(s+2)+s+17}{4 s}} . \tag{3}
\end{equation*}
$$

Easy verification shows that

$$
\mu(m+1, s)-\mu(m, s)<13 s \quad \text { and } \quad \mu(1, s)<15 s+5 \quad \text { for } m \geq 1 \text { and } s \geq 1
$$

hence $\mu(m, s)<13 m s+2 s+5$ for all $m \geq 1$ and $s \geq 1$.
As a special corollary of Theorem 1, in which the exponent on the right of (2) can be sharpened, we have the following result for the values of the q-exponential function.

Theorem 2 Suppose that $\alpha_{1}, \ldots, \alpha_{m}$ are non-zero elements of II satisfying $\alpha_{i} \neq-q^{n}$, $i=1, \ldots, m ; n=1,2, \ldots$, and $\alpha_{i} \neq \alpha_{j} q^{l}, l \in \mathbb{Z}$, for all $i \neq j$. Then there exists a positive constant C^{\prime} such that for all integers $l_{0}, l_{1}, \ldots, l_{m}$ of \mathbb{I}, not all zero, we have

$$
\begin{equation*}
\left|l_{0}+l_{1} E_{q}\left(\alpha_{1}\right)+\cdots+l_{m} E_{q}\left(\alpha_{m}\right)\right|>C^{\prime}\left(\bar{l}_{1} \cdots \bar{l}_{m}\right)^{-(24 m+11) / 2} \tag{4}
\end{equation*}
$$

Theorems 1 and 2 improve the corresponding results of [Va2] in the case of archimedian valuation and the field II. Our theorems also partly sharpen the results of [St] when $t<s$. We also note that it would be possible to consider non-integral $q \in \mathbb{I}$, if the denominator is sufficiently small in comparision to $|q|$, but for the sake of simplicity we assume that q is an integer.

Remark 3 As shown in Section 6 below, the exponent on the right of (2) in Theorem 1 can be also sharpened for the values of the Tschakaloff function. Namely, assuming that non-zero elements $\alpha_{1}, \ldots, \alpha_{m}$ of \mathbb{I} satisfy $\alpha_{i} \neq \alpha_{j} q^{l}, l \in \mathbb{Z}$, for all $i \neq j$, with some positive constant $C^{\prime \prime}$ we have the estimate

$$
\begin{equation*}
\left|l_{0}+l_{1} T_{q}\left(\alpha_{1}\right)+\cdots+l_{m} T_{q}\left(\alpha_{m}\right)\right|>C^{\prime \prime}\left(\bar{l}_{1} \cdots \bar{l}_{m}\right)^{-(17 m+9) / 2} \tag{5}
\end{equation*}
$$

where $l_{0}, l_{1}, \ldots, l_{m}$ are any non-trivial integers of \mathbb{I}. But the estimate (5) is weaker than the earlier results obtained by using explicit Padé approximations (see [Bu, St]).

2 A Difference Equation

We shall consider the q-difference equation

$$
\begin{equation*}
\alpha z^{s} f(z)=\mathcal{P}(z) f(q z)+\mathcal{Q}(z) \tag{6}
\end{equation*}
$$

where s is a positive integer, $\alpha \in \mathbb{I}$ is non-zero, and $\mathcal{P}(z), \mathcal{Q}(z) \in \mathbb{I}[z]$ satisfy $\mathcal{P}(0) \neq 0$, $\mathcal{Q}(z) \not \equiv 0$, and $t=\operatorname{deg} \mathcal{P} \leq s$. Let us write an analytic solution (at $z=0) f(z)$ of (6) as a power series

$$
f(z)=\sum_{\nu=0}^{\infty} f_{\nu} z^{\nu}
$$

By denoting

$$
\mathcal{P}(z)=\sum_{i=0}^{t} \mathcal{P}_{i} z^{i}, \quad \mathcal{Q}(z)=\sum_{i=0}^{u} \mathcal{Q}_{i} z^{i}
$$

and using (6) we then obtain

$$
\begin{array}{ll}
\mathcal{P}_{0} q^{\nu} f_{\nu}=-\sum_{i=1}^{t} \mathcal{P}_{i} q^{\nu-i} f_{\nu-i}-\mathcal{Q}_{\nu}, & \nu=0,1, \ldots, s-1, \tag{7}\\
\mathcal{P}_{0} q^{\nu} f_{\nu}=\alpha f_{\nu-s}-\sum_{i=1}^{t} \mathcal{P}_{i} q^{\nu-i} f_{\nu-i}-\mathcal{Q}_{\nu}, & \nu \geq s,
\end{array}
$$

where we agree that $f_{\nu}=0$ for all $\nu<0$ and $Q_{\nu}=0$ for all $\nu>u$. By (7) it follows that

$$
\begin{equation*}
F_{\nu}:=\mathcal{P}_{0}^{\nu+1} q^{\nu(\nu+1) / 2} f_{\nu} \in \mathbb{Z}\left[\alpha, \mathcal{P}_{i}, Q_{i}, q\right], \quad \nu=0,1, \ldots, \tag{8}
\end{equation*}
$$

and the degree of F_{ν} with respect to $\alpha, \mathcal{P}_{i}, Q_{i}$ is $\leq \nu+1$ and with respect to q is $\leq \nu(\nu+1) / 2$. Furthermore the recursive formulae (7) also imply, as proved in [AKV], that

$$
\begin{equation*}
\left|f_{\nu}\right| \leq C_{1}^{\nu+1} \tag{9}
\end{equation*}
$$

where C_{1} (as also C_{2}, C_{3}, \ldots later) is a positive constant depending on s, q, α (or α_{i} later), $\mathcal{P}(z)$ and $Q(z)$ (or $Q_{i}(z)$ later). We also note that by using (6) the function $f(z)$ can be continued meromorphically to \mathbb{C}.

