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Abstract

This paper consists of two parts. The first is to study the existence of a point a at the intersection of
the Julia set and the escaping set such that a goes to infinity under iterates along Julia directions or
Borel directions. Additionally, we find such points that approximate all Borel directions to escape if the
meromorphic functions have positive lower order. We confirm the existence of such slowly escaping
points under a weaker growth condition. The second is to study the connection between the Fatou set
and argument distribution. In view of the filling disks, we show nonexistence of multiply connected
Fatou components if an entire function satisfies a weaker growth condition. We prove that the absence of
singular directions implies the nonexistence of large annuli in the Fatou set.
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1. Introduction and main results

It is well known that iteration and argument distribution of transcendental mero-
morphic functions basically belong to different topics in the theory of meromorphic
functions. The main objects studied in the iteration theory of meromorphic functions
are the Fatou set and Julia set, while those in the argument distribution are the singular
directions and filling disks. It would be interesting to explore their connections. We try
to do that in this paper. So let us begin with the basic knowledge and notation from
these two topics.

For a transcendental meromorphic function f, denote by

f n := f ◦ · · · ◦ f︸������︷︷������︸
n
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146 J. Ding and J. Zheng [2]

the n th iterate of f for n ∈ N. The Fatou set F( f ) of f is the set of points in C each of
which has a neighborhood where { f n} is well defined and forms a normal family in the
sense of Montel (or, equivalently, it is equicontinuous). The complement J( f ) of F( f )
with respect to Ĉ is called the Julia set of f. In the study of iterates of meromorphic
functions, escaping sets have been extensively investigated in recent years and continue
to attract a lot of interest. The escaping set I( f ) of a meromorphic function f is
defined by

I( f ) = {z : f n(z)→ ∞ (n→ ∞)}.

The escaping set is first introduced and investigated by Eremenko [14] for transcen-
dental entire functions and by Dominguez [13] for meromorphic functions. Many
important dynamical behaviors of the escaping set have been revealed in the literature,
for example, refer to [22, 23, 25, 27]; here we just mention some of them.

Let f be a transcendental meromorphic function. Define

m(r, f ) =
1

2π

∫ 2π

0
log+ | f (reiθ)| dθ,

N(r, f ) =
∫ r

0

n(t, f ) − n(0, f )
t

dt + n(0, f ) log r,

where n(r, f = a) denotes the number of a-points of f counted with multiplicities in
{z : |z| < r}, and briefly write n(r, f ) for n(r, f = ∞) and

T(r, f ) = m(r, f ) + N(r, f ).

Here, T(r, f ) is known as the Nevanlinna characteristic of f. Then the growth order
ρ( f ) and lower order λ( f ) of f are, respectively, defined as

ρ( f ) = lim
r→∞

log T(r, f )
log r

and λ( f ) = lim
r→∞

log T(r, f )
log r

.

The filling disks are one of the main objects of study in the argument distribution
of meromorphic functions, which was first introduced by Milloux [18] in 1928. Here
and henceforth, by χ(a, b), we denote the spherical distance between a and b on Ĉ. By
Bχ(a, r), we denote the spherical disk {z ∈ Ĉ : χ(z, a) < r} centered at a with spherical
radius r and B(a, r) the disk {z ∈ C : |z − a| < r} centered at a with (Euclidean) radius r.

DEFINITION. A disk B(z0, ε|z0|) = {z ∈ C : |z − z0| < ε|z0|} is called a filling disk, or
circle de remplissage, of f with index m if f takes all values at least m times
on B(z0, ε|z0|), possibly except those values contained in two spherical disks with
spherical radius at most e−m.

The following is the first main result of this paper, which reveals the connections
among the filling disks, the escaping sets, and Julia sets.
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THEOREM 1.1. Let f be a transcendental meromorphic function with

lim
r→∞

T(r, f )
(log r)5 = ∞. (1-1)

Then there exist a sequence of increasing positive numbers Rn tending to infinity and
a point a ∈ I( f ) ∩ J( f ) such that for each n ∈ N,

Γn :=
{
z : |z − f n(a)| < 16π

log log Rn
| f n(a)|

}
is a filling disk of f with index

mn = c∗
T(Rn, f )

(log log Rn)2(log Rn)3 , (1-2)

where c∗ is an absolute constant.

For a domain Ω, by n(r,Ω, f = a), we denote the number of roots of f = a counted
with multiplicities in Ω ∩ {z : |z| < r}. Set

N(r,Ω, f = a) =
∫ r

1

n(t,Ω, f = a)
t

dt.

Closely related to filling disks are singular directions, whose existence was estab-
lished by Julia in 1924 and Valiron in 1928.

DEFINITION. A ray arg z = θ is called a Borel direction of order ρ ∈ (0,∞] of a
meromorphic function f if for arbitrary ε > 0 and any c ∈ Ĉ, with at most two
exceptions,

lim sup
r→∞

log+ N(r, Zε(θ), f = c)
log r

≥ ρ, (1-3)

where Zε(θ) = {z : θ − ε < arg z < θ + ε}; a ray arg z = θ is called a Julia direction of f
if (1-3) is replaced by

lim
r→∞

n(r, Zε(θ), f = c) = ∞. (1-4)

In this paper, by singular directions, we mean Borel directions or Julia directions.
We note that singular directions determine the argument distribution of c-points, while
a sequence of filling disks makes a further refinement of the location of c-points. In
Definition 1, the order ρ is allowed to be∞, that is, a Borel direction may be of infinite
order. For background and knowledge about singular directions and filling disks, please
refer to [15, Ch. 5] and [30, Ch. 3].

To clarify the statements of the results dealing with singular directions, let us
introduce the notation as below. We denote by E′ the limit set of subset E of [0, 2π)
and set

Jdirect( f ) = {θ ∈ [0, 2π] : the ray arg z = θ is a Julia direction of f }
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and

Bdirect( f ) = {θ ∈ [0, 2π] : the ray arg z = θ is a Borel direction of f }.

If we want to stress the order ρ of Borel directions, we write Bdirect( f ; ρ). Additionally,
Sdirect( f ) is the set of arguments of all singular directions of f. We say that a
point a goes under iterates to infinity (approximately) along singular directions if
{arg f n(a)}′ ⊆ Sdirect( f ) and so on.

The following result was proved by Qiao [21], but is stated in our way.

THEOREM A. Let f be a transcendental meromorphic function of lower order
λ( f ) ∈ (0,∞). If

K := lim
r→∞

log T(2r, f )
log T(r, f )

< ∞, (1-5)

then there exists a point a ∈ I( f ) ∩ J( f ) that goes under iterates along Borel directions
of order λ( f ), that is, {arg f n(a)}′ ⊆ Bdirect( f ; λ( f )).

However, it is easy from Theorem 1.1 to obtain a corollary which generalizes
Theorem A without the Assumption (1-5), that is to say, the condition in (1-5) is not
necessary for Theorem A and deals with the case when λ( f ) = 0 or∞.

COROLLARY 1.2. Let f be a transcendental meromorphic function. Then there is a
dense subset I of I( f ) ∩ J( f ) such that for every point a ∈ I:

(1) if λ( f ) = 0 and (1-1) holds, then {arg f n(a)}′ ⊆ Jdirect( f );
(2) if 0 < λ( f ) < ∞, then {arg f n(a)}′ ⊆ Bdirect( f ; λ( f ));
(3) if λ( f ) = ∞, then {arg f n(a)}′ ⊆ Bdirect( f ;∞).

