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A congruence p on a semigroup will be called idempotent-separating if each
p-class contains at most one idempotent. It is shown below that there exists
a maximum such congruence /i on every inverse semigroup S. Two character-
isations of n are found, and it is shown (a) that S/fi ^ E, the semilattice of
idempotents of S, if and only if E is contained in the centre of S; (b) that \i
is the identical congruence on S if and only if E is self-centralising, in a sense
explained below.

A congruence p on a semigroup S is called a group congruence if S/p is a
group. It has been shown by Munn (4) that there exists a minimum such
congruence a on every inverse semigroup. In Section 3 of this paper necessary
and sufficient conditions are given for an/i to be the identical congruence and for
(TV/J (the smallest congruence containing both a and n) to be the universal
congruence.

1. Definitions and preliminaries
I shall use the terminology of Clifford and Preston (2). Two elements a

and a' of a semigroup will be called inverses of each other if

aa'a = a, a'aa' = a'.

An inverse semigroup is a semigroup S in which every element has a unique
inverse. In such a semigroup, idempotent elements commute:

ef = fe if e2 = e a n d / 2 = /

((2), Section 1.9). The unique inverse of the element a is written a~l. Then
aa~l and a~la are idempotents, and so also are aea~l and a~lea, where e
is any idempotent in 5. In fact ao, defined by

eaa = a~1ea, (1)

is a homomorphism of E, the subsemigroup of idempotents of S, into itself.
We record also for future use that e~x = e if e is idempotent, and that

(a"1)"1 = a , (aft)"1 = b~xa~x

for any a, b'vaS.
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If a and b are two elements of an inverse semigroup S, we write a^b (or
b^a) if

aa-1 = ab~\
or if any one of the following equivalent conditions holds:

aa"1 = ba~l, a~la = a~xb, a~1a = b~1a.

The relation ^ is a compatible order relation (11, 7) on S. The following
observations—variously due to Vagner (10, 11), Preston (7) and Sain (9),
and all readily verifiable—will be of use below. First,

a'^b'1 if a^b (2)
Also, if e is any idempotent and if a and b are arbitrary elements of S, then

ea^a, ae^a, aeb^ab (3)

The restriction of the order relation ^ to E, the subsemigroup of idempotents
of S, is the natural semilattice order on E: that is,

e^f if and only if ef = fe = e.

Thus clearly ef^ e and ef^f for any two idempotents e, f in S.
If H is an arbitrary subset of S, we denote by Hco the " closure " of H

with respect to the above order relation: that is,

Hco = {ae S: a^h for some h in H}.

Thei* Hz Hco for any H. A subset K will be called closed if #co = K. Clearly
/fa) is closed for any H.

If £ is the semilattice of idempotents of an inverse semigroup 5, we define
EC, the centraliser of E in S, by

Et, = {z e S: ez = ze for every e in E}.

Clearly is£££• If EC = S1, then the idempotents are central, and the semi-
group is a union of groups (1). If EC = E, we shall say that E is self-centralising.
An example of an inverse semigroup whose semilattice of idempotents is
self-centralising is the bicyclic semigroup ((2), Section 1.12).

A congruence p on a semigroup »S is an equivalence relation which satisfies
the condition that acpbc and capcb for each c in S whenever apb. If we denote
the equivalence class containing a by ap, then we can (not quite trivially)
restate this condition as follows:

for all x, y e S. Thus S/p can be given a semigroup structure in a natural way,
and the mapping pb: S->S/p defined by

= xp
is a homomorphism of 5" onto S/p.

It is often convenient to consider a relation on S as a subset of S x S, and
to write (a, b) e p rather than apb. Thus, when p and a are two congruences,
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the statement p £ a and the expressions pncr, pu<r have the obvious set-theoretic
meanings. It is easy to check that pncr is a congruence. On the other hand,
puo- is not necessarily a congruence; we denote by p\i a the smallest con-
gruence containing p and a. We note that

; s = {(x, x): x e 5} and cos = SxS

are congruences, which we call respectively the identical and the universal
congruence on S.

If t, and n are relations on a set S, then we write E,on for the relation con-
sisting of all (x, y) in SxS for which there exists z in S such that (x, z)e£,
and (z, j>) e n.

2. The maximum idempotent-separating congruence
As a starting point for our investigations we have the following theorem,

and a lemma on which the theorem depends, both due to Vagner (10) and
Preston (6).

Theorem 2.1. A homomorphic image of an inverse semigroup is an inverse
semigroup.