The functional equation (6) implies

$$
f(z)=-\sum_{n=1}^{\infty} \frac{q^{-s n(n-1) / 2} \mathcal{Q}\left(z q^{-n}\right)}{\mathcal{P}\left(z q^{-1}\right) \cdots \mathcal{P}\left(z q^{-n}\right)}\left(\alpha z^{s}\right)^{n-1}
$$

if $\mathcal{P}\left(z q^{-k}\right) \neq 0, k=1,2, \ldots$ If $\mathcal{Q}(z)=-\mathcal{P}(z)$, then $f(q)=\phi(\alpha)$ in (1), and thus we can consider linear independence of $\phi\left(\alpha_{1}\right), \ldots, \phi\left(\alpha_{m}\right)$ by considering a system of difference equations of the type(6). In particular,
(i) $s=1, \mathcal{P}(z)=q-z$
gives the q-exponential function $E_{q}(z)$, while
(ii) $s=1, \mathcal{P}(z) \equiv q$
gives the Tschakaloff function $T_{q}(z)$. Note that in these two cases we have

$$
\begin{align*}
& F_{\nu}=q \alpha \prod_{j=1}^{\nu-1}\left(\alpha+q^{j}\right) \quad \text { in (i) } \tag{10}\\
& F_{\nu}=q \alpha^{\nu} \quad \text { in (ii) }
\end{align*}
$$

Still another consequence of the difference equation is the iteration equation

$$
\begin{equation*}
\left(\alpha z^{s}\right)^{k} q^{u k} f\left(z q^{-k}\right)=X_{k}(z, q) f(z)+Y_{k}(z, q) \tag{11}
\end{equation*}
$$

where (see [AKV, Lemma 3])

$$
X_{k}(z, q)=q^{s k(k+1) / 2+u k} \prod_{j=1}^{k} \mathcal{P}\left(z q^{-j}\right)
$$

is independent of α and $\mathcal{Q}(z)$, and

$$
Y_{k}(z, q)=\sum_{j=1}^{k}\left(\alpha z^{s}\right)^{j-1} q^{s(k(k+1) / 2-j(j-1) / 2)+u k} Q\left(z q^{-j}\right) \prod_{l=j+1}^{k} \mathcal{P}\left(z q^{-l}\right)
$$

Further, we have

$$
\begin{equation*}
\left|X_{k}(z, q)\right| \leq C_{2}^{k}|q|^{s k(k+1) / 2} \max \{1,|z|\}^{C_{3} k} \tag{12}
\end{equation*}
$$

3 An Analytic Construction

Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{I}$ and consider a system

$$
\begin{equation*}
\alpha_{i} z^{s} f_{i}(z)=\mathcal{P}(z) f_{i}(q z)+Q_{i}(z), \quad i=1, \ldots, m \tag{13}
\end{equation*}
$$

of difference equations, where $\mathcal{Q}_{i}(z) \in \mathbb{\Pi}[z], Q_{i}(z) \not \equiv 0$. Let

$$
f_{i}(z)=\sum_{\nu=0}^{\infty} f_{i \nu} z^{\nu}, \quad i=1, \ldots, m
$$

be the analytic (at $z=0$) solution of (13). We shall construct Padé-type approximations of the second kind for these functions.

Let n_{1}, \ldots, n_{m} be positive integers, $N=n_{1}+\cdots+n_{m}$, and choose $\delta, 0<\delta<1 / m$, such that

$$
\begin{equation*}
n_{i} \geq \delta N, \quad i=1, \ldots, m \tag{14}
\end{equation*}
$$

We are looking for a polynomial

$$
\begin{equation*}
P(z)=\sum_{\mu=0}^{N} \frac{p_{\mu} z^{\mu}}{q^{\mu(\mu-1) / 2}} \not \equiv 0 \tag{15}
\end{equation*}
$$

with integer coefficients $p_{\mu} \in \mathbb{I}$, such that for all $i=1, \ldots, m$ the expansion

$$
P(z) f_{i}(z)=\sum_{k=0}^{\infty} q_{i k} z^{k}
$$

satisfies the conditions $q_{i k}=0$ for $k=N+1, N+2, \ldots, N+n_{i}-[\delta N]-1$. We have