When 0 < λ( f ) ≤ ∞, (1-1) immediately holds and if (1-1) is only assumed, f may
be of zero lower order. Therefore, we can directly use the result of Theorem 1.1 under
the assumptions of Corollary 1.2. The quantity defined by the upper limit in (1-5) is not
larger than ρ( f )/λ( f ). Therefore, if 0 < λ( f ) ≤ ρ( f ) < +∞, then (1-5) holds. However,
basically, a meromorphic function f with infinite order ρ( f ) = ∞ does not satisfy (1-5).

The case that a escapes along Borel directions of order ρ( f ) is not considered in the
conclusions obtained above. The second main result is to determine the existence of
escaping points which approximate all singular directions to infinity under iterates.

THEOREM 1.3. Let f be a transcendental meromorphic function with 0 < λ( f ) ≤
ρ( f ) ≤ +∞. Then there is a dense subset I of I( f ) ∩ J( f ) such that for every point
a ∈ I,

{arg f n(a)}′ = Bdirect( f ).

Actually, the set of such a is dense in J( f ). Theorem 1.3 tells us that we can deter-
mine locations of all Borel directions in terms of the orbit of some escaping points.
Let us mention that Theorem 1.3 includes the cases when ρ( f ) = ∞ or λ( f ) = ∞.
When λ( f ) = ∞, f has only Borel directions of infinite order.
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In [26], Rippon and Stallard defined slow escaping points and proved their existence
for a transcendental meromorphic function. The next result confirms the existence of
slow escaping points which go to infinity along Borel directions of ρ( f ).

THEOREM 1.4. Let f be a transcendental meromorphic function with ρ( f ) > 0 satisfy-
ing for 0 < c < 1 and all sufficiently large r,

T(er, f ) >
(
1 +

1
(log r)c

)
T(r, f ). (1-6)

Then for any increasing positive sequence {an} tending to ∞, there exists a point
a ∈ I( f ) ∩ J( f ) such that | f n(a)| ≤ an and

{arg f n(a)}′ ⊆ Bdirect( f ; ρ( f )).

We wonder if the condition in (1-6) is necessary.
The second main purpose of this paper is to investigate the nonexistence of round

annuli around the origin in the Fatou sets of meromorphic functions under the
condition of argument distribution. It is often meaningful to judge the nonexistence
of multiply connected wandering domains in the study of transcendental dynamics;
see [5, 6, 8]. In terms of the distribution of filling disks, we establish the following.

THEOREM 1.5. Let f be a transcendental entire function. If for 0 < c < 1, (1-6) holds,
then f has no multiply connected Fatou components.

Theorem 1.5 is an improvement of [32, Corollary 5] and [34, Theorem 1.3] where,
instead of (1-6), the condition that T(er, f ) > dT(r, f ) with some d > 1 is assumed.
Meromorphic functions satisfying such a condition are said to be of regular growth.

Theorem 1.5 need not hold if f has many poles, but under (1-6), we can still confirm
the nonexistence of large annuli in the Fatou set (see the proof of Theorem 1.5).
However, we need stronger conditions to set around narrow annuli in the Fatou set
if the poles are not severely restricted.

Throughout this article, denote by M(r, f ) and L(r, f ) the maximum modulus and
minimum modulus of f on circle {z : |z| = r}, respectively. By A(r, R), we denote the
annulus {z : r < |z| < R}.

THEOREM 1.6. Let f be a transcendental meromorphic function with the lower order
λ( f ) = ∞ and

β( f ,∞) := lim
r→∞

log M(r, f )
T(r, f )

> 0. (1-7)

If there is a ray arg z = θ which is not a Borel direction of infinite order, then there exist
ε(r)→ 0+(r → ∞) and R0 > 0 such that F( f ) contains no annulus A(r, R) with r > R0
and R ≥ (1 + ε(r))r.

We make a remark on (1-7). Here, β( f ,∞) is the quantity which was first introduced
and studied by Petrenko [20] and others extensively. The Nevanlinna deficiency
δ(∞, f ) of f at∞ is
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δ(∞, f ) = lim
r→∞

m(r, f )
T(r, f )

and for a ∈ C, δ(a, f ) = δ(∞, 1/( f − a)). Here, a ∈ Ĉ is called a deficient value of f
if δ(a, f ) > 0. The deficiency and deficient value are the main objects studied in the
modulo distribution of the Nevanlinna theory. It is easily seen that β( f ,∞) ≥ δ(∞, f ) =
limr→∞(m(r, f )/T(r, f )), and so if δ(∞, f ) > 0, then (1-7) holds.

In fact, we establish the following general result, while Theorem 1.6 is a conse-
quence of it for λ = ∞.

THEOREM 1.7. Let f be a transcendental meromorphic function with the lower order
λ and suppose that (1-7) holds. Assume that there are two distinct values a and b, and
an angle Ω = Ω(α, β) = {z : α < arg z < β} such that λ > π/(β − α) = ω and

lim
r→∞

log(N(r,Ω, f = a) + N(r,Ω, f = b))
log T(r, f )

< 1 − ω
λ

. (1-8)

Let φ(r) be a positive function in [1,∞) such that φ(r)→ ∞ and φ(r)/log T(r, f )→ 0
as r → ∞ and φ(r)r/log T(r, f ) > 2 infz∈J( f ) |z| for r ≥ 1.

Then there exists R0 > 0 such that the Fatou set F( f ) contains no round annulus
A(r, R) with r > R0 and R > (1 + φ(r)/log T(r, f ))r.

We make remarks on (1-8). It is easy to see that (1-8) follows from

lim
r→∞

log(N(r,Ω, f = a) + N(r,Ω, f = b))
log r

< λ − ω. (1-9)

This means that the convergence exponents of a-points and b-points in Ω are smaller
than λ − ω. However, (1-8) does not exclude the possibility that the convergence
exponent equals to λ − ω, that is, if λ = ∞, the exponent is allowed to be ∞.
Additionally, the condition in (1-9) has something to do with the singular directions of
meromorphic functions. If arg z = θ is not a Borel direction of f with the order λ − ω,
then there exist an angle Ω containing the ray, and two values a and b such that (1-9)
holds, but we do not know the size of the opening angle of Ω. However, we do not
need to be concerned with the size for λ( f ) = ∞. Therefore, Theorem 1.6 follows from
Theorem 1.7. In view of a result of Valiron (see [33, Theorem 2.7.5]), if f has no Borel
directions of order λ − ω in Ω, then (1-9) holds for some a and b. Hence, (1-8) can be
replaced by the assumption that f has no Borel directions of order λ − ω in Ω.

For completeness, let us give an example to show that the condition in (1-7) is
necessary.

THEOREM 1.8. For any given λ ∈ (1,∞], there exists a meromorphic function of order
and lower order equal to λ such that (1-8) holds on the upper half plane and lower
half plane, and its Julia set lies on the real axis and its Fatou set contains a sequence
of annuli A(rn, drn) with rn → ∞ as n→ ∞ for some d > 1.
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The organization of this paper is the following. In Section 2, we make further
remarks on the results stated above. In Section 3, we complete proofs of Theorems
1.1–1.5 in terms of knowledge of filling disks and an application of the considerable
covering theorem of annuli. We provide proofs of Theorems 1.7 and 1.8 in Section 4 in
terms of the Nevanlinna theory of angular domains and that covering theorem together
with the hyperbolic metric.

