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We demonstrate a fast adjoint-based method to optimise tokamak and stellarator equilibria
against a pressure-driven instability known as the infinite-n ideal ballooning mode.
We present three finite-β (the ratio of thermal to magnetic pressure) equilibria: one
tokamak equilibrium and two stellarator equilibria that are unstable against the ballooning
mode. Using the self-adjoint property of ideal magnetohydrodynamics, we construct a
technique to rapidly calculate the change in the eigenvalue, a measure of ideal ballooning
instability. Using the SIMSOPT optimisation framework, we then implement our fast
adjoint gradient-based optimiser to minimise the eigenvalue and find stable equilibria for
each of the three originally unstable equilibria.
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1. Introduction

Magnetic confinement is currently considered the most promising way (Baalrud et al.
2020) to achieve the United States’ goal of building a pilot fusion power plant that
generates net electricity before 2040 (National Academies of Sciences et al. 2021).
Most advanced fusion reactor designs today are based on two main designs that use
magnetic confinement: tokamaks and stellarators. These devices work by using strong
magnetic fields to keep a hot, dense plasma at their centre. The main difference between
tokamaks and stellarators lies in their geometric shape. Tokamaks are symmetric about
a fixed axis, whereas stellarators are not. Due to the difference in axisymmetry, the
tokamak equilibria are two-dimensional (2D) axisymmetric and the stellarator equilibria
are three-dimensional (3D).

For a fixed magnetic field strength, the power density P of a fusion device scales
as β2, where β is the ratio of the plasma pressure to the magnetic pressure. Since
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current tokamaks and stellarators are low-β devices, one way to improve the efficiency
of these devices is to increase the operating β. However, doing so creates a large
pressure gradient from the centre to the edge of the device, which is a source of
a variety of pressure-driven, magnetohydrodynamic (MHD) and kinetic instabilities.
An important category of pressure-driven instabilities are the high-n ballooning
modes.

In tokamaks, there have been numerous studies that have used the ideal ballooning mode
to determine the plasma beta limit. This led to the development of codes such as EPED
(Snyder et al. 2007) that can determine edge pressure profile with reasonable accuracy.
In stellarators, the ideal ballooning mode might not cause a significant loss of energy, but
Tang, Connor & Hastie (1980) and Aleynikova et al. (2018) have shown that it is related
to a kinetic instability known as the kinetic ballooning mode (KBM). Recent articles have
shown the detrimental effects of KBM turbulence on stellarators for finite beta values
(Aleynikova et al. 2018; McKinney et al. 2021). The KBM is similar to the ideal ballooning
mode, albeit with additional kinetic effects. Therefore, the ideal ballooning mode could be
used as a proxy for KBM stability.

Numerous studies have been conducted to optimise tokamaks (Miller & Moore 1979;
Bernard & Moore 1981) and stellarators (Sanchez et al. 2000a; Gates et al. 2017) against
ideal MHD instabilities. However, such calculations can be computationally costly and
time consuming. In this paper, we use the self-adjoint property of ideal MHD to devise
an adjoint-based method that speeds up the optimisation of 2D and 3D equilibria against
the infinite-n, ideal ballooning mode. Adjoint-based methods have been extensively used
for aeronautical design (Giles & Pierce 2000) and recently in the context of stellarator
optimisation (see Paul, Landreman & Antonsen (2021) and references therein). Using this
technique, we can speed up the process of finding equilibria that are stable against the
ballooning mode.

The remainder of this paper is divided as follows: in § 2, we briefly describe the
fundamentals of a general 3D MHD equilibrium and follow it with the details of the
VMEC equilibrium solver (Hirshman & Whitson 1983) in § 2.1. Using VMEC, we obtain
and present the details of one 2D axisymmetric equilibrium in § 2.2 and two 3D equilibria
in§§ 2.3 and 2.4. In § 3, we present the physical, mathematical and numerical details
used to solve the infinite-n, ideal ballooning equation. We then analyse the susceptibility
of the chosen local equilibria to the ideal ballooning instability. In § 3.3, we explain
the self-adjoint property of the ideal ballooning equation. We briefly explain how the
ballooning eigenvalue can be used as a proxy to stabilise the equilibria against the KBM.
Using the self-adjoint technique, we formulate an adjoint method which we elucidate and
test in § 4. In § 5, we present the details of the overall optimisation process and present
an adjoint-based optimiser using the SIMSOPT (Landreman et al. 2021) framework. In
the penultimate section, we present our results, comparing the optimised stable equilibria
with their initial, unstable counterparts. Finally, in § 7 we summarise our work and discuss
possible ways in which it can be extended.

2. Ideal MHD equilibrium

In this section, we start with the general form of a 3D, divergence-free magnetic field.
We use this form to represent the magnetic field in tokamaks and stellarators. After that, we
briefly describe the steady-state, ideal MHD, force-balance equation. In § 2.1, we explain
the details of solving the ideal MHD force-balance equation using the VMEC code. Finally,
we present the details of three MHD equilibria in §§ 2.2–2.4 that we will use throughout
this study.
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A divergence-free magnetic field B can be written in the Clebsch form (D’haeseleer
et al. 2012)

B = ∇αt × ∇ψp. (2.1)

The form (2.1) is generally used for tokamak equilibria. For stellarators, we use the
following equivalent representation

B = ∇ψ × ∇αs. (2.2)

We focus on solutions whose magnetic field lines lie on closed nested toroidal surfaces,
known as flux surfaces. For tokamaks, we label the flux surfaces with their enclosed
poloidal flux ψp whereas for stellarators, we use the enclosed toroidal flux ψ . On each
flux surface, lines of constant αt and αs coincide with the magnetic field lines in tokamaks
and stellarators, respectively. Thus, the variables αt and αs are known as field line
labels.

To facilitate the calculation of various physical quantities from a general equilibrium
solver, we use multiple coordinate systems. We use the right-handed cylindrical coordinate
system (R, ζ,Z) where R and Z are the radial and vertical distances from the origin and ζ
is the azimuthal angle around the symmetry axis. We also define a curvilinear coordinate
system comprising the PEST coordinates (ψp, ζ, θ) where ψp is the flux surface label, ζ is
the cylindrical azimuthal angle and θ is the ‘straight-field-line’ poloidal angle (D’haeseleer
et al. 2012) such that αt = ζ − q(ψp)(θ − θ0). Similarly, for 3D equilibria, we use the
coordinate system (ψ, ζ, θ) and αs = θ − ι(ψ)(ζ − ζ0). The pitch of the magnetic field
line on a flux surface is described by the safety factor

q(ψ) = 1
ι(ψ)

≡ dψ
dψp

= 1
(2π)2

∮
dζ
∮

dθ
B · ∇ζ
B · ∇θ , (2.3)

where ι, the rotational transform, is the inverse of the safety factor. Using (2.1) or (2.2) for
the magnetic field, one has to solve the steady-state ideal MHD force balance equation in
the absence of a background flow

j × B = ∇p, (2.4)

where p is the plasma pressure, and j is the plasma current given by the Ampere’s law

μ0j = ∇ × B, (2.5)

where μ0 is the coefficient of permeability in vacuum. For axisymmetric equilibria,
simplifying (2.4) yields the Grad–Shafranov equation (Shafranov 1957; Grad & Rubin
1958). For a general 3D equilibrium, such an equation does not exist. However, we can
solve for the axisymmetric and 3D cases using a general numerical equilibrium solver. In
the following section, we explain how we use the numerical solver VMEC1 to obtain both
2D axisymmetric and 3D equilibria.