$$
\begin{aligned}
P(z) f_{i}(z) & =\sum_{k=0}^{\infty} \sum_{\substack{\nu=0 \\
\nu \geq k-N}}^{k} \frac{f_{i \nu} p_{k-\nu}}{q^{(k-\nu)(k-\nu-1) / 2}} z^{k} \\
& =\sum_{k=0}^{\infty} \sum_{\substack{\nu=0 \\
\nu \geq k-N}}^{k} \frac{F_{i \nu} p_{k-\nu}}{\mathcal{P}_{0}^{\nu+1} q^{k(k-1) / 2+\nu(\nu-k+1)}} z^{k},
\end{aligned}
$$

where, analogously to (8), $F_{i \nu}=\mathcal{P}_{0}^{\nu+1} q^{\nu(\nu+1) / 2} f_{i \nu}$. Thus the condition $q_{i k}=0$ for $k>N$ is equivalent to

$$
\begin{equation*}
\sum_{\nu=k-N}^{k} \mathcal{P}_{0}^{k-\nu} q^{(\nu+1)(k-\nu)} F_{i \nu} p_{k-\nu}=0 \tag{16}
\end{equation*}
$$

We now choose natural numbers A and B in such a way that the numbers $A \alpha_{i}$ and the coefficients of $B \mathcal{P}(z)$ and $B Q_{i}(z)$ for $i=1, \ldots, m$ are integers in II. Multiplying the equation (16) by $\left(A B^{2}\right)^{k}$ we thus obtain a linear equation in p_{μ} with integer coefficients from II satisfying, by (8) and (9),

$$
\mid \text { coefficients }\left.\left|\leq C_{4}^{k} \max _{k-N \leq \nu \leq k}\left\{|q|^{\nu(\nu+1) / 2+(\nu+1)(k-\nu)}\right\} \leq C_{5}^{k}\right| q\right|^{k^{2} / 2}
$$

We need the condition $q_{i k}=0$ for $k=N+1, N+2, \ldots, N+n_{i}-[\delta N]-1$, and for these k we have

$$
\begin{aligned}
k & \leq N+n_{i}-\delta N=N+\left(N-n_{1}-\cdots-n_{i-1}-n_{i+1}-\cdots-n_{m}\right)-\delta N \\
& \leq 2 N-m \delta N
\end{aligned}
$$

by (14). Thus the absolute values of the coefficients are bounded by

$$
C_{6}^{N}|q|^{(2 N-m \delta N)^{2} / 2}
$$

The number of linear equations $q_{i k}=0$ is equal to

$$
\sum_{i=1}^{m}\left(n_{i}-[\delta N]-1\right)=N-m([\delta N]+1)
$$

and the number of indeterminates p_{μ} is $N+1$. Therefore Siegel's lemma (see, e.g., [Sh, Chapter 3, Lemma 13]) yields the existence of integers $p_{\mu} \in \mathbb{I}$, not all zero, such that

$$
\begin{equation*}
\left|p_{\mu}\right| \leq C_{7}^{N}|q|^{\gamma_{1} N^{2}}, \quad \gamma_{1}=\gamma_{1}(\delta)=\frac{(2-m \delta)^{2}(1-m \delta)}{2 m \delta} \tag{17}
\end{equation*}
$$

By using (10), we see that in the special cases (i) and (ii) we can replace $\gamma_{1}(\delta)$ in (17) by

$$
\begin{equation*}
\gamma_{1}^{(\mathrm{i})}(\delta)=\frac{(3-2 m \delta)(1-m \delta)}{2 m \delta} \quad \text { and } \quad \gamma_{1}^{(\mathrm{ii)}}(\delta)=\frac{1}{2} \gamma_{1}(\delta), \tag{18}
\end{equation*}
$$

respectively.
Let us define

$$
Q_{i}(z)=\sum_{k=0}^{N} q_{i k} z^{k}, \quad i=1, \ldots, m
$$

Since, for $k \leq N$,

$$
q_{i k}=\sum_{\nu=0}^{k} \frac{f_{i \nu} p_{k-\nu}}{q^{(k-\nu)(k-\nu-1) / 2}}=\sum_{\nu=0}^{k} \frac{F_{i \nu} p_{k-\nu} q^{\nu(k-\nu)}}{\mathcal{P}_{0}^{\nu+1} q^{k(k-1) / 2+\nu}}
$$

it follows that the polynomials

$$
q^{N(N+1) / 2}\left(A B^{2}\right)^{N+1} Q_{i}(z)
$$

have integer coefficients in II.
By (9) and (17), for all $k>N$, the following estimates hold:

$$
\begin{aligned}
\left|q_{i k}\right| & =\left|\sum_{\nu=k-N}^{k} \frac{f_{i \nu} p_{k-\nu}}{q^{(k-\nu)(k-\nu-1) / 2}}\right| \leq C_{1}^{k+1} C_{7}^{N}|q|^{\gamma_{1} N^{2}}\left|\sum_{\nu=k-N}^{k} \frac{1}{|q|^{(k-\nu)(k-\nu-1) / 2}}\right| \\
& \leq C_{8}^{k}|q|^{\gamma_{1} N^{2}}
\end{aligned}
$$