2. Remarks on the results

This section is mainly devoted to further interpretation of our basic notation and
the results obtained in this paper. Both the Fatou set and Julia set of a meromorphic
function f are completely invariant under f, that is, z ∈ F( f ) (respectively J( f )) if and
only if f (z) ∈ F( f ) (respectively J( f )). Let U be a connected component of F( f ), then
f n(U) is contained in a component of F( f ), denoted by Un. If for some positive integer
p, f p(U) ⊆ Up = U, then U is called a periodic Fatou component of f and the smallest
such integer p is the period of U. If for some n > 0, Un is periodic, but U is not periodic,
then U is called pre-periodic. If it is neither periodic nor pre-periodic, that is, Un � Um

for all pairs n � m, then U is called a wandering domain of f.
An introduction to the basic properties of these sets for a rational function can be

found in [3, 19] and for transcendental meromorphic functions in the survey [4] or
book [31].

Borel directions of zero order make no sense and so the Borel directions we mention
in this paper have positive order or infinite order. For this case of Borel directions of
zero order, actually, what we are talking about is the Julia directions instead or we
give a more precise expression than (1-4). It is easily seen that a Borel direction must
be a Julia direction. In 1924, Julia showed the existence of Julia directions for all
entire functions and most meromorphic functions. If T(r, f ) � O((log r)2) (r → ∞),
then f has at least one Julia direction (see [30, Theorem 3.6]). However, Ostrowski
[15] found a meromorphic function with T(r, f ) = O((log r)2) (r → ∞) which has no
Julia directions and hence no filling disks. The existence of Borel directions was first
shown by Valiron in 1928. Borel directions stem from the Borel theorem (see [30,
Theorem 1.8]) and Julia directions from the Picard theorem (see [30, Theorem 1.7]).

It is clear that a sequence of filling disks B(zn, εn|zn|) with index mn determines
singular directions arg z = θ whenever θ ∈ {arg zn}′ if zn → ∞, mn → ∞, and εn → 0
as n→ ∞; if limn→∞(log mn/log |zn|) > 0, then we obtain Borel directions with the
order between limn→∞(log mn/log |zn|) and limn→∞(log mn/log |zn|), and at least one of
the Borel directions decided has the order limn→∞(log mn/log |zn|). Conversely, a Borel
direction determines a sequence of filling disks with centers in the direction, which
was shown by Rauch (see [30, Theorem 3.11]).

We make remarks on Theorem 1.1.
(A) As we know (see [30, Theorem 3.6]), the condition T(r, f ) � O((log r)2)

(r → ∞) implies the existence of a sequence of filling disks with centers tending to
infinity. Then we wonder if 5 in (1-1) could be replaced by 2.
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(B) We can require that Rn+1 > R3
n, 3Rn ≥ | f n(a)|. From these together with mn, we

can say something about the rate of f n(a) escaping to infinity in Theorem 1.1.
(C) For any domain U intersecting J( f ) and any compact set K in C which

contains no Fatou exceptional values (any meromorphic function has at most two
Fatou exceptional values), there exists m ∈ N such that K ⊂ f m(U), which is a simple
consequence of the Montel theorem (see [4]). Then we can choose in U the escaping
point a in Theorem 1.1 and the set of all such a is dense in J( f ). We wonder about the
size of the set, for example, its Hausdorff dimension.

(D) A meromorphic function f satisfying (1-1) may be of zero lower order, positive
lower order, or infinite lower order. When λ( f ) = 0 with (1-1), a goes under iterates
to ∞ along Julia directions. When λ( f ) = ∞, a goes under iterates to ∞ along Borel
directions of infinite order. For these two cases, (1-2) offers more precise counting of
c-points than (1-4) and (1-3) in Definition 1 of singular directions.

We proceed by remarking on the condition in (1-6). It is not essential that we choose
the base e of natural logarithms in (1-6) and e can be replaced by any number greater
than 1. Since T(r, f ) is nondecreasing and logarithmic convex, for large r, we always
have

T(er, f ) ≥
(
1 +

1
log r

)
T(r, f ).

To some extent, this shows that (1-6) is not strong. It was proved in [26] that there
exist slow escaping points for any transcendental meromorphic function. We wonder
if the condition in (1-6) could be dropped.

The fast escaping set A( f ) of a transcendental entire function is introduced in [7]
and can be defined in [25] by

A( f ) = {z ∈ I( f ) : there exists L ∈ N such that | f n+L(z)| ≥ Mn(R, f )},

where R is a fixed number and R > min{|z| : z ∈ J( f )} and Mn(r, f ) is the n th iterate of
M(r, f ) with respect to r.

It is natural to ask whether there exists a fast escaping point which goes along singu-
lar directions. We guess that for an entire function with regular growth log M(er, f ) >
d log M(r, f ) and d > 1, such a fast escaping point may exist. For example, we consider
the exponential function λez with 0 < λ < 1/e. Its Julia set consists of uncountably
many pairwise disjoint simple curves extending to ∞, called hairs (which was proved
by Devaney and Krych [11]), and all points on the hairs possibly except their finite
endpoints are fast escaping points (which was proved by Devaney and Tangerman [12]
and Rempe et al. [24]). Therefore, a slow escaping point must be a finite endpoint
of some hair, and the other points of the hair are fast escaping points and go to ∞
under iterates far away from the singular directions. Here, f (z) = λez has only two
singular directions: the positive imaginary axis and the negative imaginary axis. For
−π/2 + ε < arg z < π/2 − ε and |z| large,

| f (z)| ≥ λe|z| sin ε = λ1−sin εM(|z|, f )sin ε > M(|z|, f )1/2 sin ε.
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Therefore, for a point a ∈ I( f ), if no limit points of {arg f n(a)} are ± π2 , in view of a
result in [26], a must be in the fast escaping set of f. We can prove that there exist
finite endpoints of hairs which are fast escaping to ∞ along the positive imaginary
axis, that is, the argument of the iterate points tends to π2 . The Eremenko points [28]
under iteration do not go along the singular directions and the maximally fast escaping
points introduced by Sixsmith [29] go far away from the singular directions.

Finally, we remark on Theorem 1.5. In [1, 9, 32], for transcendental entire functions,
it was proved that every multiply connected Fatou component U is wandering and
for all sufficiently large n, f n(U) contains a round annulus A(rn, Rn) with rn → ∞,
Rn/rn → ∞ as n→ ∞. This result was extended in [34] to some transcendental mero-
morphic functions with infinitely many poles. However, for a general meromorphic
function, a multiply connected Fatou component may not be wandering. There exist
meromorphic functions which have a sequence of large annuli in a periodic domain.

3. Proofs of Theorems 1.1–1.5

3.1. Some lemmas. The following result is natural; see [26, Lemma 1].

LEMMA 3.1. Let f be a meromorphic function and let {En}∞n=0 be a sequence of compact
sets in C. If

En+1 ⊂ f (En) for n ≥ 0,

then there exists ξ such that f n(ξ) ∈ En for n ≥ 0. If En ∩ J( f ) � ∅ for n ≥ 0, then ξ can
be chosen to be in J( f ).

The following result can be extracted from the proof of [26, Lemmas 6 and 7].

LEMMA 3.2. Let f be a meromorphic function. If there exist two sequences {Bm}∞m=0
and {Vm}∞m=0 of compact sets with dist(0, Bm)→ ∞ and dist(0, Vm)→ ∞ as m→ ∞,
and a strictly increasing sequence of positive integers {m(k)} such that

Bm+1 ⊆ f (Bm), Bm(k)−p(k) ⊆ f (Vk), Vk ⊆ f (Bm(k)), (3-1)

where 0 ≤ p(k) ≤ M for a fixed integer M > 0, then for any increasing sequence of
positive numbers {an} with an → ∞(n→ ∞), there exists ζ ∈ I( f ) such that for all
sufficiently large n, | f n(ζ)| ≤ an. If, in addition, Bm ∩ J( f ) � ∅ for all m ≥ 0, then we
can require ζ ∈ J( f ).