Lemma 2.2. Let p be a congruence on an inverse semigroup S. Then the
inverse image e(p$)~x of an idempotent e in Sjp contains an idempotent of S.

At this stage we record one consequence of the theorem which will be
particularly useful.

Corollary 2.3. If p is a congruence on an inverse semigroup, then (x, y) e p
if and only if {x~'1, y~ '*) e p.

Proof. We denote the inverse semigroup by S. If (x, y) e p, then the two
elements xp and yp of S\p are equal. It is easy to verify that x~xp and y~ip
are both inverses of xp in Sip, and so x~lp = y~lp since S/p is an inverse
semigroup. That is (x~l, y"1) e p. The converse follows from the fact that
Or 1 ) " 1 = x a n d ^ " 1 ) - 1 = y.

Theorem 2.4. Let S be an inverse semigroup and let cca be defined by (1) for
any a in S. Then the relation \i defined by the rule that (x, y) e \i if and only if
a.x = ccy is the maximum idempotent-separating congruence on S.

Proof. It is immediate that n is an equivalence relation. Now suppose
that (x, y)e fi and that z is an arbitrary element of S. Then from the supposition
that x~1ex — y~ley for every idempotent e it follows immediately that
z~lx~iexz = z~1y~1eyz for every idempotent e: that is, (xz, yz)&\i. To
show that (zx, zy) e n, we note that z~vez is an idempotent for every idempotent
e, and so x~i(z~1ez)x = y~l(z~ lez)y for every idempotent e. Thus (zx, zy) e ji
as required, and so n is a congruence.

We next show that /x is idempotent-separating. Suppose that (e, / ) e \i,
where e and / are idempotents. Then, for every idempotent g, we have that
e~lge = f~lgf: that is, eg —fg. The equality holds in particular when
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g — e; hence e = fe. We similarly obtain that ef = f by putting g = f.
Since ef = fe, it follows that e = f. Thus /i is idempotent-separating.

Finally, let v be an idempotent-separating congruence on S; we shall
show that v s ^ . Suppose that (x, y) e v. Then (x~l, j ) " ' )ev by Corollary
2.3 and, since v is a congruence, it follows that (x~lex, y~1ey) e v for every
idempotent e. But both x~1ex and y~1ey are idempotents, and so it follows
that x~lex = y~xey for every idempotent e, since v is by assumption idem-
potent separating. Thus (x, j ) e / t and so v ^ as required. This completes
the proof of Theorem 2.4.

An alternative characterisation of n is provided by the next theorem.

Theorem 2.5. Let S be an inverse semigroup with semilattice of idempotents
E, let fi be the maximum idempotent-separating congruence on S, and let EC,
be the centraliser of E in S. Then (x, y) e n if and only if x~lx = y~ly and
xy~1 e Et,. Dually, (x, y)e \i if and only if xx~l = yy~l and x~ ly e ££.

Proof. It will be sufficient to prove the first of the two dual statements.
Suppose first that (JC, y) e n, so that

x-iex = y~*ey (4)

for every e in E. Then {x~ \ y~x) e n by Corollary 2.3; that is, xex~i = yey'1

for every e in E. Hence

x~*x = x~1x . x~lx . x~lx = x~l . x(x~1x)x~i . x = x~l . y(x~lx)y~1 . x

= y~L • y(x~ix)y~1 . y = y~ly . x~ix .y~ly = x~lx . y~1y;

and similarly y~ly = x~lx . y~ly. Thus x~1x = y~Yy. Also, premultiplying
both sides of (4) by x and post-multiplying by y~i, we have that

for every e in E. Now,
xx 1exy * = xy 1eyy

xx 1exy 1 = exx lxy l = exy i

and xy~leyy~l = xy~1yy~1e = xy~le,

and so exy~1 = xy~ le for every e in E: that is, xy'1 e EC,.
Conversely, if x~lx = y~ ly and if xy~1 e EC, we have that exy~l = xy' le

for every e in E. Premultiplying by x~l and postmultiplying by y, we obtain
x~1exy~ly = x~1xy~1ey.

But x~iexy~1y = x~1exx~1x = x~1ex, and similarly x~1xy~1ey = y~ley.
Thus x~lex = y~ley for every e in £, and so (x, y)ep as required. This
completes the proof.