By defining

$$
R_{i}(z)=P(z) f_{i}(z)-Q_{i}(z), \quad i=1, \ldots, m
$$

we then obtain, for all $|z|<\left(2 C_{8}\right)^{-1}$,

$$
\begin{equation*}
\left|R_{i}(z)\right|=\left|\sum_{k=N_{i}}^{\infty} q_{i k} z^{k}\right| \leq|q|^{\gamma_{1} N^{2}} \sum_{k=N_{i}}^{\infty}\left(C_{8}|z|\right)^{k} \leq C_{9}^{N}|q|^{\gamma_{1} N^{2}}|z|^{N_{i}} \tag{19}
\end{equation*}
$$

where $N_{i}=N+n_{i}-[\delta N], i=1, \ldots, m$.
We have thus proved the following

Lemma 4 There exists a polynomial

$$
P(z)=\sum_{\mu=0}^{N} \frac{p_{\mu} z^{\mu}}{q^{\mu(\mu-1) / 2}} \not \equiv 0
$$

with integers $p_{\mu} \in \mathbb{I}$ satisfying (17) such that the polynomials

$$
q^{N(N-1) / 2} P(z), \quad q^{N(N+1) / 2}\left(A B^{2}\right)^{N+1} Q_{i}(z)
$$

have integer coefficients in I and the forms $R_{i}(z)$ satisfy the estimates (19) for all $|z|<$ $\left(2 C_{8}\right)^{-1}$.

4 An Iteration Process

Let

$$
P_{0}(z)=P(z), \quad Q_{0 i}(z)=Q_{i}(z), \quad R_{0 i}(z)=R_{i}(z)
$$

and define further

$$
\begin{equation*}
P_{j}(z)=z^{s} P_{j-1}(q z), \quad Q_{j i}(z)=-\alpha_{i}^{-1}\left(\mathcal{P}(z) Q_{j-1, i}(q z)+Q_{i}(z) P_{j-1}(q z)\right), \tag{20}
\end{equation*}
$$

where $i=1, \ldots, m, j=1,2, \ldots$ If

$$
R_{j i}(z)=P_{j}(z) f_{i}(z)-Q_{j i}(z)
$$

then from the functional equations (13) it follows that

$$
\begin{equation*}
R_{j i}(z)=\alpha_{i}^{-1} \mathcal{P}(z) R_{j-1, i}(q z), \quad i=1, \ldots, m, j=1,2, \ldots \tag{21}
\end{equation*}
$$

We are interested in the determinant

$$
\begin{aligned}
\Delta(z) & =\operatorname{det}\left(\begin{array}{lllr}
P_{0}(z) & Q_{01}(z) & \ldots & Q_{0 m}(z) \\
P_{1}(z) & Q_{11}(z) & \ldots & Q_{1 m}(z) \\
\ldots \ldots & \ldots \ldots \ldots \ldots \ldots . \ldots \ldots \\
P_{m}(z) & Q_{m 1}(z) & \ldots & Q_{m m}(z)
\end{array}\right) \\
& =(-1)^{m} \cdot \operatorname{det}\left(\begin{array}{lllr}
P_{0}(z) & R_{01}(z) & \ldots & R_{0 m}(z) \\
P_{1}(z) & R_{11}(z) & \ldots & R_{1 m}(z) \\
\ldots \ldots \ldots \ldots \ldots \ldots . \ldots \ldots \\
P_{m}(z) & R_{m 1}(z) & \ldots & R_{m m}(z)
\end{array}\right) .
\end{aligned}
$$

Assume now that none of the functions $f_{i}(z)$ is a polynomial and that $\alpha_{i} \neq \alpha_{j} q^{l}$, $l \in \mathbb{Z}$, for all $i \neq j$. Furthermore, let $\alpha \neq 0$ be an element of $\|$ satisfying $\mathcal{P}\left(\alpha q^{-k}\right) \neq 0$ for $k=1,2, \ldots$. Then (see [Va2, Lemma 3]) $\Delta(z) \not \equiv 0$. Since

$$
\operatorname{ord}_{z=0} \Delta(z) \geq N_{1}+\cdots+N_{m} \geq(m+1) N-m \delta N
$$

and

$$
\operatorname{deg}_{z} \Delta(z) \leq(m+1) N+S \frac{m(m+1)}{2}
$$

where $S=\max \left\{s, \operatorname{deg} Q_{i}(z)\right\}$, we deduce that for each $\rho>m \delta$, there exists an integer k satisfying (see [Va2, Section 5])

$$
\begin{equation*}
(\rho-m \delta) N-S \frac{m(m+1)}{2}<k \leq \rho N \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(\alpha q^{-k}\right) \neq 0 \tag{23}
\end{equation*}
$$

Let us take

$$
D_{k}=(A B)^{N+1}\left(A_{1} B\right)^{m} A_{2}^{N+S m} q^{N(N+1) / 2+k(N+S m)}
$$