PROOF. We choose a subsequence {an(m)} of {an} such that

Bp ⊂ B(0, an(m)) for 0 ≤ p ≤ m, and Vm ⊂ B(0, an(m)).

Inductively, we construct a sequence {s(k)} of positive integers that is used to control
the speed of iterates of f on Bm. Set d(k) = s(k)p(k) + 2s(k) and q(k) = d(0) + d(1) +
d(2) + · · · + d(k) = q(k − 1) + d(k).
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Define s(0) = 0. Suppose that we have s(k − 1), and so d(k − 1) and q(k − 1) are
fixed. Take s(k) such that

m(k) + q(k) > n(m(k + 1)).

Let us construct a sequence {En} of compact sets as follows:

E0 = B0, E1 = B1, . . . , Em(1) = Bm(1),
Em(1)+1 = V1,
Em(1)+2 = Bm(1)−p(1), . . . , Em(1)+p(1)+2 = Bm(1),
......
Em(1)+jp(1)+2j+1 = V1,
Em(1)+jp(1)+2j+2 = Bm(1)−p(1), . . . , Em(1)+(j+1)p(1)+2j+2 = Bm(1),
Em(1)+(j+1)p(1)+2(j+1)+1 = V1, 0 ≤ j ≤ s(1),
Em(1)+q(1) = Bm(1), q(1) = d(1) = s(1)p(1) + 2s(1),
Em(1)+1+q(1) = Bm(1)+1, . . . , Em(2)+q(1) = Bm(2),
Em(2)+q(1)+1 = V2,
Em(2)+q(1)+2 = Bm(2)−p(2), . . . , Em(2)+q(1)+p(2)+2 = Bm(2),
......

that is to say, for k ≥ 0,

En =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bn−q(k), m(k) + q(k) ≤ n ≤ m(k + 1) + q(k);
Vk+1, n = m(k + 1) + q(k) + jp(k + 1) + 2j + 1;

m(k + 1) + q(k) + jp(k + 1) + 2j + 2
Bn−q(k)−(j+1)p(k+1)−2j−2, ≤ n < m(k + 1) + q(k)

+ (j + 1)p(k + 1) + 2j + 1,
0 ≤ j ≤ s(k + 1).

Then it is easy to see that En+1 ⊆ f (En). Since m(k) − p(k)→ ∞ (k → ∞) and
dist(0, En)→ ∞ (n→ ∞), in view of Lemma 3.1, there exists a point ζ ∈ B0 ∩ I( f )
such that f n(ζ) ∈ En.

For m(k) + q(k) ≤ n ≤ m(k + 1) + q(k),

En = Bn−q(k) ⊂ B(0, an(m(k+1))) ⊂ B(0, an)

by noting that n(m(k + 1)) < m(k) + q(k) ≤ n. When n = m(k + 1) + q(k) + jp(k + 1) +
2j + 1, we have n(k + 1) < n(m(k + 1)) < m(k) + q(k) < n and so

En = Vk+1 ⊂ B(0, an(k+1)) ⊂ B(0, an).

For m(k+ 1)+ q(k)+ jp(k+ 1)+ 2j+ 2 ≤ n<m(k+ 1)+ q(k)+ (j+ 1)p(k+ 1)+ 2j + 1,
that is, m(k + 1) − p(k + 1) ≤ n − q(k) − (j + 1)p(k + 1) − 2j − 2 ≤ m(k + 1),

En = Bn−q(k)−(j+1)p(k+1)−2j−2 ⊂ B(0, an(m(k+1))) ⊂ B(0, an).

We have proved that for all n ≥ m(1) + q(1), En ⊂ B(0, an). �
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The result in Lemma 3.2 also holds if the condition in (3-1) is replaced by

Bm+1 ⊆ f (Bm), Bm(k)−p(k) ⊆ f (Bm(k)).

To be able to find sequences {Bm} and {Vm} in Lemma 3.2, the following covering
theorem of annulus plays a key role. For a hyperbolic domain U, by λU(z), we denote
the hyperbolic density of U at z ∈ U and by dU(z1, z2), the hyperbolic distance between
z1 and z2 in U.

LEMMA 3.3 [34, Theorem 2.2]. Let f be analytic on a hyperbolic domain U with
0 � f (U). If there exist two distinct points z1 and z2 in U such that | f (z1)| > eκδ| f (z2)|,
where δ = dU(z1, z2) and κ = Γ( 1

4 )4/(4π)2 = 4.376 879 6 . . . , then there exists a point
ẑ ∈ U such that | f (z2)| ≤ | f (ẑ)| ≤ | f (z1)| and

f (U) ⊃ A
(
eκ
( | f (z2)|
| f (z1)|

)1/δ
| f (ẑ)|, e−κ

( | f (z1)|
| f (z2)|

)1/δ
| f (ẑ)|

)
.

Moreover, if | f (z1)| ≥ exp(κδ/(1 − δ))| f (z2)| and 0 < δ < 1, then

f (U) ⊃ A(| f (z2)|, | f (z1)|). (3-2)

In particular, for δ ≤ 1
6 and | f (z1)| ≥ e| f (z2)|, we have (3-2).

We need a result on the existence of filling disks.

LEMMA 3.4 (See [30, Lemma 3.4]). Let f be a transcendental meromorphic function.
Given arbitrarily k > 1, r, and R with R > r satisfying

T(R, f ) ≥ max
{
240,

240 log(2R)
log k

, 12T(r, f ),
12T(kr, f )

log k
log

2R
r

}
,

then for large positive numbers q, there exists a point a with r < |a| < 2R such that the
disk

Γ : |z − a| < 4π
q
|a|

is a filling disk with index

m = c∗
T(R, f )

q2(log r
R )2 , (3-3)

where c∗ > 0 is an absolute constant.

There is r0 ≥ 0 such that T(r, f ) ≡ constant for r ∈ [0, r0) and T(r, f ) is strictly
increasing in [r0,+∞). Therefore, T(r, f ) is invertible in [r0,+∞). We denote the
inverse of s = T(r, f ) in [r0,+∞) by r = T−1(s, f ) with s ≥ T(r0, f ). For our purposes,
we rewrite Lemma 3.4 as follows.
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LEMMA 3.5. Let f be a transcendental meromorphic function. Then there exists R0 > 0
such that for R > R0 and q > R0, the annulus A(r, 3R) contains a filling disk

Γ : |z − a| < 4π
q
|a|

of f with index m given in (3-3) where

r =
1
2e

T−1
( T(R, f )
12 log R

, f
)
. (3-4)

Since f is transcendental, it is clear that as R→ ∞, we have (T(R, f )/12 log R)→ ∞
so that r in (3-4) goes to∞ as R→ ∞.

For the proof of Theorem 1.3, we need the following conclusion that asserts that a
Borel direction decides the existence of a sequence of filling disks.

LEMMA 3.6. Let f be a transcendental meromorphic function and arg z = θ be a Borel
direction of f of order μ with 0 < μ ≤ ∞. Then there exists a sequence of filling disks:

Γ1 := {z : |z − zj| < εj|zj|}, zj = |zj|eiθ, j = 1, 2, . . . ,

lim
j→∞
|zj| = +∞, lim

j→∞
εj = 0

with index mj = |zj|μj for a sequence μj such that μ > μj → μ − 0 (j→ ∞).