1The main idea of this work is independent of the equilibrium solver. Our technique should also work with any other
equilibrium solver.
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2.1. Numerical equilibrium solver
We generate numerical equilibria using the 3D equilibrium code VMEC (Hirshman &
Whitson 1983). The code works by minimising the integral

W =
∫ (

p
γ − 1

+ B2

2μ0

)
dV, (2.6)

subject to multiple geometric constraints (Kruskal & Kulsrud 1958). For our study, we
used the fixed-boundary mode of VMEC. The fixed-boundary mode takes the shape of
the boundary surface denoted by the cylindrical coordinates Rb and Zb in terms of the
Fourier-decomposed poloidal (Θ) and toroidal (ζ ) modes

Rb =
∑

n

∑
m

R̂b(m, n) exp(i(mΘ − nζ )),

Zb =
∑

n

∑
m

Ẑb(m, n) exp(i(mΘ − nζ )),

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

where m and n are integers. We also provide VMECwith the coefficients of the polynomials
representing the global radial pressure p(s) and the rotational transform ι(s) as a function
of the normalised toroidal flux s, and the total toroidal or poloidal flux enclosed by the
boundary. The poloidal angle Θ used by VMEC is related to the straight field line θ by the
following equation

Θ = θ +Λ, (2.8)

where
Λ =

∑
n

∑
m

Λ̂(m, n) exp(i(mΘ − nζ )). (2.9)

For a boundary shape, pressure, rotational transform and enclosed toroidal flux, it solves
for the flux surfaces. To achieve this, it uses a steepest descent method to minimise the
energy integral in (2.6) on each surface for fixed p, ι, and enclosed flux subject to various
topological constraints imposed by the ideal MHD. In a more compact form, VMEC solves

min
R,Z,Λ

W[R,Z,Λ; p, ι, ψ(s = 1)], s.t. R(s = 1) = Rb,Z(s = 1) = Zb. (2.10)

After running the code, we obtain the shape of the flux surfaces, the magnetic field and
a set of important physical quantities. The characteristic physical quantities that we use in
this work are defined as follows.

(i) The total enclosed toroidal flux by the boundary ψb = ∫
dVB · ∇ζ .

(ii) The normalising magnetic field BN = ψb/(πa2
N)where aN = √Ab/π is the effective

minor radius and Ab is the average area enclosed by the boundary (averaged over ζ ).
(iii) The ratio of the total plasma pressure to the magnetic pressure on the magnetic axis

βax = 2μ0p(s = 0)/B2
N .

(iv) The aspect ratio A and the normalised minor radius aN of the device.
(v) The radius of curvature of the boundary Rc(θ) = (d2R/dZ2)/(1 + (dR/dZ)2)3/2

where R and Z are the cylindrical coordinates used to parametrise the boundary.
(vi) The volume-averaged, normalised plasma pressure 〈β〉 = ∫

dVp/
∫

dVB2 where dV
is the differential volume element.

(vii) The total enclosed toroidal current jζ = |∫ dV (j · ∇ζ )|.
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(a) (b) (c)

FIGURE 1. Plots of the inputs to the VMEC code for the DIII-D-like design: (a) the pressure, (b)
the rotational transform as a function of the normalised toroidal flux s and (c) the cross section
of the boundary.

βax(%) 〈β〉(%) jζ (MA) 〈B〉 (T) ῑ A aN(m) BN(T) ψLCFS(Tm2)

14 7.6 0.616 0.677 0.568 2.42 0.68 0.679 1.0

TABLE 1. Relevant physical quantities for the DIII-D-like equilibrium.

(viii) The volume-averaged magnetic field 〈B〉 = ∫
dVB/

√
V where dV is the differential

volume element.
(ix) The mean rotational transform ῑ = ∫

ds ι/
∫

ds.

Using VMEC, we generate three equilibria: an axisymmetric equilibrium with a DIII-D-like
boundary shape and two 3D equilibria, modified NCSX- and modified Henneberg-QA. In
the following sections, we provide important details for each of these equilibria.

2.2. 2D axisymmetric equilibrium
In this study, the first equilibrium that we choose is a high-β, axisymmetric, DIII-D-like
equilibrium with a negative triangularity boundary: a boundary that looks like an
inverted-D. Negative triangularity equilibria have generally been found to have enhanced
confinement Marinoni et al. (2019) and stability against edge localised modes. We then
choose a negative triangularity equilibrium from Gaur et al. (2023) where it is shown to be
unstable against the ideal ballooning mode. With this equilibrium as an initial state, we run
our ideal ballooning stability optimisation to find a stable equilibrium while maintaining
a boundary shape with negative triangularity. The input pressure, the rotational transform
and the boundary shape profile for this equilibrium are shown in figure 1.

Using these inputs, we run VMEC to obtain the global MHD equilibrium. Our optimiser
sometimes finds solutions that meet the ideal ballooning stability constraints in a trivial
fashion. For example, the optimiser may give us a large aspect ratio or decrease the minor
radius causing the volume averaged B to increase, causing the β to decrease. To avoid
these trivial solutions, we have to impose additional constraints on important characteristic
physical quantities to prevent them from changing significantly. The values of the relevant
physical quantities for this equilibrium are provided in table 1.
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(a) (b) (c)

FIGURE 2. Plots of the inputs to the VMEC code for the modified NCSX design: (a) the pressure,
(b) the rotational transform as a function of the normalised toroidal flux s and (c) the cross section
of the boundary. Note the large negative shear until s ≈ 0.85.

βax(%) 〈β〉(%) jζ (MA) 〈B〉 (T) ῑ A aN(m) BN(T) ψLCFS(Tm2)

10.9 5.9 0.305 1.59 0.68 4.36 0.32 1.54 0.514

TABLE 2. Important physical quantities for the modified NCSX equilibrium.