A_{1} and A_{2} are nonzero rational integers such that $A_{1} \alpha_{i}^{-1}$ and $A_{2} \alpha$ are integers in II. By Lemma 1 and the recursions (20) it then follows that the numbers

$$
D_{k} P_{j}\left(\alpha q^{-k}\right), \quad D_{k} Q_{j i}\left(\alpha q^{-k}\right)
$$

are integers in II. Furthermore, by (15), (17) and (20),

$$
\begin{equation*}
\left|P_{j}\left(\alpha q^{-k}\right)\right|=\left|q^{j(j-1) / 2} \alpha q^{-k}\right|^{s}\left|P\left(\alpha q^{j-k}\right)\right| \leq C_{10}^{N}|q|^{\gamma_{1} N^{2}}, \quad j=0,1, \ldots, m \tag{24}
\end{equation*}
$$

and by (19) and (21),

$$
\begin{align*}
\left|R_{j i}\left(\alpha q^{-k}\right)\right| & =\left|\alpha_{i}^{-j} \mathcal{P}\left(\alpha q^{-k}\right) \cdots \mathcal{P}\left(\alpha q^{-k+j-1}\right)\right|\left|R_{i}\left(\alpha q^{j-k}\right)\right| \tag{25}\\
& \leq C_{11}^{N}|q|^{\gamma_{1} N^{2}-k N_{i}}, \quad j=0,1, \ldots, m,
\end{align*}
$$

if $2 C_{8}|\alpha||q|^{m}<|q|^{k}$.
We now denote $u=\max _{1 \leq i \leq m}\left\{\operatorname{deg} Q_{i}(z)\right\}$ and use (11) to obtain

$$
\begin{align*}
\hat{r}_{j i} & =\left(\alpha_{i} \alpha^{s}\right)^{k} q^{u k} R_{j i}\left(\alpha q^{-k}\right) \tag{26}\\
& =X_{k}(\alpha, q) P_{j}\left(\alpha q^{-k}\right) f_{i}(\alpha)+\left(Y_{k}(\alpha, q) P_{j}\left(\alpha q^{-k}\right)-\left(\alpha_{i} \alpha^{s}\right)^{k} q^{u k} Q_{j i}\left(\alpha q^{-k}\right)\right) \\
& =: \hat{p}_{j} f_{i}(\alpha)-\hat{q}_{j i}
\end{align*}
$$

Assume now that k satisfies (22) and (23). Let

$$
r_{j i}=\left(B A_{2}^{s}\right)^{k} D_{k} \hat{r}_{j i}=: p_{j} f_{i}(\alpha)-q_{j i}
$$

Then all $p_{j}, q_{j i}$ are integers in II and by the above consideration and (25) and (26) we obtain

$$
\begin{gather*}
\left|r_{j i}\right| \leq C_{12}^{N}|q|^{N^{2}\left(\gamma_{1}+1 / 2\right)-(\rho-m \delta) N\left(N_{i}-N\right)} \leq C_{12}^{N}|q|^{\gamma_{2} N^{2}-(\rho-m \delta) N n_{i}} \\
\gamma_{2}=\gamma_{2}(\delta, \rho)=\gamma_{1}(\delta)+\frac{1}{2}+\delta(\rho-m \delta) \tag{27}
\end{gather*}
$$

provided that $|q|^{(\rho-m \delta) N}>C_{13}$, and by the estimates (12) and (24) we have

$$
\begin{align*}
\left|p_{j}\right| & \left.\leq C_{14}^{N}|q|^{N^{2}\left(\gamma_{1}+1 / 2+\rho+s \rho^{2} / 2\right.}\right)=C_{14}^{N}|q|^{\gamma_{3} N^{2}} \\
\gamma_{3} & =\gamma_{3}(\delta, \rho)=\gamma_{1}(\delta)+\rho+\frac{1}{2}\left(1+s \rho^{2}\right) \tag{28}
\end{align*}
$$

Finally, we note that

$$
\begin{align*}
& \operatorname{det}\left(\begin{array}{cccc}
p_{0} & q_{01} & \ldots & q_{0 m} \\
p_{1} & q_{11} & \ldots & q_{1 m} \\
\ldots & \ldots & \ldots & \ldots \\
p_{m} & q_{m 1} & \ldots & q_{m m}
\end{array}\right) \tag{29}\\
& =\left(\left(B A_{2}^{s}\right)^{k} D_{k}\right)^{m+1} X_{k}(\alpha, q) \Delta\left(\alpha q^{-k}\right)\left(q^{u} \alpha^{s}\right)^{m k} \prod_{i=1}^{m} \alpha_{i}^{k} \neq 0 .
\end{align*}
$$

5 A Number-Theoretical Result

We shall require a more useful notation $\rho_{0}=\rho-m \delta$. Suppose that

$$
\rho_{0}>\frac{m\left(\gamma_{1}+1 / 2\right)}{1-m \delta}
$$

Then

$$
\rho_{0}-m \gamma_{2}=\rho_{0}-m\left(\gamma_{1}+\frac{1}{2}-\delta \rho_{0}\right)=\rho_{0}(1-m \delta)-m\left(\gamma_{1}+\frac{1}{2}\right)>0
$$