Lemma 3.6 is essentially due to Rauch; see [30, Theorem 3.11]. What we mention
is that the original conclusion of Rauch does not deal with the case of infinite order
μ = ∞. However, we can get Lemma 3.6 without difficulty by making a small change
of the proof of [30, Theorem 3.11].

Now we recall the Ahlfors–Shimizu characteristic of a meromorphic function; see
[17]. By f #(z), we mean the spherical derivative of f at z. For a closed domain D,
define

A(D, f ) =
�

D
( f #(z))2 dσ(z),

whereσ(z) is the area element and writeA(r, f ) forA(B(0, r), f ). The Ahlfors–Shimizu
characteristic of f is defined as

T (r, f ) =
∫ r

0

A(t, f )
t

dt.

Then,

|T(r, f ) − T (r, f ) − log+ | f (0)|| ≤ 1
2 log 2.

To confirm the existence of filling disks in view of Lemmas 3.4 and 3.5 in our proofs
of theorems, we need to give a convenient version of (1-6).
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LEMMA 3.7. Let f be a transcendental meromorphic function. Assume that for a
0 < c < 1 and all sufficiently large r, (1-6) holds. Then for large r,

T(r2, f )
log r2 > 12 T(er, f ). (3-5)

PROOF. Using the condition in (1-6) repeatedly, for σ > 0,

T(r1+σ, f ) = T(eσ log rr, f ) >
(
1 +

1
((1 + σ) log r − 1)c

)
T(e(1+σ) log r−1, f )

>

[σ log r−2]∏
k=1

(
1 +

1
((1 + σ) log r − k)c

)
· T(e2r, f )

>
(
1 +

1
((1 + σ) log r)c

)[σ log r−2]

T(e2r, f )

> exp
[σ log r − 2]

((1 + σ) log r)c + 1
· T(e2r, f )

> 12(1 + σ)(log r)T(e2r, f )

> 12 T(e2r, f ), (3-6)

where [x] denotes the integer part of x.
That is to say, when σ is chosen to be 1, we obtain (3-5) since T(r, f ) is increasing

on r. �

Let us make a remark on (3-5). For an arbitrarily given large integer N > 0 and
sufficiently large r, we have from (3-5) that

T(r, f ) ≥ 6N

22N−1
(log r)NT(r1/2N

, f ).

Therefore,

lim
r→∞

T(r, f )
(log r)N = ∞. (3-7)

The final lemma can be deduced using calculus.

LEMMA 3.8. For R > 0, the function
√

(1 + x2)/(1 + (x − R)2) is increasing in
[0, 1

2 (R +
√

4 + R2)] and decreasing in [ 1
2 (R +

√
4 + R2),∞) and√

1 + x2

1 + (x − R)2 ≤
1
2
(
R +
√

4 + R2) for all x > 0.

3.2. Proof of Theorem 1.1. Let R0 be as in Lemma 3.5. Take R1 with q = log
log R1 > R0; in view of Lemma 3.5, there exists a filling disk Γ1 in A(r1, 3R1) with
index
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m1 = c∗
T(R1, f )

(log log R1)2(log R1)2 > 6 log R1

and r1 defined by (3-4) with R = R1. Note that χ(z,∞) > 3
2 e−m1 on |z| = 1

2 em1 and
the spherical diameter of the circle |z| = 1

2 em1 is larger than 2e−m1 . According to the
definition of filling disks, there exists a point z1 ∈ Γ1 such that | f (z1)| = 1

2 em1 . Set

W1 = {z : 2 < |z| < 1
128 | f (z1)|}.

We need to treat three cases.

Case A. Assume that there exists a point w0 ∈ W1 such that w0 � f (5Γ1) and f is
analytic in 5Γ1. Here and henceforth, for a disk Γ = B(a, r), we define 5Γ = B(a, 5r).
Since diamχ(B(w0, 2)) > 5e−m1 , there exists a point z0 ∈ Γ1 such that | f (z0) − w0| ≤ 2.
Set g(z) = f (z + w0) − w0. Then 0 � g(H1) with H1 = 5Γ1 − w0. In view of Lemma 3.3,
by noting that dH1 (z0 − w0, z1 − w0) = d5Γ1 (z0, z1) ≤ log 17/7 < 1 and |g(z1 − w0)| ≥
| f (z1)| − |w0| ≥ 1

2 | f (z1)|,

g(H1) ⊃ A(2, |g(z1 − w0)|) ⊃ A
(
2, 1

2 | f (z1)|).
Set R̂2 = 1/32| f (z1)|. In view of Lemma 3.5, g has a filling disk Γ̂2 in A(r̂2, 3R̂2) with
index

m̂2 = c∗
T(R̂2, g)

(log log R̂2)2(log R̂2)2

and r̂2 = 1/2eT−1(T(R̂2, g)/12 log R̂2, g) > 32. Thus, 5Γ̂2 ⊂ g(H1).
By γ̂21 and γ̂22, we denote the two exceptional disks of g for the filling disk Γ̂2. Then

γ21 = γ̂21 + w0 and γ22 = γ̂22 + w0 are the exceptional disks of f for Γ2 = Γ̂2 + w0. We
can assume without any loss of generality that the center of γ21 is a finite number
and ∞ is the center of γ22. For any two points z1 and z2 in γ21, set ẑ1 = z1 − w0 and
ẑ2 = z2 − w0 in γ̂21. Then

χ(z1, z2) =

√
1 + |ẑ1|2

√
1 + |ẑ2|2√

1 + |z1|2
√

1 + |z2|2
χ(ẑ1, ẑ2)

≤

√
1 + |ẑ1|2

1 + (|ẑ1| − |w0|)2

√
1 + |ẑ2|2

1 + (|ẑ2| − |w0|)2χ(ẑ1, ẑ2)

≤ 1
4

(|w0| +
√

4 + |w0|2)2χ(ẑ1, ẑ2) < 3R2
2χ(ẑ1, ẑ2).

Additionally, for a point ẑ ∈ γ̂22, by noting that χ(ẑ,∞) < e−m̂2 , we have |ẑ| > em̂2 − 1 >
R3

2 > 2|w0| and so for z = ẑ + w0 ∈ γ22,
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χ(z,∞) =

√
1 + |ẑ|2√
1 + |z|2

χ(ẑ,∞) ≤

√
1 + |ẑ|2

1 + (|ẑ| − |w0|)2 χ(ẑ,∞)

<
|ẑ|

|ẑ| − |w0|
χ(ẑ,∞) < 2χ(ẑ,∞).

Set

m2 = c∗
T(R2, f )

5(log log R2)2(log R2)3 , (3-8)

with R2 =
1
4 R̂2. Since B(0, R2) ⊂ B(0, 1

2 R̂2) + w0,

A( 12 R̂2, f (z + w0)
)
= A(B(0, 1

2 R̂2
)
+ w0, f (z)

)
≥ A(B(0, R2), f (z)) = A(R2, f ).

Therefore,

T(R̂2, g) = T(R̂2, f (z + w0) − w0)

= N(R̂2, f (z + w0)) + m(R̂2, f (z + w0) − w0)

≥ T(R̂2, f (z + w0)) − log |w0| − log 2

≥ T(R̂2, f (z + w0)) − T
(1
2

R̂2, f (z + w0)
)
− log |w0| − log 2

≥ T (R̂2, f (z + w0)) − T
(1
2

R̂2, f (z + w0)
)
− log |w0| −

3
2

log 2

=

∫ R̂2

1/2R̂2

A(t, f (z + w0))
t

dt − log |w0| −
3
2

log 2

≥ A
(1
2

R̂2, f (z + w0)
)

log 2 − log |w0| −
3
2

log 2

≥ A(R2, f ) log 2 − log |w0| −
3
2

log 2

≥ log 2
log R2

∫ R2

1

A(t, f )
t

dt − log |w0| −
3
2

log 2

=
log 2

log R2
T(R2, f ) + O(1) − log |w0| −

3
2

log 2

≥ 1
2 log R2

T(R2, f ).