Remark. It has been shown by Munn (5) that for inverse semigroups (and
for certain other classes of regular semigroups) the idempotent-separatingv

congruences are precisely those contained in the equivalence relation ^f intro-
duced by Green ((3); see also (2), Section 2.1), and that, in an arbitrary regular
semigroup, the set of congruences contained in 2tf forms a modular lattice
with respect to the operations n and v .
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Theorem 2.6. Let S be an inverse semigroup with semilattice of idempotents
E, and let n be the maximum idempotent-separating congruence on S. Then
S/n ~ E if and only if E is central in S.

Proof. Since n is idempotent-separating, it follows from Lemma 2.2 that
S/n is a semilattice if and only if each p-class contains exactly one idempotent.
Thus, if Sin is a semilattice, we must have that Sin ^ E.

Suppose first that each /i-class contains an idempotent. That is, for every
x in S there exists an / in E such that x~ix = f~lf and xf~leEC (Theorem
2.5). Thus

x — xx~ ix = xf ~ 1f = xf = xf " ' 6 ££.

But this holds for any x in 5 and so EC = S as required.
Conversely, suppose that EC = S. Then, in Theorem 2.5, the condition

that xy'1 e EC becomes superfluous, and we have simply that (x, y) e n if
and only if x~lx = y~ly. It is now clear that (x, x-1x) en for every x in
5, since x'lx = (x~1x)'1(x~1x); hence every /i-class contains an idempotent.
This completes the proof.

Theorem 2.7. Let S be an inverse semigroup with semilattice of idempotents
E, and let n be the maximum idempotent-separating congruence on S. Then
n = is, the identical congruence on S, if and only if E is self-centralising in S.

Proof. Suppose first that n = 's> a nd let z e EC- Then, if we write / for
z~xz, it is easy to see that z~lz = / ~lf( = / ) and that zf ~'(= z) e EC. Thus
(z,f)en by Theorem 2.5 and so, since n = ls> w e have that z = fe E. Thus
EC = E.

Conversely, suppose that EC = E, and let (x, y) e /i. Then, by Theorem
2.5,

x~*x = y~ly, xx~l = yy~l, and xy'1, x~1yeEC = E (5)

Since the element xy'1 is idempotent it must equal its inverse; i.e.

xy'1 = yx~l (6)

Also, using the original characterisation of n a nd the fact that (x~l, y'1)
belongs to n if (•*> y) does, we have that

xx'1 = xx~l .xx'1 = x(x~1x)x~1 — y(x~1x)y~i

= yx'1 . xy'1 = (xy'1)2 = xy'1 (7)

Hence x = xx-1x = xy~{x = yx~xx = yy-1y = y (8)

by (7), (6) and (5). Thus n — 's» a n ( l the proof is complete.
If S is an arbitrary inverse semigroup, then Sin can have no non-identical

idempotent-separating congruences, for if v were such a congruence, then
the relation v' on S defined by the rule that (x, y) e v' if and only if (XJI, yn) e v
would be an idempotent-separating congruence on S properly containing n—
a contradiction. Hence we have the following corollary to Theorem 2.7:
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Corollary 2.8. Let n be the maximum idempotent-separating congruence
on an arbitrary inverse semigroup S. Then the semilattice of idempotents of
S/n is self-centralising.

Remark. It is easy to check that ax<xy = ocxy, so that the mapping a which
sends x to ccx is a representation. The homomorphism ocx can alternatively
be considered as a partial one-to-one mapping of E into itself thus: xx maps
{e e E: e^xx"1} in a one-to-one manner onto {e e E: e^x~ix}. Considered
in this way, the representation becomes identical to that described by Preston
in ((7), Section 3). The condition for a to be faithful given by Theorem 2.7
above appears to be new. We also remark that the partial one-to-one mappings
ax are restrictions to E of the partial isomorphisms considered by Preston
in (8).

3. The minimum group congruence
For an arbitrary inverse semigroup S, Munn (4) has given the following

characterisation of a, the minimum group congruence: (x, y) e a if and only
if there exists an idempotent e in S such that ex = ey. An alternative char-
acterisation is provided by the next theorem.

Theorem 3.1. Let S be an inverse semigroup with semilattice of idempotents
E, and let a be the minimum group congruence on S. Then (x, y) e a if and only
if xy'1 e Ea>.

Proof. Suppose first that ex = ey for some e in E. Then exy~' = eyy~l e E.
Now xy'1 ^exy"1 by (3), and so xy~l e Ea>.