Next take an arbitrary number $\epsilon>0$ satisfying

$$
\epsilon<\frac{\rho_{0}-m \gamma_{2}}{2 m}
$$

so that we have $\rho_{0}-m\left(\gamma_{2}+2 \epsilon\right)>0$, and define
$\lambda_{0}=\max \left\{\epsilon^{-1} \log _{|q|} \max \left\{2 m, C_{12}, C_{14}\right\}, \quad 1+\epsilon^{-1}(m+1) \rho_{0}, m+\rho_{0}^{-1} \log _{|q|} C_{13}\right\}$.
Then, for any $\lambda>\lambda_{0}$, we have

$$
\begin{gather*}
\max \left\{2 m, C_{12}, C_{14}\right\}<|q|^{\mid \lambda \lambda} \tag{30}\\
(m+1) \rho_{0}<\epsilon(\lambda-1) \tag{31}\\
C_{13}<|q|^{\rho_{0}(\lambda-m)} \tag{32}
\end{gather*}
$$

Set $L_{0}=|q|^{\lambda_{0}^{2}\left(\rho_{0}-m\left(\gamma_{2}+2 \epsilon\right)\right)}$ and consider an arbitrary linear form

$$
\begin{equation*}
\ell=l_{0}+l_{1} f_{1}(\alpha)+\cdots+l_{m} f_{m}(\alpha) \tag{33}
\end{equation*}
$$

with integer coefficients $l_{i} \in \mathbb{I}$, not all zero, satisfying the condition $L=\bar{l}_{1} \bar{l}_{2} \ldots \bar{l}_{m}>$ L_{0}, where $\bar{l}_{i}=\max \left\{1,\left|l_{i}\right|\right\}$ for $i=1, \ldots, m$. Define

$$
\begin{equation*}
\lambda=\sqrt{\frac{\log _{|q|} L}{\rho_{0}-m\left(\gamma_{2}+2 \epsilon\right)}}>\lambda_{0} \tag{34}
\end{equation*}
$$

(thanks to the definition of L_{0}) and

$$
\begin{equation*}
n_{i}=\left[\frac{\log _{|q|} \bar{l}_{i}+\lambda^{2}\left(\gamma_{2}+2 \epsilon\right)}{\rho_{0} \lambda}\right], \quad i=1, \ldots, m \tag{35}
\end{equation*}
$$

Since

$$
\sum_{i=1}^{m} \frac{\log _{|q|} \bar{l}_{i}+\lambda^{2}\left(\gamma_{2}+2 \epsilon\right)}{\rho_{0} \lambda}=\frac{\log _{|q|} L+m \lambda^{2}\left(\gamma_{2}+2 \epsilon\right)}{\rho_{0} \lambda}=\lambda
$$

we deduce that

$$
\begin{equation*}
\lambda-m<N=n_{1}+\cdots+n_{m} \leq \lambda . \tag{36}
\end{equation*}
$$

In addition,

$$
\begin{aligned}
n_{i} & >\frac{\log _{|q|} \bar{l}_{i}+\lambda^{2}\left(\gamma_{2}+2 \epsilon\right)}{\rho_{0} \lambda}-1 \geq \frac{\gamma_{2}+2 \epsilon}{\rho_{0}} \lambda-1 \\
& \geq \gamma_{2} \frac{N}{\rho_{0}}=\left(\gamma_{1}+\frac{1}{2}+\delta \rho_{0}\right) \frac{N}{\rho_{0}}>\delta N
\end{aligned}
$$

as required.
We now choose k satisfying (22) or equivalently, (23) and

$$
\rho_{0} N-S \frac{m(m+1)}{2}<k \leq\left(\rho_{0}+m \delta\right) N .
$$

For the given linear form (33) there exists, by (29), an index $j \in\{0,1, \ldots, m\}$ such that

$$
\Lambda=l_{0} p_{j}+l_{1} q_{j 1}+\cdots+l_{m} q_{j m} \neq 0
$$

Since Λ is an integer in I, we have $|\Lambda| \geq 1$. By denoting for brevity $p=p_{j}, q_{i}=q_{j i}$ and $r_{i}=r_{j i}$, we then obtain by (27), (28), (30) and (36)

$$
\begin{aligned}
& |p| \leq C_{14}^{N}|q|^{\gamma_{3} N^{2}}<|q|^{\left(\gamma_{3}+\epsilon\right) \lambda^{2}} \\
& \left|r_{i}\right| \leq C_{12}^{N}|q|^{\gamma_{2} N^{2}-\rho_{0} N n_{i}}<|q|^{\left(\gamma_{2}+\epsilon\right) \lambda^{2}-\rho_{0}(\lambda-m) n_{i}} ;
\end{aligned}
$$

note that we may use (27) by (32) and (36). Since

$$
\bar{l}_{i}<|q|^{\rho_{0} \lambda\left(n_{i}+1\right)-\lambda^{2}\left(\gamma_{2}+2 \epsilon\right)}
$$

by (35), we obtain for all $i=1, \ldots, m$

$$
\begin{aligned}
\bar{l}_{i}\left|r_{i}\right| & <|q|^{-\epsilon \lambda^{2}+\rho_{0} \lambda\left(n_{i}+1\right)-\rho_{0}(\lambda-m) n_{i}} \\
& <|q|^{-\epsilon \lambda^{2}+\rho_{0} \lambda+\rho_{0} m \lambda}=|q|^{\lambda\left(-\epsilon \lambda+(m+1) \rho_{0}\right)} \\
& <|q|^{-\epsilon \lambda} \quad(\text { by }(31)) \\
& <\frac{1}{2 m} \quad(\text { by }(30)) .
\end{aligned}
$$