2.3. Modified NCSX equilibrium
The second equilibrium we select is the 3D equilibrium for the NCSX design (Zarnstorff
et al. 2001; Fu et al. 2007). This equilibrium is designed to have a hidden symmetry
known as quasisymmetry (Boozer 1983; Garren & Boozer 1991) where the strength of
the magnetic field |B| does not change along a special coordinate. Quasisymmetry2 is
a useful property because it ensures orbit confinement, which helps improve energetic
particle confinement, a major issue in stellarators. The pressure, rotational transform and
boundary shape profile for this equilibrium are shown in figure 2.

The values of equilibrium-dependent quantities output by VMEC are presented in table 2.

2.4. Modified Henneberg-QA
The final equilibrium we study is the modified Henneberg-QA design (Henneberg et al.
2019). This equilibrium is also designed to have quasisymmetry for a wide variety of
pressure profiles. The pressure, rotational transform and boundary shape profile for this
equilibrium are shown in figure 3.

For reasons explained in the previous section, we impose additional constraints on some
of the physical quantities. The values of these equilibrium-dependent parameters that we
use as constraints in § 6 are presented in table 3.

In the following section, we describe the ideal ballooning stability and analyse these
equilibria by measuring their instability against the ideal ballooning mode.

3. The infinite-n ideal ballooning mode

In this section, we present the details of the infinite-n ideal ballooning mode. In § 3.1,
we briefly describe its theoretical foundation and mathematical formulation. In § 3.2, we
present a numerical technique used to solve the ideal ballooning equation. In § 3.3, we

2We do not optimise equilibria for quasisymmetry in this work.
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(a) (b) (c)

FIGURE 3. Plots of the inputs to the VMEC code for the modified Henneberg-QA design: (a) the
pressure, (b) the rotational transform as a function of the normalised toroidal flux s and (c) the
cross section of the boundary.

βax(%) 〈β〉(%) jζ (MA) 〈B〉(T) ῑ A aN(m) BN(T) ψLCFS(Tm2)

6.5 3.56 0.204 2.5 0.263 3.37 0.60 2.35 2.67

TABLE 3. Relevant physical quantities for the modified Henneberg-QA design.

describe the mathematical properties that we use to formulate an adjoint-based method
and accelerate optimisation against the ideal ballooning mode. In the final section, we
describe how optimisation against the ideal ballooning mode can speed up optimisation
against an electromagnetic mode seen in kinetic plasma turbulence, known as the KBM.

3.1. Physical and mathematical description
This work involves a detailed analysis of three equilibria against an important MHD
instability, the infinite-n ideal ballooning instability (Connor, Hastie & Taylor 1979;
Dewar & Glasser 1983): a field-aligned, pressure-driven Alfvén wave that grows when
the destabilising pressure gradient in the region of ‘bad’ curvature exceeds the stabilising
effect of field-line bending. Using magnetic field unit vector b = B/B, the region of ‘bad’
curvature is defined as a region of a flux surface where (b · ∇b) · ∇p > 0.

The ideal ballooning equation

1
J
∂

∂θ

(
|∇αt|2
J B2

∂X̂
∂θ

)
+ 2

1
B4

d(μ0p)
dψ

[
B × ∇

(
μ0p + B2

2

)
· ∇αt

]
X̂ = −ρω2 |∇αt|2

B2
X̂,

(3.1)

is a second-order eigenvalue differential equation that calculates the perturbation X̂(θ)
along the ballooning coordinate θ and its eigenvalue (or the square of the growth rate)
−ω2. In (3.1), ρ is the plasma mass density, J = (B · ∇θ)−1 and the rest of the terms
are defined in § 2. This equation is solved subject to the following condition on the
eigenfunction

lim
θ→±∞

X̂(θ;ψ, αt, θ0) = 0, (3.2)
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where θ0 is the ballooning parameter.3 Details of the derivation of the ideal ballooning
equation are given in Connor et al. (1979) and Dewar & Glasser (1983).

The ballooning equation balances the stabilising field-line bending term and the
destabilising pressure gradient with the inertia of the resulting Alfvén wave, oscillating
with a frequency ω. Note that (3.1) depends on ψ (or ψp) as a parameter, and we can
compute the coefficients from the equilibrium quantities on each surface. Before solving
(3.1) numerically, we normalise and write the ballooning equation on a field line (fixed αt)
as

d
dθ

g
dX̂
dθ

+ cX̂ = λ̂f X̂, (3.3)

where

g = (b · ∇Nθ)
|∇Nαt|2
B/BN

,

c = 2
(b · ∇Nθ)

1
(B/BN)4

d(μ0p/B2
N)

dψN

[
b × ∇N

(
2μ0p + B2

2B2
N

)
· ∇Nαt

]
,

f = 1
(b · ∇Nθ)

|∇Nαt|2
(B/BN)3

,

λ̂ = −
(
ωaN

vA

)2

, vA = BN√
4πρ

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

where vA is the Alfvén speed and the values and definitions of the effective minor radius
aN and the normalising magnetic field BN are the normalising length and magnetic field
strength, respectively, defined in § 2.1. The normalised gradient ∇N = aN∇. In the next
section, we present the numerical procedure used to solve the ideal ballooning equation.

3.2. Numerical implementation and eigenvalues of the selected equilibria
In this section, we briefly discuss the numerical technique used to solve the ballooning
equation (3.3). Our numerical technique is virtually identical to that used by Sanchez et al.
(2000b) in their ballooning solver COBRAVMEC. After briefly explaining the details of our
solver, we present the maximum eigenvalue as a function of the normalised toroidal flux s
for the three equilibria we presented in § 2.

The ideal ballooning equation is a second-order ordinary differential equation with
real-valued coefficients. This eigenvalue equation is discretised using a second-order
accurate, central-finite-difference scheme

gj+1/2
(X̂j+1 − X̂j)

�θ 2
− gj−1/2

(X̂j − X̂j−1)

�θ 2
+ (cj − λ̂fj)X̂j = 0, j = 0 . . .N − 1 (3.5)

subject to the boundary conditions

X̂0 = 0, X̂N = 0, (3.6)

where N is an odd number of uniformly spaced points in the ballooning space, θb is a finite
user-selected value that determines the extent of the eigenfunction such that θj ∈ [−θb, θb]

3In the context of infinite-n ideal ballooning mode analyses, there is a value of the ballooning parameter θ0 at which
the ballooning mode is the least stable. To find this value, we treat θ0 as a free parameter and scan its values to find θ0 for
which ω2 is the most negative.
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and �θ = θj+1 − θj. First-order derivatives are evaluated at half points j − 1/2, j − 3/2
instead of grid points to ensure numerical stability. For a fixed poloidal and toroidal
resolution, the time taken by our solver is proportional to θb. Therefore, it is important
to find the right balance between speed and accuracy. Throughout this work, we chose the
domain limit θb = 5π for all calculations, as we found it to be a sufficient range to capture
the ballooning eigenfunction. We observed that the values θb > 5π made a relatively small
difference from the value obtained of λ̂. The discrete set of (3.5) is written in the form of
a matrix equation