This implies that m̂2 > 2m2 and so 3R2
2e−m̂2 < 3R2

2e−2m2 < e−m2 . Therefore, f has the
filling disk Γ2 with index m2. Since 5Γ̂2 ⊂ g(H1), we have 5Γ2 − w0 ⊂ f (5Γ1) − w0 and
so 5Γ2 ⊂ f (5Γ1).
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Case B. Assume that W1 ⊂ f (5Γ1) and f is analytic in 5Γ1. In view of Lemma 3.5,
we have a filling disk Γ2 of f in A(r2, 3R2) ⊂ W1 with index m2, where
R2 = 1/640| f (z1)|, and 5Γ2 ⊂ f (5Γ1).

Case C. Assume that 5Γ1 contains a pole of f. Then for some r̂2 > 0, {z : |z| > r̂2} ⊂
f (5Γ1). Take a sufficiently large R2 > R3

1 such that r2 > 5r̂2. In view of Lemma 3.5,
there exists a filling disk Γ2 of f in A(r2, 3R2) with index m2. Obviously, 5Γ2 ⊂
A(r2/5, 15R2) ⊂ f (5Γ1).

In one word, there exists a filling disk Γ2 of f with index m2 given in (3-8) where
R2 > R3

1 and 5Γ2 ⊂ f (5Γ1). Proceeding step by step, we obtain a sequence of filling
disks {Γn} of f with index mn given by (3-8) with R2 replaced by Rn, and Rn > R3

n−1 →
∞ (n→ ∞) and 5Γn ⊂ f (5Γn−1). Since f is meromorphic on the complex plane, f takes
any value at most finitely many times on any bounded subset of the complex plane
and therefore, since mn → ∞ (n→ ∞), we know that dist(Γn, 0)→ ∞ (n→ ∞). It is
easily seen that for every n, Γn ∩ J( f ) � ∅. In view of Lemma 3.1, there exists a point
a ∈ I( f ) ∩ J( f ) such that f n(a) ∈ 5Γn. Of course, 5Γn is also a filling disk of f with
index mn.

We complete the proof of Theorem 1.1.

3.3. Proof of Theorem 1.3. From the proof of Theorem 1.1, we have a sequence of
filling disks Bn such that Bn+1 ⊂ f (Bn) centered at zn → ∞ with index mn, and having
order greater than or equal to λ. Therefore, the spherical radius of the exceptional disks
is e−mn → 0 (n→ ∞).

Noting that Bdirect( f ) is closed in [0, 2π], we can choose a sequence of {θp}Np=1

with 1 ≤ N ≤ +∞ such that the closure {θp : p = 1, 2, . . . , N} = Bdirect( f ). In view
of Lemma 3.6, for every θp, there exists a sequence of filling disks {Apj}∞j=1 with
index mpj centered at zpj = rpjeiθp , j = 1, 2, . . .with rpj → ∞ (j→ ∞) and mp(j+1) > mpj.
Additionally, we can require that rp(j+1) > 2rpj and r(p+1)1 > 2rp1 → +∞ (p→ ∞).
Since the exceptional disks of Apj have spherical radius at most e−mpj , choosing suffi-
ciently large rp1, we have that for every j, there exists a Bn(pj) with n(pj)→ ∞ (p→ ∞)
such that

Bn(pj) ⊂ f (Apj).

Now let us write Apj, j = 1, 2, . . . , p = 1, 2, . . . in the following order:

A11, A12, A21, A13, A22, A31, . . . .

Take a sufficiently large n0 and then one of A11, A12, A13 is in f (Bn0 ), and denote it
by C11. Then f (C11) contains one Bn11 . Take Bn11+1, . . . , Bn11+p11 such that f (Bn11+p11 )
contains one of A12, A13, A14, and denote it by C12. Then f (C12) contains one Bn2 . Take
Bn12+1, . . . , Bn12+p12 such that f (Bn12+p12 ) contains one of A21, A22, A23, and denote it by
C21. We go on forever in this way to obtain a sequence of filling disks:
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Bn0

C11, Bn11 , Bn11+1, . . . , Bn11+p11 ,
· · ·

Csk, Bnsk , Bnsk+1, . . . , Bnsk+psk

. . . ,

where Csk is one of Ask, As(k+1), and As(k+2). In view of Lemma 3.1, there exists a point
a ∈ I( f ) ∩ J( f ) such that f n(a) goes along the sequence of the above filling disks. Then
a satisfies our requirement.

3.4. Proof of Theorem 1.4. Under (1-6), we have (3-5). Take r1 sufficiently large
and set R1 = r2

1 such that

T(R1, f ) ≥ max
{
240,

240 log(2R1)
log 2

, 12T(er1, f ) log(2r1)
}
,

q1 = log r1 and, in view of (3-7),

c∗
T(R1, f )
(log r1)4 > 2 log(1 + 2R1),

where c∗ is the constant in Lemma 3.4. Applying Lemma 3.4, there exists a z1 lying in
annulus {z : r1 < |z| < 2R1} such that

Γ1 :=
{
z : |z − z1| <

4π
q1
|z1|
}

is a filling disk of f with index

n1 = c∗
T(R1, f )

q2
1(log r1)2

= c∗
T(R1, f )
(log r1)4 .

Take r2, R2 = r2
2 and q2 = log r2 such that

r2 >
2R1 + (1 + 2R1)e−n1

1 − e−n1 (1 + 2R1)
.

This implies that χ(r2, 2R1) > e−n1 , where χ(z, w) denotes the spherical distance
between z and w. There exists a z2 lying in the annulus {z : r2 < |z| < 2R2} such that

Γ2 :=
{
z : |z − z2| <

4π
q2
|z2|
}

is a filling disk of f with index

n2 = c∗
T(R2, f )
(log r2)4 .

Additionally, the spherical distance between Γ1 and Γ2 is at least χ(r2, 2R1) > e−n1

> e−n2 .
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Using the same method, we have rj, Rj, qj, nj and Γj (j = 1, 2, . . . , 5) such that the
spherical distance between Γj and Γi with i � j is larger than e−nt (t = 1, 2, . . . , 5).

Take B1 = Γ1. We can have B2 = Γi for some 2 ≤ i ≤ 4 with f (B1) ⊃ B2 and then
B3 = Γj for some j ∈ {2, 3, 4, 5} \ {i} with f (B2) ⊃ B3. It is easy to see that f (B3) ⊃
B1, B2 or B3. Starting from B3, we apply the same method to obtain B4 and B5 such
that f (Bj) ⊃ Bj+1 with j = 3, 4 and f (B5) ⊃ B3, B4, or B5. Thus, we obtain a sequence
of disks {Bn} such that f (Bn) ⊃ Bn+1 and f (B2n+1) ⊃ B2n−1, B2n, or B2n+1.

We can take rn such that limn→∞(log T(Rn, f )/log Rn) = ρ( f ). Applying Lemma 3.2,
we complete the proof of Theorem 1.4.

3.5. Proof of Theorem 1.5. It follows from (3-6) that

1
2e

T−1
( T(r1+σ, f )
12 log r1+σ , f

)
> r.