By the relation

$$
\begin{aligned}
p \ell & =l_{0} p+l_{1} p f_{1}(\alpha)+\cdots+l_{m} p f_{m}(\alpha) \\
& =l_{0} p+l_{1}\left(r_{1}+q_{1}\right)+\cdots+l_{m}\left(r_{m}+q_{m}\right) \\
& =\Lambda+l_{1} r_{1}+\cdots+l_{m} r_{m}
\end{aligned}
$$

we thus derive an inequality

$$
|p \ell| \geq|\Lambda|-\sum_{i=1}^{m}\left|l_{i} r_{i}\right| \geq 1-\sum_{i=1}^{m} \bar{l}_{i}\left|r_{i}\right|>1-\sum_{i=1}^{m} \frac{1}{2 m}=\frac{1}{2} .
$$

Finally, using the definition (34) of λ we obtain

$$
|\ell|>(2 p)^{-1}>\frac{1}{2}|q|^{-\left(\gamma_{3}+\epsilon\right) \lambda^{2}}=\frac{1}{2} L^{-\left(\gamma_{3}+\epsilon\right) /\left(\rho_{0}-m\left(\gamma_{2}+2 \epsilon\right)\right)} .
$$

Since $\epsilon>0$ is arbitrary, we can state the final result in the following form (we set $\delta_{0}=m \delta$).

Theorem 5 Suppose that none of the functions $f_{1}(z), \ldots, f_{m}(z)$ is a polynomial and that $\alpha_{i} \neq \alpha_{j} q^{l}, l \in \mathbb{Z}$, for all $i \neq j$. Let $\alpha \neq 0$ be an element of II satisfying $\mathcal{P}\left(\alpha q^{-k}\right) \neq$ $0, k=1,2, \ldots$ Let

$$
\begin{gathered}
\gamma_{1}\left(\delta_{0}\right)=\frac{\left(2-\delta_{0}\right)^{2}\left(1-\delta_{0}\right)}{2 \delta_{0}}, \quad \gamma_{2}\left(\delta_{0}, \rho_{0}\right)=\gamma_{1}+\frac{1}{2}+\frac{\delta_{0} \rho_{0}}{m} \\
\gamma_{3}\left(\delta_{0}, \rho_{0}\right)=\gamma_{1}+\delta_{0}+\rho_{0}+\frac{1}{2}\left(1+s\left(\delta_{0}+\rho_{0}\right)^{2}\right)
\end{gathered}
$$

where $0<\delta_{0}<1$, $\rho_{0}>0$ and, in addition,

$$
\rho_{0}>\frac{m\left(\gamma_{1}+1 / 2\right)}{1-\delta_{0}}
$$

Then for any $\epsilon_{0}>0$, there exists a positive constant $C_{0}=C_{0}\left(\epsilon_{0}\right)$ such that for any integers $l_{0}, l_{1}, \ldots, l_{m}$ of \mathbb{I}, not all zero, there holds the inequality

$$
\left|l_{0}+l_{1} f_{1}(\alpha)+\cdots+l_{m} f_{m}(\alpha)\right|>C_{0} \cdot\left(\bar{l}_{1} \cdots \bar{l}_{m}\right)^{-\gamma_{3} /\left(\rho_{0}-m \gamma_{2}\right)-\epsilon_{0}}
$$

where $\bar{l}_{i}=\max \left\{1,\left|l_{i}\right|\right\}$ for $i=1, \ldots, m$.
Remark 6 From the above proof we can see that the construction used here does not work in the p-adic case. For the p-adic case it is obviously necessary to change the construction in such a way that the dependence on the individual n_{i} is in the polynomials Q_{i} instead of the forms R_{i} (see [Va1]).

6 Proof of Theorems 1 and 2

In the proof of Theorem 1 we use the fact $f_{i}(q)=\phi\left(\alpha_{i}\right)$ if $\mathcal{Q}_{i}(z)=-\mathcal{P}(z), i=$ $1, \ldots, m$ (see Section 2). By the assumptions of Theorem 1 it follows that the corresponding $f_{i}(z) \notin \mathbb{I}[z]$, for the details we refer to[AKV]. Thus we may apply Theorem 3 to get a result with

$$
\begin{equation*}
\frac{\gamma_{3}}{\rho_{0}-m \gamma_{2}}=\frac{4-7 \delta_{0}\left(1-\delta_{0}\right)-\delta_{0}^{3}+2 \delta_{0} \rho_{0}+\delta_{0} s\left(\delta_{0}+\rho_{0}\right)^{2}}{2 \delta_{0}\left(1-\delta_{0}\right) \rho_{0}-m\left(4-7 \delta_{0}+5 \delta_{0}^{2}-\delta_{0}^{3}\right)} \tag{38}
\end{equation*}
$$

instead of $\mu(m, s)$. We now choose $\delta_{0}=1 / 2$; then $\rho_{0}=\rho_{0}(m, s)$ given in (3) admits the minimum value $\mu(m, s)$ for the above expression (38) (in the case $\delta_{0}=1 / 2$). This proves Theorem 1.