AX̂ = λ̂X̂, (3.7)

where the exact matrix A is provided in Appendix A. We then solve (3.7) to find the largest
eigenvalue using an Arnoldi iterative scheme using the scipy.linalg.eigs solver in
Python and refine the accuracy of the largest eigenvalue in the grid spacing �θ using
variational refinement

λ̂ =

∫
θb

−θb
dθ

⎛
⎝c|X̂|2 − g

∣∣∣∣∣dX̂dθ
∣∣∣∣∣
2
⎞
⎠

∫
θb

−θb
dθ f |X̂|2

, (3.8)

where the derivative dX̂/dθ is calculated using a fourth-order accurate finite-difference
scheme and the integral is performed using a fourth-order accurate Simpson’s rule (1/3
rule) with scipy.integrate.simps.4 Note that we only solve for and refine the
largest eigenvalue of (3.3) and not the entire eigenvalue spectrum.

3.3. Properties of the ideal ballooning equation
The ideal ballooning (3.3) is a linear equation that can be written as

LX̂ = λ̂X̂, (3.9)

where the linear operator

L ≡ 1
f

d
dθ

g
d

dθ
+ c

f
, (3.10)

and the coefficients g, c, f are real-valued functions along a field line. Mathematically, the
solutions of (3.9) form the basis for the Hilbert space equipped with the following inner
product

〈X̂1, X̂2〉 =
∫ ∞

−∞
dθ X̂∗

1 X̂2, (3.11)

and are square integrable, i.e.〈X̂, X̂〉 < ∞. Owing to the self-adjoint nature of ideal MHD
(Freidberg 2014), for solutions X̂1 and X̂2 of (3.9) the operator L satisfies the following
property:

〈LX̂1, X̂2〉 = 〈X̂1,LX̂2〉, (3.12)

where we have used the boundary condition limθ→±∞ X̂1 = limθ→±∞ X̂2 = 0. Using (3.12),
one can show that all eigenvalues λ̂ (3.1) will be real numbers. Therefore, ω = ±i

√
λ̂

will be purely real, an oscillating mode, or purely imaginary, a growing mode. We

4Our Python code is freely available at github.com/rahulgaur104/ideal-ballooning-optimizer.
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refer to oscillating modes as stable and to growing modes as unstable. We use this
powerful property in § 4 to formulate an adjoint method, a technique that can speed up
the calculation of the gradient of λ̂max on each flux surface.

3.4. Relation to the KBM
In this section, we explain how the ideal ballooning equation is directly related to an
important mode of gyrokinetic plasma turbulence known as the KBM. Unlike ideal MHD
which is a fluid theory, a single fluid with properties that vary in configuration space, a
gyrokinetic model takes into account the distribution of different ion and electron species
in both configuration and velocity space. Using a gyrokinetic model, Tang et al. (1980) and
Aleynikova et al. (2018) have shown that for devices with a large aspect ratio, modes with
wavenumbers ky � 1/ρi, where ρi = eB/mi is the ion gyroradius and mi is the ion mass,
the gyrokinetic model can be reduced to the ideal ballooning equation with corrections
that depend on kyρi:

d
dθ

g
dX̂
dθ

+ cX̂ = ω(ω∗,s − ω)f X̂, (3.13)

where
ω∗,s = c0 kyρi, (3.14)

where c0 is a constant on a flux surface and kyρi is the normalised wavenumber of the
mode in the long wavelength limit, i.e.kyρi → 0, we recover the ideal ballooning equation
exactly. this means that an ideal ballooning unstable mode is also unstable to the KBM. In
fact, the KBM is an ideal ballooning mode with kinetic effects.

Using a simple mixing-length argument, one can qualitatively argue that the turbulence
heat flux diffusion is

D ∼ Im(ω)
k2

y

, (3.15)

where Im(ω) is the imaginary part of ω also called the growth rate. This implies that
low-wavenumber turbulence has the highest rate of diffusion and leads to poor plasma
confinement. Hence, even if ideal ballooning unstable modes do not lead to disruption
in stellarators, they could lead to a large heat flux transport through the KBM channel.
Since calculating KBM growth rates using a microstability code is expensive, one can use
ideal ballooning stability as a necessary condition for KBM stability to optimise against
the KBM.5 For tokamaks, this is one of the fundamental ideas currently used in the EPED
code (Snyder et al. 2007) to predict the plasma pressure profile in the pedestal region.

In summary, in this section, we have explained the mathematical, physical and numerical
methods used to solve the ideal ballooning equation. We have also explained the
self-adjoint property of the ideal ballooning equation and the crucial link between the
ideal ballooning mode and KBM. In the next section, we use the self-adjoint property of
the ideal ballooning equation to outline and test the adjoint method.

4. Developing an adjoint method

In this section, we derive and explain the process of calculating the gradients of the
ideal ballooning eigenvalue λ̂ using an adjoint method. Using this method, we find the
maximum eigenvalue λ̂max on each flux surface. We then elucidate how this technique is

5Note that ideal ballooning stability is a necessary but not sufficient condition for KBM stability. A mode can be
stable against the ideal ballooning mode, but unstable against the KBM.
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faster than the conventional gradient-based method and illustrate this by plotting gradients
from a typical optimisation run and calculating the speed-up.

To find λ̂max on each flux surface, we need the gradient of the eigenvalue of a general
function H such that H is maximised if and only if λ̂ = λ̂max. Mathematically, this problem
can be defined as follows

maxH(λ̂, p̃, p̂), s.t. G(λ̂, X̂, p̃, p̂) ≡ LX̂ − λ̂X̂ = 0, (4.1)

where λ̂ is the eigenvalue, X̂ is the eigenfunction, p̃ is the state vector that contains all
the equilibrium parameters such as the boundary shape and p̂ = (αt, θ0) is a vector that
contains the parameters of the ideal ballooning equation, H is an objective function and G
is the ideal ballooning operator. To maximise H on a flux surface for a given equilibrium,
i.e.for a fixed p̃, we need the gradient

dH
dp̂

= ∂H
∂ λ̂

∣∣∣∣
p̂

∂ λ̂

∂ p̂
+ ∂H
∂ p̂

∣∣∣∣
λ̂

. (4.2)

The most expensive term to calculate in (4.2) is the gradient of the eigenvalue λ.6 To obtain
that, we expand the equation dG/dp̂ = 0 at a constant p̃

− ∂G
∂ λ̂

∂ λ̂

∂ p̂
= ∂G
∂X̂

∂X̂
∂ p̂

+ ∂G
∂ p̂

∣∣∣∣
X̂,λ̂

. (4.3)

This equation can be explicitly written with the help of (3.10)