In view of Lemma 3.5, for any σ > 0 and all sufficiently large r, the annulus A(r1−σ, r)
contains a filling disk with index m(r)→ ∞ (r → ∞). Since J( f ) is nonempty and
unbounded, F( f ) cannot contain any filling disks with large index so that given
arbitrarily 0 < σ < 1, for large r, under (1-6), F( f ) cannot contain any annulus
A(r1−σ, r).

Suppose that f has a multiply connected Fatou component. Then there exists a
sequence of annuli {A(r1−σ

n , rn)}with rn → ∞ for some 0 < σ < 1 in the Fatou set F( f );
see [9, Theorem 1.2] and [34, Theorem 1.1]. This derives a contradiction. Theorem 1.5
follows.

4. Proofs of Theorems 1.7 and 1.8

4.1. Some lemmas. We need the Nevanlinna characteristic in an angle; see [16, 33].
We set

Ω(α, β) = {z : α < arg z < β}

with 0 ≤ α < β ≤ 2π and denote by Ω(α, β) the closure of Ω(α, β). Let f (z) be
meromorphic on the angle Ω(α, β). We define

Aα,β(r, f ) =
ω

π

∫ r

1

( 1
tω
− tω

r2ω

)
{log+ | f (teiα)| + log+ | f (teiβ)|}dt

t
;

Bα,β(r, f ) =
2ω
πrw

∫ β
α

log+ | f (reiθ)| sinω(θ − α) dθ;

Cα,β(r, f ) = 2
∑

1<|bn |<r

( 1
|bn|ω

− |bn|ω

r2ω

)
sinω(βn − α),

where ω = π/(β − α) and bn = |bn|eiβn are poles of f (z) in Ω(α, β) appearing according
to their multiplicities. Additionally, define Cα,β(r, f ) in the same form as Cα,β(r, f )
for distinct poles bn of f (z), that is, ignoring their multiplicities. For a ∈ C, we
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write Cα,β(r, f = a) for Cα,β(r, 1/( f − a)). The Nevanlinna angular characteristic is
defined as

Sα,β(r, f ) = Aα,β(r, f ) + Bα,β(r, f ) + Cα,β(r, f ).

LEMMA 4.1 [33, Lemma 2.2.2]. Let f (z) be a meromorphic function on Ω(α, β). Then
we have the following:

Cα,β(r, f = a) ≤ 4ω
N(r,Ω, f = a)

rω
+ 2ω2

∫ r

1

N(t,Ω, f = a)
tω+1 dt.

The inequality also holds for a = ∞.

LEMMA 4.2 [33, Equation (2.2.6) and Lemma 2.5.3]. Let f (z) be a meromorphic
function. Then for any two distinct values a1 and a2 on C,

Sα,β(r, f ) ≤ Cα,β(r, f ) +
2∑
ν=1

Cα,β(r, f = av) + O(log rT(r, f ))

for all r > 0 with the possible exception of a finite-measure set of r.

We need the following lemma, which is established in terms of the hyperbolic
metric.

LEMMA 4.3 [34, Theorem 2.4]. Let h(z) be an analytic function on the annulus
A(r, R) = {z : r < |z| < R} with 0 < r < R < ∞ such that |h(z)| > 1 on A(r, R). Then

log L(ρ, h) ≥ exp
(
− π

2

2
max
{ 1

log R
ρ

,
1

log ρr

})
log M(ρ, h),

where ρ ∈ (r, R) and L(ρ, h) = min{|h(z)| : |z| = ρ}.

In Lemma 4.3, when ρ =
√

rR,

log M(ρ, h) ≤ exp
(
π2

log R
r

)
log L(ρ, h).

4.2. Proof of Theorem 1.7. In contrast, suppose that there exists a sequence of
annuli An = {z : rn < |z| < Rn} in F( f ) with Rn ≥ (1 + φ(rn)/log T(rn, f ))rn, rn+1 > rn

and rn → ∞ (n→ ∞). We treat two cases.

Case A. There exists a subsequence of An such that f (An) ⊂ {|z| > 1}. Without loss of
generality, we assume that for all n, f (An) ⊂ {|z| > 1}. Set ρn =

√
Rnrn. Since | f (z)| > 1

on An, using Lemma 4.3, we have

log L(ρn, f ) ≥ λn log M(ρn, f ),

where λn = exp(−π2/log(Rn/rn)).
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For the angular domain Ω(α, β), according to the definition of Bα,β(ρn, f ),

ρωn Bα,β(ρn, f ) =
2ω
π

∫ β
α

log+ | f (ρneiφ)| sin(ω(φ − α)) dφ

≥ 2ω
π

log L(ρn, f )
∫ β
α

sin(ω(φ − α)) dφ

=
4
π

log L(ρn, f ) ≥ 4λn

π
log M(ρn, f ). (4-1)

However, for any two distinct complex numbers av (v = 1, 2), we use Lemmas 4.1
and 4.2 in turn to obtain that

ρωn Bα,β(ρn, f ) ≤ ρωn (Cα,β(ρn, f = a1) + Cα,β(ρn, f = a2)) + O(ρωn log ρnT(ρn, f ))

≤ 4ωN(ρn) + 2ω2ρωn

∫ ρn

1

N(t)
tω+1 dt + O(ρωn log ρnT(ρn, f ))

≤ 4ωN(ρn) + 2ωρωn N(ρn) + O(ρωn log ρnT(ρn, f ))

= (4ω + 2ωρωn )N(ρn) + O(ρωn log ρnT(ρn, f )), (4-2)

where N(ρn) = N(ρn,Ω, f = a1) + N(ρn,Ω, f = a2). Combining (4-1), (4-2), and (1-7)
yields

(4ω + 2ωρωn )N(ρn) + O(ρωn log ρnT(ρn, f )) ≥ λn log M(ρn, f )) ≥ KλnT(ρn, f )

for some positive constant K. Thus,

KλnT(ρn, f ) ≤ 2 max{(4ω + 2ωρωn )N(ρn), O(ρωn log ρnT(ρn, f ))}. (4-3)

It follows from the definition of lower order that

lim
n→∞

log T(ρn, f )
log ρn

≥ λ

for the above sequence {ρn}. By noting that

log λn = −
π2

log(Rn/rn)
≥ − π2

log(1 + φ(rn)/log T(rn, f ))

∼ − π
2

φ(rn)
log T(rn, f ) ≥ − π

2

φ(rn)
log T(ρn, f ),

we have

lim
n→∞

log λn

log T(ρn, f )
≥ 0.

In view of (4-3),

lim
n→∞

log N(ρn)
log T(ρn, f )

≥ 1 − ω
λ

.

Then we get a contradiction for a and b.
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Case B. Set

cn = 1 +
φ(rn)

12 log T(rn, f )
.

When cn ≤ 2, we have c3
n ≤ 1 + φ(rn)/log T(rn, f ). Consider the annulus

Bn = A(rn, c3
nrn) ⊂ An and Cn = A(cnrn, c2

nrn). In view of the implication in Case A, we
can assume that for all n, f (Cn) ∩ {|z| ≤ 1} � ∅. Then there exist two points z0 ∈ Cn

and zn with |zn| = ρn = c3/2
n rn, in view of (1-7), such that

| f (z0)| = 1 + |c| and log | f (zn)| ≥ KT(ρn, f ) > log ρn for n ≥ N,

where c ∈ J( f ) with |c| = minz∈J( f ) |z|, K is a positive number, and N is a positive inte-
ger. Thus, for n ≥ N and N ≤ k ≤ n, Ak ∩ f (An) � ∅. This implies that

⋃∞
n=N An ⊂ U,

where U is a Fatou component of f with f (U) ⊆ U.
A simple calculation yields

λBn (z) ≤ 2
√

3π
9 log cn

1
|z| , z ∈ Cn and λBn (z) =

π

3 log cn

1
|z| , |z| = ρn.