Theorem 2 and Remark 1 follow by noting that the choices (i) and (ii) give the functions $E_{q}(z)$ and $T_{q}(z)$, respectively. Thanks to (18), we may replace $\gamma_{1}\left(\delta_{0}\right)$ in (37) by

$$
\gamma_{1}^{(\mathrm{i})}\left(\delta_{0}\right)=\frac{\left(3-2 \delta_{0}\right)\left(1-\delta_{0}\right)}{2 \delta_{0}}
$$

in the case (i) and by

$$
\gamma_{1}^{(\mathrm{ii)}}\left(\delta_{0}\right)=\frac{1}{2} \gamma_{1}\left(\delta_{0}\right)
$$

in the case (ii). Next take $\delta_{0}^{(\mathrm{i})}=2 / 5, \delta_{0}^{(\mathrm{ii})}=1 / 3$ and the corresponding values $\rho_{0}^{(\mathrm{i})}(m)$, $\rho_{0}^{(\text {(i) }}(m)$ that minimize the exponent $\gamma_{3} /\left(\rho_{0}-m \gamma_{2}\right)$. Let $\mu^{(\mathrm{i})}(m)$ and $\mu^{\text {(ii) }}(m)$ denote the minimal exponents. It follows easily that

$$
\begin{array}{lll}
\mu^{(\mathrm{i})}(1)=17.14 \cdots & \text { and } \quad \mu^{(\mathrm{i})}(m+1)-\mu^{(\mathrm{i})}(m)<12 & \text { for } m \geq 1 \\
\mu^{\text {(ii) }}(1)=12.98 \cdots & \text { and } \quad \mu^{(\mathrm{ii)}}(m+1)-\mu^{(\mathrm{ii)}}(m)<8.5 & \text { for } m \geq 1
\end{array}
$$

and as a consequence we arrive at the desired estimates (4) and (5). The proof of Theorem 2 and Remark 1 is complete.

Remark 7 Taking $\delta_{0}^{(\mathrm{i})}=4 / 9$ we arrive at the better exponent $11.79 \mathrm{~m}+5.27$ for $m \geq 10$ in (4).

Acknowledgements The grounds of this work were set when the second author was a visitor of Department of Mathematical Sciences, University of Oulu (25 March-6 April 2002). He is indebted to the department for their kind hospitality.

References

[A] Y. Amice, Les nombres p-adiques. Presses Universitaire de France, collection SUP 14, Paris, 1975.
[AKV] M. Amou, M. Katsurada, and K. Väänänen, Arithmetical properties of the values of functions satisfying certain functional equations of Poincaré. Acta Arith. 99(2001), 389-407.
[Ba] A. Baker, On some diophantine inequalities involving the exponential function. Canad. J. Math. 17(1965), 616-626.
[Be] J.-P. Bézivin, Indépendence linéaire des valeurs des solutions transcendantes de certaines équations fonctionelles. Manuscripta Math. 61(1988), 103-129.
[Bu] P. Bundschuh, Arithmetical properties of the solutions of certain functional equations. In: Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa Inkeri, (M. Jutila and T. Metsänkylä, eds.) Walter de Gruyter, New York, 2001, pp. 25-42.
[Fe1] N. I. Fel'dman, Lower estimates for some linear forms. Vestnik Moskov. Univ. Ser. I Mat. Mek. 22(1967), 63-72.
[Fe2] A certain linear form. Acta Arith. 21(1972), 347-355.
[Ma] K. Mahler, On a paper by A. Baker on the approximation of rational powers of e. Acta Arith. 27(1975), 61-87.
[Sh] A. B. Shidlovskiǐ, Transcendental numbers. de Gruyter Studies in Mathematics 12, Walter de Gruyter, Berlin, 1989.
[So] V. N. Sorokin, Irrationality of values of hypergeometric functions. Math. Sb. (N.S.) 127(1985), 245-258.
[St] Th. Stihl, Arithmetische Eigenschaften spezieller Heinescher Reihen. Math. Ann. 268(1984), 21-41.
[Tsch] L. Tschakaloff, Arithmetische Eigenschaften der unendlichen Reihe . . . Math. Ann. 80(1921), 62-74. II. Math. Ann. 84(1921), 100-114.
[Va1] K. Väänänen, On linear forms of a certain class of G-functions and p-adic G-functions. Acta Arith. 36(1980), 273-295.
[Va2] K. Väänänen, On linear independence of the values of generalized Heine series. Math. Ann. 325(2003), 123-136.
[Zu] W. Zudilin, Lower bounds for polynomials from values of some entire functions. Sb . Math. 187(1996), 1791-1818.

University of Oulu	Moscow Lomonosov State University
Department of Mathematical Sciences	Department of Mechanics and Mathematics
P. O. Box 3000	Vorobiovy Gory, GSP-2
90014 Oulun Yliopisto	119992 Moscow,
Finland	Russia
e-mail: kvaanane@sun3.oulu.fi	e-mail: wadim@ips.ras.ru

[^0]: Received by the editors October 10, 2002; revised October 1, 2003.
 AMS subject classification: 11J82, 33D15.
 Keywords: measure of linear independence, q-series.
 (c)Canadian Mathematical Society 2005.