∂ λ̂

∂ p̂
X̂ = (L − λ̂)∂X̂

∂ p̂
+ ∂L
∂ p̂

X̂. (4.4)

To simplify (4.4) further, we multiply it by the eigenfunction X̂∗ and integrate it throughout
the domain θ ∈ [−θb, θb]. Upon doing that, we use the self-adjoint property (3.12) and
work through the algebra (given in Appendix B) to obtain the adjoint relation

∂ λ̂

∂ p̂
=

∫
θb

−θb
dθ

⎛
⎝ ∂c
∂ p̂

|X̂|2 − ∂g
∂ p̂

∣∣∣∣∣dX̂
dθ

∣∣∣∣∣
2

− λ̂ ∂f
∂ p̂

|X̂|2
⎞
⎠

∫
θb

−θb
dθ f |X̂|2

. (4.5)

To obtain ∂ λ̂/∂ p̂ using a central-finite-difference scheme, one has to solve the ideal
ballooning equation 2np̂ = 4 times at each optimisation step, where np̂ is the length of
the vector p̂. However, using the adjoint relation (4.5), we only have to solve it once per
optimisation step, as long as we can calculate the gradients of geometry-related quantities
g, c and f four times. Since gradients of g, c and f can be calculated roughly two orders
of magnitude faster than solving the ideal ballooning equation, we speed up the gradient
calculation by approximately a factor of four. Therefore, we use the adjoint relation (4.5)

6Note that the derivative of an eigenvalue is only well-defined when the eigenvalue is isolated. Optimisation problems
with stringent penalty terms can lead the optimiser to points with multiplicity (Lewis & Overton 1996).
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(a)
(b)

FIGURE 4. (a) Comparison between the gradients of eigenvalue λ̂αt = ∂ λ̂/∂αt and λ̂θ0 =
∂ λ̂/∂θ0 obtained using a finite-difference scheme against those obtained using an adjoint method.
The quantity iter is the number of iterations taken by the local optimiser on a flux surface before
finding λ̂max. The gradients match well for around four orders of magnitude. The discrepancy
between the adjoint and finite difference λ̂αt is due to the finite resolution of the VMEC run.
(b) Different grids used to calculate the gradient of the eigenvalue λ̂ on a flux surface. A
finite-difference scheme requires four points, whereas an adjoint method only requires one point.
This gives us a four times speed-up.

to calculate the gradient of λ̂. In this study, we choose

H(λ̂, p̃, p̂) = λ̂. (4.6)

Applying this fact to (4.2) and using (4.5),

dH
dp̂

= ∂ λ̂

∂ p̂
=

∫
θb

−θb
dθ

⎛
⎝ ∂c
∂ p̂

|X̂|2 − ∂g
∂ p̂

∣∣∣∣∣dX̂
dθ

∣∣∣∣∣
2

− λ̂ ∂f
∂ p̂

|X̂|2
⎞
⎠

∫
θb

−θb
dθ f |X̂|2

. (4.7)

This relation gives us the derivative of the ballooning objective function at any point
p̂ = (αt, θ0). Note that in this work we use (4.7) combined with a local, gradient-based
algorithm to find λ̂max on a flux surface. However, this method is valid and, under
appropriate conditions, can be extended to the equilibrium parameters p̃. The details of
the extended adjoint method are given in Appendix B.1.

In the next section, we present comparison between adjoint and the regular
finite-difference-based methods and present tests comparing the gradients of λ̂ from these
two methods.

4.1. Comparing adjoint gradients with a finite-difference method

In this section, we first compare the values of the gradients of λ̂max from the adjoint
method with their values obtained using a central-finite-difference method. We take a
typical optimisation loop in the modified NCSX case and show a gradient comparison in
figure 4. As you can see, the gradients obtained using an adjoint method match well with
the gradients obtained with a finite-difference method.

To show the computational speedup, we also compare the time taken by an adjoint
method with the regular finite-difference-based method. For the 30 iterations shown in
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FIGURE 5. Process of finding the globally maximum eigenvalue λ̂max on the flux surface
s = 0.8 of the NCSX equilibrium. We start by first finding the maximum λ̂ on a discrete grid
(marked by crosses) of αt and θ0. From the discrete maximum λ̂, we search for the global
maximum eigenvalue using a local optimiser. In the inset, we show the approximate path taken
by the optimiser to reach λ̂max. This process is repeated for all the flux surfaces.

figure 4(a), the adjoint method was about 4 times faster than the finite-difference method.
Indeed, the most expensive part of the gradient calculation is the ballooning solver. As
shown in the illustration in figure 4(b), for a second-order accurate central-difference
scheme, an adjoint method only needs a single call to the ballooning solver, whereas the
finite-difference solver needs four. In principle, a speed-up factor of up to four should be
possible.

5. Details of the optimisation process

In this section, we explain the optimisation process to find equilibria that are stable
against the ideal ballooning mode. In § 5.1, we describe the process of using an adjoint
method to find the maximum eigenvalue λ̂max on each flux surface. In § 5.2, we explain how
we use λ̂max and other penalty terms to construct the overall objective function F . Finally,
in § 5.3, we explain how we search for ballooning stable equilibria while minimising F
using the SIMSOPT framework.

5.1. Finding λ̂max on each flux surface

To calculate the ballooning objective function we find the maximum λ̂ on each flux surface.
To do that, we solve (3.3) on several flux surfaces, multiple field lines on each surface and
numerous values of θ0 on each field line. We calculate λ̂max on ns = 16 flux surfaces for
each equilibrium. For the 3D equilibria, we scan nαt = 42 field lines in the range αt =
[−π,π). Since all field lines are identical in a 2D axisymmetric equilibrium, we scan
only one field line, i.e.nα = 1 for the 2D equilibrium. On each field line, we scan nθ0 = 21
values of θ0 in the range θ0 = [−π/2,π/2). The maximum λ̂ from a coarse grid scan
gives us a value close to the global maximum. From the maximum λ̂ of the coarse grid,
we launch a local gradient-based optimiser to find the global maximum eigenvalue. This
process is explained using the illustration figure 5. Using this process, we obtain λ̂max as a
function of the normalised toroidal flux s. Figure 6 shows the plot of λ̂max against s for the
three chosen equilibria.

For each new equilibrium, on all ns = 16 flux surfaces, the local optimiser takes an
average of 20 iterations to find λ̂max. Moreover, as described in figure 4(b), at each step, the
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(a) (b) (c)

(d) (e) ( f )

FIGURE 6. Plots of λ̂max against the normalised toroidal flux s for the three chosen equilibria in
(a–c) and the eigenfunctions X̂ at the maximum λ̂max for each equilibrium in the (d–f ): (a) DIII-D
λ̂max, (b) NCSX λ̂max, (c) Henneberg-QA λ̂max, (d) DIII-D X̂(s = 0.95), (e) NCSX X̂(s = 0.8)
and( f ) Henneberg-QAX̂(s = 0.84). The decay of the eigenfunction could be a result of the
Anderson localisation of ballooning modes, as discussed by Redi et al. (2002).

use of a finite-difference method requires four evaluations of the eigenvalue λ̂. This means
that on average, we have to call the ballooning solver 1280 (16 × 20 × 4) times. This is a
computationally expensive step that we speed up using our adjoint-based method.