Then

dBn (z0, zn) ≤
∫ ρn

cnrn

2
√

3π
9 log cn

dt
t
+

∫ π
0

π

3 log cn
dθ ≤

√
3π
9
+
π2

3 log cn

and
1
δn
≥ 9 log cn√

3π log cn + 3π2
≥ log cn

4 + log cn
,

where δn = dBn (z0, zn). It follows that for sufficiently large n,

| f (zn)| ≥ exp(KT(ρn, f )) > eκδn (1 + 2|c|) + |c| = eκδn (| f (z0)| + |c|) + |c|.

Set g(z) = f (z) − c. Then 0 � g(Bn) and |g(zn)| ≥ eκδn |g(z0)|. In view of Lemma 3.3, we
have g(Bn) ⊇ A(d−1

n tn, dntn) with tn ≥ |g(z0)| ≥ 1 and

dn := e−κ
( |g(zn)|
|g(z0)|

)1/δn
≥ exp

(
− κ + log cn

4 + log cn

K
2

T(ρn, f )
)
> ρ5

n.

Thus,

f (Bn) ⊇ A(d−1
n tn, dntn) + q ⊇ A(d−1

n tn + |c|, dntn − |c|).

Set sn = ρntn ≥ ρn. Then

A(sn, ρ3
nsn) ⊂ A(d−1

n tn + |c|, dntn − |c|).

This implies that the Fatou component U contains a sequence of annuli
Dn = A(sn, ρ3

nsn).
For a simple statement, we assume without loss of generality that c = 0. We can

assume that f (En) ∩ {z : |z| ≤ 1} � ∅ with En = A(ρnsn, ρ2
nsn). We can find two points

z′0 ∈ En and z′n with |z′n| = ρ
3/2
n sn such that
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| f (z′0)| = 1 and log | f (z′n)| ≥ KT(ρ3/2
n sn, f ) > 2 log rn.

Additionally,

dDn (z′0, z′n) ≤
√

3π
9
+

π2

3 log ρn
<

9
10

.

Therefore, in view of Lemma 3.3, f (Dn) ⊃ A(| f (z′0)|, f (z′n)|) ⊃ A(1, r2
n) and further-

more, A(1, r2
n) ⊂ U and so A(1, Rn) ⊂ U. This implies that U ⊃ {z : |z| > 1}. A contra-

diction is derived.
From Cases A and B, the Fatou set F( f ) contains no annuli mentioned in

Theorem 1.7.

4.3. Proof of Theorem 1.8. Consider the meromorphic function with the following
form:

f (z) = cz + d +
∞∑

n=1

cn

( 1
an − z

− 1
an

)
,

where c, d, cn, and an are real numbers with an → ∞(n→ ∞), c ≥ 0, and cn > 0 such
that

∞∑
n=1

cn

a2
n
< +∞.

For such a function f, the real axis is completely invariant under f and so J( f ) is
completely on the real axis, see [2].

Set rn = M2n for a large M > 0. For a given real number λ > 1
2 , define rn,k = rn+1 −

1 + k/[rλn], 1 ≤ k ≤ [rλn] for each n, where [x] is the maximal integer not greater than
x. We prove that the function

g(z) =
∞∑

n=1

1
[rλn]

[rλn ]∑
k=1

2z
r2

n,k − z2
=

∞∑
n=1

1
[rλn]

[rλn ]∑
k=1

( 1
rn,k − z

− 1
rn,k + z

)

satisfies the requirement of Theorem 1.8.
Given an arbitrarily large real number r, we have rn ≤ r < rn+1 for some n. Then,

n(r, f ) =
n−1∑
k=1

[rλk ] ≤ rλn
n−1∑
k=1

( rk

rn

)λ

= rλ
n−1∑
k=1

( 1
2n−k

)λ

≤ rλ

2λ − 1
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and

n(r, f ) ≥
n−1∑
k=1

(rλk − 1) =
rλn

2λ − 1
− n

=
rλn+1

2λ(2λ − 1)
− log(rn/M)

log 2

>
rλ

2λ(2λ − 1)
− log(r/M)

log 2
.

For z ∈ A( 4
3 rn, 5

3 rn),

|g(z)| ≤
n−1∑
m=1

1
[rλm]

[rλm]∑
k=1

2|z|
|z|2 − r2

m,k

+

∞∑
m=n

1
[rλm]

[rλm]∑
k=1

2|z|
r2

m,k − |z|2
= I1 + I2(say).

We estimate

I1 ≤
n−1∑
m=1

1
[rλm]

[rλm]∑
k=1

30rn

16r2
n − 9r2

m,k

≤ 30nrn

16r2
n − 9r2

n
=

30n
7rn

.

Since rm,k ≥ rm+1 − 1 = 2rm − 1, for m ≥ n,

9r2
m,k − 25r2

n ≥ 9(2rm − 1)2 − 25r2
n > 10r2

m

so that

I2 ≤
∞∑

m=n

1
[rλm]

[rλm]∑
k=1

30rn

9r2
m,k − 25r2

n

<

∞∑
m=n

30rn

10r2
m
≤ 3rn

∞∑
m=n

r−2
m =

3
rn

∞∑
m=n

( rn

rm

)2
<

3
rn

.

Therefore,

T(3rn/2, g) = N(3rn/2, g) + m(3rn/2, g) < n(3rn/2, g) log(3rn/2) + 2

and

T(3rn/2, g) = N(3rn/2, g) + m(3rn/2, g) > n(rn, g) log(3/2) − 2,

and so

lim
n→∞

log T(3rn/2, g)
log(3rn/2)

= λ.

This easily implies that g has order and lower order equal to λ.
Obviously, 0 is an attracting fixed point of g and we can choose a large M such that

B(0, M) is in its attracting basin. For all sufficiently large n, the annulus A(4rn/3, 5rn/3)
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is mapped into B(0, M). Therefore, the Fatou set F(g) contains a sequence of annuli
A(4rn/3, 5rn/3) with rn → ∞ (n→ ∞). Since J(g) lies in the real axis and r1, r2 ∈ J(g),
g cannot take on the values r1 and r2 on the upper half plane and lower half plane.

We omit the proof of the case when λ = ∞.

5. Remarks

In the proofs of Theorems A and 1.4, the existence of so-called filling disks is a key
point.

From the proof of [21, Theorem A], we observe that if 0 < λ( f ) < ∞, then there
exist R0, τ > 1, and N > 0 such that for all r > R0, the annulus A(r/4, 3τT−1(TN(r)))
contains a filling disk D := {z : |z − z0| < (4π/log r)|z0|} of f with index m =
c∗(T(R)/(log R)2), where c∗ is a positive constant, T(r) = T(r, f ), and τr < R <
τT−1(TN(r)).

From the proof of Theorem 1.4, we see that the annulus A(r, 2r2) for r ≥ R0 con-
tains a filling disk D := {z : |z − z0| < (4π/log r)|z0|} with index m = c∗(T(r2)/(log r)4).
However, for any two sequences {rn} and {Rn} of positive numbers with rn < Rn < rn+1,
there exists a transcendental meromorphic function which has no filling disks in
annulus A(rn, Rn) with index mn → ∞ (n→ ∞). For an example which has a sequence
of large annuli in the Fatou set, see [34]. A transcendental entire function f with this
property can be found in [10]. It is obvious that the Fatou set cannot contain a filling
disk with large enough index m. This is an interesting contrast between the iterate
theory and the value distribution of meromorphic functions.
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