5.2. Finding ballooning-stable equilibria

Once we have found λ̂max, we seek an equilibrium stable to the ideal ballooning mode by
minimising λ̂max on each flux surface. To do so, we need to define an objective function that
depends on λ̂max such that minimising the objective function should allow us to achieve a
stable equilibrium. Moreover, during optimisation, once a flux surface is stabilised against
the ideal ballooning mode, our objective function should ignore that particular surface.
This would be useful as we do not want to penalise a stable equilibrium. To this end, we
design the following ideal ballooning objective function

fball =
ns∑

j=1

ReLU(λ̂max,j − λ̂th,j), (5.1)

where ns is the total number of surfaces and

ReLU(x) =
{

0, if x ≤ 0,
x, x > 0,

(5.2)

is the rectified linear unit operator: an operator that sets all the non-positive values to zero
and λ̂th,j is the threshold below which we declare a surface ideal ballooning stable. The
value λ̂j = 0 on the jth surface implies marginal stability but we choose λ̂th,j = 0.0001
to ensure that all surfaces are slightly away from marginal ideal ballooning stability. An
equilibrium is ideal ballooning stable if fball = 0.
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It is also important to prevent the optimiser from minimising fball in a trivial way.
For example, for 2D equilibria, going to a larger aspect ratio value stabilises the ideal
ballooning mode. For 3D equilibria, the optimiser can sometimes reduce the minor radius,
which, for a fixed toroidal flux, causes the magnetic field to increase. This lowers the
overall β and consequently the unstable curvature drive term. Similarly, if we allow
rotational transforms to increase freely, the optimiser can sometimes create large gradients
of ι, generating large currents which are suboptimal. To avoid achieving such trivial
solutions and uninteresting equilibria, we add a combination of the following penalty terms
to the optimiser:

(i) fasp = (A − A0) to penalise any deviation from the aspect ratio of the initial
equilibrium;

(ii) fminr = (aN − aN0) to penalise any deviation from the minor radius of the initial
equilibrium;

(iii) f〈B〉 = (〈B〉 − 〈B〉0) to penalise any deviation of the volume-averaged magnetic field
from its value in the initial equilibrium;

(iv) fRc = ∫
dθ ReLU(−Rc), where Rc is the radius of curvature of the boundary; this

term penalises any boundary shapes that are curved into the plasma

Using the ballooning objective function (5.1) and one or more of the penalty terms
described previously, we can get the overall objective function F . Given a vector of input
parameters p, our goal is to solve

min
p

F(p), s.t. fball = 0. (5.3)

We achieve this with the help of the SIMSOPT (Landreman et al. 2021) package. The
implementation details of the optimisation are described in the next subsection.

5.3. Optimisation with the SIMSOPT package
In this subsection, we discuss the implementation-related details of an adjoint ballooning
solver with the SIMSOPT (Landreman et al. 2021) package. First, we briefly explain how
an optimisation problem can be solved using SIMSOPT. Next, we go into the details of
how we solve the ideal ballooning optimisation and how the use of an adjoint method can
speed up this process.

The SIMSOPT package is a optimisation framework containing a suite of codes
that, along with the VMEC code, have been used to optimise3D equilibria for various
properties such as energetic fast-particle confinement, quasisymmetry, simpler magnetic
coil geometry and neoclassical transport. The user specifies the input parameters
(also referred to as degrees of freedom (DoFs)) and the objective function F and
SIMSOPT can perform a gradient-based or gradient-free nonlinear least squares
optimisation.

As an example, let us construct an optimisation problem to stabilise an equilibrium
while penalising the change in the aspect ratio and the minor radius of the boundary

F = f 2
asp + f 2

minr + f 2
ball. (5.4)

To do so, we use gradient-based optimisation in SIMSOPT, where one calculates ∂F/∂p
to update the parameter vector at the ith iteration, pi as

pi+1 = f
(

pi,
∂F
∂pi

)
. (5.5)
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(a) (b)

FIGURE 7. (a) Maximum eigenvalue λ̂max of the initial and optimised DIII-D-like equilibrium.
The optimised equilibrium is stable. (b) Boundary shape of the initial and final equilibria. Note
the negative triangularity of the initial equilibrium and the positive triangularity of the optimised
equilibrium.

This is done until the optimiser reaches a local minima, i.e.a region in the parameter space
where ∂F/∂p = 0 or the relative change in the gradient is small enough. Typically, one
has to evaluate the gradient of F hundreds of times during an optimisation loop before
finding a local minimum. In this study, evaluating fball is the most expensive step. Because
the speed of the optimisation is limited by the rate at which we can compute fball, we have
used an adjoint method to calculate λ̂max which gives us fball.

6. Results

In this section, we present the results of our study. In § 6.1, we compare the initial
and optimised 2D axisymmetric equilibrium. In §§ 6.2 and 6.3, we do the same for the
modified NCSX and modified Henneberg-QA equilibria, respectively. We also compare
the values of relevant physical quantities in the initial and optimised equilibria.

6.1. Stabilising the DIII-D-like equilibrium
For the 2D axisymmetric case, we start with a high-β equilibrium with a negative
triangularity boundary. Due to axisymmetry, the 2D boundary does not depend on the
toroidal angle ζ . In other words, only n = 0 are needed in (2.7) to represent the boundary
of a 2D equilibrium. Therefore, the number of modes needed to specify a 2D boundary is
much lower than that for a typical 3D boundary. In this problem, we pick the six largest
Fourier modes as our DoFs: R̂b(0, 1), R̂b(0, 2), R̂b(0, 3), Ẑb(0, 1), Ẑb(0, 3), Ẑb(0, 5). The
full objective function is

F = f 2
asp + f 2

Rc
+ f 2

minr + f 2
〈B〉 + f 2

ball, (6.1)

where all terms except fball are penalty terms to prevent the optimiser from producing a
trivial solution. After this, we start with the negative triangularity equilibrium described
in § 2.2 and run SIMSOPT to find multiple equilibria that are stable against the
ideal ballooning mode, i.e. equilibria with fball = 0. We present one of the optimised
equilibria in figure 7. We also compare the values of equilibrium-dependent quantities
in table 4.

We observe that the optimiser is moving toward a positive triangularity equilibrium,
indicating that, for the similar values of the relevant parameters (given in table 4)

https://doi.org/10.1017/S0022377823000995 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000995


Adjoint ideal ballooning 17

Equilibrium βax(%) 〈β〉(%) jζ (MA) 〈B〉 (T) ῑ A aN(m) BN(T) ψLCFS(Tm2)

Initial 14.0 7.6 0.616 0.677 0.568 2.42 0.68 0.679 1.0
Optimised 13.7 7.3 0.728 0.686 0.568 2.42 0.68 0.681 1.0

TABLE 4. Comparison between relevant physical quantities of the initial and optimised DIII-D
equilibrium.

R̂b(n,m) Ẑb(n,m)

([1, 4], 0) ([1, 4], 0)
([−3, 3], 1) ([−3, 3], 1)
([−3, 3], 2) ([−3, 3], 2)
([−2, 2], 3) ([−2, 2], 3)
([−2, 2], 4) ([−2, 2], 4)
([−2, 2], 5) ([−2, 2], 5)
([−1, 1], 6) ([−1, 1], 6)

TABLE 5. Boundary shape DoFs for the NCSX case.

positive triangularity high-β equilibria are more stable than their negative triangularity
counterparts. Our findings are consistent with recent observations by Davies, Dickinson
& Wilson (2022), Nelson, Paz-Soldan & Saarelma (2022) and Saarelma et al. (2021)
that negative triangularity equilibria are more unstable against the ideal ballooning mode
compared with positive triangularity equilibria. This behaviour prevents the formation of
a steep pressure gradient, which limits the operational beta value of negative triangularity
equilibria but also prevents the occurrence of edge localisedmodes.

6.2. Stabilising the NCSX equilibrium
The first 3D equilibrium we optimise is an unstable NCSX equilibrium. Since the
boundary has a 3D shape, we have to use both toroidal and poloidal modes to change
its shape. For this demonstration, we choose 72 boundary modes listed in table 5 as DoFs.
In table 5, [i, j] denotes all integers between i and j (including i and j). The total number
of DoFs, 72, is much larger than the axisymmetric case. After choosing these DoFs, we
choose the following objective function

F = 0.5f 2
minr + 0.5f 2

〈B〉 + 50f 2
ball, (6.2)

We run SIMSOPT with this configuration to obtain multiple equilibria with fball = 0.
We have plotted a comparison of one of these equilibria with the initial equilibrium
in figure 8.

The optimiser successfully stabilised the equilibrium through boundary shaping. From
the change in the boundary shape, it is evident that the ideal ballooning stability is
sensitive to the boundary shape for the NCSX equilibrium. We present a comparison of
the important equilibrium-dependent quantities for the initial and optimised equilibria in
table 6.
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(a) (b)

FIGURE 8. (a) Maximum eigenvalue λ̂max of the initial and optimised modified NCSX
equilibrium. (b) Boundary shape of the initial and final equilibria at three different values of
the toroidal angle ζ . The dotted curves correspond to the initial cross sections whereas the solid
curves are the final cross sections. Note how sensitive the maximum eigenvalue is to the boundary
shape.

Equilibrium βax(%) 〈β〉(%) jζ (MA) 〈B〉 (T) ῑ A aN(m) BN(T) ψLCFS(Tm2)

Initial 10.9 5.9 0.305 1.596 0.68 4.36 0.325 1.54 0.514
Optimised 9.8 5.3 0.361 1.686 0.68 4.49 0.317 1.62 0.514

TABLE 6. Comparison between relevant physical quantities of the initial and optimised NCSX
equilibrium.

R̂b(n,m) Ẑb(n,m)

([1, 4], 0) ([1, 4], 0)
([−3, 3], 1) ([−3, 3], 1)
([−3, 3], 2) ([−3, 3], 2)
([−2, 2], 3) ([−2, 2], 3)
([−2, 2], 4) ([−2, 2], 4)
([−2, 2], 5) ([−2, 2], 5)
([−1, 1], 6) ([−1, 1], 6)

TABLE 7. Boundary shape DoFs for the modified Henneberg-QA case. We have chosen the
exact same coefficients as the NCSX case.

6.3. Stabilising the modified Henneberg-QA equilibrium
As a final example, we present a modified Henneberg-QA equilibrium. In this example,
we allow the boundary coefficients given in table 7 to change freely.

For this problem, we choose the following objective function

F = 0.1f 2
minr + 0.2f 2

〈B〉 + 50f 2
ball. (6.3)

After choosing the DoFs and the objective function, we run SIMSOPT and obtain
multiple stable equilibria. We compare the stabilisedequilibrium with the initial, unstable
equilibrium in figure 9 and the equilibrium-dependent quantities in table 8. We can see
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(a) (b)

FIGURE 9. (a) Maximum eigenvalue λ̂max of the initial and optimised modified Henneberg-QA
equilibrium. (b) Boundary shape of the initial and final equilibria at three different positions of
the toroidal angle ζ . The dotted curves correspond to the initial cross sections whereas the solid
curves are the final cross sections.

Equilibrium βax(%) 〈β〉(%) jζ (MA) 〈B〉(T) ῑ A aN(m) BN(T) ψLCFS(Tm2)

Initial 6.7 3.56 0.204 2.5 0.263 3.37 0.601 2.35 2.677
Optimised 4.7 2.57 0.204 2.9 0.263 3.58 0.562 2.69 2.677

TABLE 8. Comparison between relevant physical quantities of the initial and optimised
modified Henneberg-QA equilibrium.

in figure 9(a) that the boundary shape deforms in a way to reduce the curvature on the
outboard side, stabilising the ideal ballooning mode.

7. Summary and conclusions

We began this work by briefly explaining the various curvilinear coordinate systems
that we used to fully define a general 3D ideal MHD equilibrium. In § 2, we generated
three different equilibria, one axisymmetric 2D and two 3D, and briefly described their
properties.

Upon generating the equilibria, in § 3, we have provided a physical description of the
infinite-n ideal ballooning mode and explain the numerical methods used to calculate
the maximum eigenvalues on a given flux surface. Using these numerical methods, we
evaluated the stability of the three equilibria against the ideal ballooning mode. We also
described the self-adjoint property of the ideal ballooning mode and its relation to the
KBM.

Using the self-adjoint property explained in § 3, we have developed an adjoint method
in § 4 and explained how to use it to speed up the calculation of the maximum ballooning
eigenvalue λ̂max on each surface. To demonstrate the efficiency and accuracy of the adjoint
method, we have also presented a comparison of gradients between an adjoint method and
a simple finite-difference scheme. We found that the adjoint method is up to four times
faster than the finite-difference scheme.

In § 5, we describe the details of the overall optimisation process and how we
accomplish that using the SIMSOPT code. After implementing the optimisation, we
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presented the results in § 6. We have presented the specific details of the objective function
and the DoFs for each equilibrium and stabilised the initial, ideal ballooning unstable
equilibria. We have briefly described the physical mechanisms that stabilise the ideal
ballooning mode.

This work presents many avenues for future research. A key step forward is to extend our
technique to include all equilibrium-dependent parameters p̃ as explained in Appendix B.1.
One could also use the exact same method to optimise stellarators and tokamaks against
low-n, unstable ideal MHD modes, as explained in Appendix B.2. Since solving for low-n
ideal MHD codes is much more computationally expensive, the advantage of using an
adjoint method would be even greater. Another possible direction would be to use an
adjoint method to get derivatives of the ballooning eigenvalue with respect to the plasma
shape. Finally, one could use the ideal ballooning optimiser as a tool that could help
optimise an equilibrium against KBMs and help us look for equilibrium-dependent proxies
for MHD or kinetic instabilities.
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Appendix A. The discretised ideal ballooning equation

After applying the boundary conditions X̂0 = X̂N = 0 to (3.5), we can rewrite the
ballooning equation as

(A − λI)X̂ = 0, (A1)
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with I being the identity matrix and the asymmetric tridiagonal matrix A with the
following form:
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. (A2)

Appendix B. Details of the adjoint ideal ballooning calculation

In this appendix, we derive (4.5) starting with (3.3). To do that, we use the self-adjoint
property of ideal MHD given in (3.12) as well as the Dirichlet boundary conditions
satisfied by the eigenfunction,

X̂(θ = ±θb) = X̂∗(θ = ±θb) = 0. (B1)

Defining p = (p̃, p̂) as the union of all the parameters of the problem, we start by taking
the derivative ∂/∂p of (3.3),
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Multiplying with X̂∗ on both sides, integrating throughout the domain,
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Using integration by parts, (B1) and rearranging (B3), we can write
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Due to the self-adjoint property of ideal MHD, the right-hand side of (B4) is zero. The
rest of the equation can be arranged so that
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Therefore, to calculate ∂ λ̂/∂p, we only need the gradients of the geometric coefficients
g, c, f , the eigenfunction X̂ and the eigenvalue λ̂ of the ballooning equation; we have to
solve the ideal ballooning equation only once. This speeds up the optimisation loop, as it is
much faster to obtain the gradient of the geometric coefficients than to solve the ballooning
equation multiple times.

B.1. Extending our adjoint-based technique to equilibrium-dependent DoFs

In this paper, we have used an adjoint method to find the maximum eigenvalue λ̂max with
respect to the parameters p̂ of the ballooning equation. It is possible to extend our method
to minimise fball to the equilibrium parameters p̃ under the appropriate conditions. We
define the problem and find the pertinent conditions in this appendix. We want to find

min fball(λ̂max, p̃, p̂), s.t. G(λ̂, X̂, p̃, p̂) ≡ LX̂ − λ̂X̂ = 0, (B6)

where all symbols are defined in § 4 and the ballooning objective function fball is defined
in (5.1). To minimise fball with respect to the equilibrium parameters, we need
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. (B7)

The most expensive term to calculate in (B7) is the gradient of the eigenvalue λ. To obtain
that, we take the derivative of the operator G with respect to λ,
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We also express λ̂ around a point p0 = (p̃0, p̂0) in the state space as a Taylor series,

λ̂ = λ̂(p0)+ ∂ λ̂

∂ p̃
· δp̃ + ∂ λ̂

∂ p̂
· δp̂ + ∂
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: δp̃δp̃ + ∂
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: δp̂δp̂ + O(|δp|3), (B9)
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and assume that the optimiser takes a step size |δp| that is smaller than the radius of
convergence of Taylor series (B9),∣∣∣∣∣ ∂∂ p̃
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Using (B9) and (B10)
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Next, we use the fact that ∂ λ̂/∂ p̂ = 0 at λ̂ = λ̂max, and that our choice of fball only explicitly
depends on λ̂max. Using the explicit form of the linear operator from (3.1), we multiply (B8)
by X∗ and integrate throughout the domain, to rewrite (B7) as
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=
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, (B12)

where p = (p̃, p̂) is the union of all the parameters of the problem and ReLU′7 is the
derivative of the ReLU operator such that

ReLU′(x) =
{

0, if x < 0,
1, x > 0.

(B13)

Calculating the derivative of the geometric coefficients g, c and f with respect to the
equilibrium parameter vector p̃ is not straightforward in VMEC and may lack the requisite
accuracy for an adjoint method to work. However, an equilibrium solver such as DESC
(Dudt & Kolemen 2020; Conlin et al. 2022; Panici et al. 2022) that is designed to
calculate these gradients along with the geometric coefficients accurately may enable us
to utilise the full potential of this adjoint-based method. Since the speed up obtained with
an adjoint method is linearly proportional to the length of the vector p̃, using (B12) we
can, in principle, speed up the calculation of dfball/dp̃ by an order of magnitude for 2D
axisymmetric equilibria and by two orders or magnitude for 3D equilibria.

B.2. Extending our adjoint technique to low-n, ideal MHD solvers
Note that this process can be applied to any ideal MHD eigenvalue solver. For fluctuations
that are not confined to a flux surface, one can solve for a fluctuation of the form

X =
∑
m,n

X̂m,n(ψ)ei(mθ−nζ ), (B14)

where X = {Xψ,Xα} are components of fluctuation X perpendicular to the equilibrium
magnetic field line, and m and n are the poloidal and toroidal mode numbers, respectively.
We solve for X̂(ψ), using codes such as ELITE and GATO (Bernard, Helton & Moore

7The derivative of the ReLU operator is not well-defined at x = 0. We may have to replace it with an activation
function that is continuous with a well-defined derivative. For example, we could use the logistic function 1/(1 + e−cx)

with a large positive real number c.
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1981) for axisymmetric equilibria or TERPSICHORE (Anderson et al. 1990), CAS-3D
(Schwab 1993) for 3D equilibria. For GATO, TERPSICHORE, and CAS-3D, the ideal
MHD energy principle is used to solve the matrix equation

AX = λBX, (B15)

where A and B are real symmetric matrices. Currently, solving such an equation using
these codes takes at least a few minutes. For such a problem, we can repeat the process
explained at the beginning of this appendix to obtain the gradient,

∂λ

∂p
= XT

(
∂A
∂p

− λ∂B
∂p

)
X
/

XTBX, (B16)

for all modes. Equation (B16) is similar to the Hellman–Feynman theorem (Hellmann
1933; Feynman 1939). For axisymmetric equilibria, combining gradient information with
fast equilibrium solvers such as EFIT (Lao et al. 1985) can help mitigate real-time
disruption. One could also couple this adjoint approach with an optimiser to find low-n,
ideal MHD stable equilibria.
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