Conversely, suppose that xy~l e Eco. Then there exists/ in E such that
xy~1'2zf, i.e. such that fxy~l = / . If we write e for fxy~lyx~1, then eeE
and clearly ef = e. Also,

ex = e2x = efxy~1yx~ix = efxx~lxy~1y = efxy~1y = efy = ey.

Thus Theorem 3.1 is proved.
This characterisation of a is the key to the proof of the next theorem.

Theorem 3.2. Let a be the minimum group congruence and n the maximum
idempotent-separating congruence on an inverse semigroup S with semilattice
of idempotents E. Then ernju = is if and only if EconE( = E.

Proof. By Theorems 2.5 and 3.1, we have that (x, y) e trn/i if and only if
x~xx = y~xy and xy"1 eEconEt,. Suppose first that EconE^ = E and that
(x, y) e am/*. The equalities (6), (7) and (8) then follow exactly as in the proof
of Theorem 2.7. Thus x = y, and so an^i = is as required.

Conversely, suppose that on/i = is, and let zeEconE^. If we denote
z~xz by e, it is clear that ze~'(= ze = z) belongs to Eco; hence (z, e) e a.
Also, ze"1 = z e EC, and z~xz = e"1e(= e); hence (z, e) e \i (Theorem 2.5).
Since by assumption anfi = is, we must therefore have that z = ee E. Hence
EconEC, = E as required. This completes the proof.
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We require some preliminaries before investigating the nature of ov [x.
A subsemigroup H of an inverse semigroup S is called an inverse subsemigroup
if x~x belongs to H whenever x does. An inverse subsemigroup H of S will
be called self-conjugate if zxz~l belongs to H for any z whenever x belongs to H.

The next two lemmas are implicit in Saln's paper (9).

Lemma 3.3. Let K be a closed, self-conjugate inverse subsemigroup of an
inverse semigroup S. Suppose further that K^ E, the semilattice of idempotents
of S. Then the relation pK defined by the rule that {x, y) e pK if and only if
xy~1 e Kis a congruence on S.

Proof. Since xx'1 e E<zK, we have that pK is reflexive. It is symmetric
since yx'1 = (xy'1)'1 belongs to # whenever xy'1 does. Suppose now that
xy~1, yz~1 e K. Then xy~ xyz~ * e K since K is a subsemigroup. But

by (3), and so xz~1 e K since K is closed. Thus pK is transitive.
Now suppose that xy'1 e K and that z is an arbitrary element of S. Then

1 = zxy~1z~i eKsince Kis self-conjugate. Also,

(XZXJZ)-1 = xzz-'y'1 = xy-1

Thus pK is a congruence.

Lemma 3.4. If H is a self-conjugate inverse subsemigroup of an inverse
semigroup S, then so is Hco.

Proof. Let x and y be elements of Hco, and let h and k be the elements of
H such that x^.h and y^k. From the compatibility of the order relation it
now follows that xy^.hke H; hence xy e Hco. By (2), we have that

x-^h-teH;

hence x~1 e Hco. Thus Hco is an inverse subsemigroup. Finally, if z is an
arbitrary element of S, it follows, again from the compatibility of the order
relation, that zxz~1'^.zhz~1 e H; hence zxz"1 e Hco.

We also have -

Lemma 3.5. Let S be an inverse semigroup with semilattice of idempotents
E. Then the centraliser EC, of E in S is a self-conjugate inverse subsemigroup
ofS.

Proof. It is clear that xy belongs to EC if x and y do. If x e E^, then
xe = ex for every e in E. Taking inverses, we find that ex~l = x~le for
every e in E; hence x~i e Et,. Now let xe EC and let z be an arbitrary element
of S. Then

zxz~le = zxz~lzz~le = zxz~1ezz~1 = z(x . z~lez)z~l

= z(z~lez . x)z~l = zz~lezxz~1 = ezz~1zxz~i = ezxz~l

for every e in E; hence zxz'1 e EC.
As an immediate consequence of the last two lemmas, we have
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Lemma 3.6. If S is an inverse semigroup with semilattice of idempotents E,
then (EQco is a closed, self-conjugate inverse subsemigroup of S.

Since (EQco certainly contains E, it now follows from Lemma 3.3 that the
relation P(EQa>, which from now on we shall denote simply by p, is a con-
gruence on S.

The following theorem characterises a v /i.

Theorem 3.7. Let a be the minimum group congruence and n the maximum
idempotent-separating congruence on an inverse semigroup S with semilattice
of idempotents E. Then the relation p, defined by the rule that (x, y)e p if and
only if xy'1 e {EQco is equal to awn.

Proof. We have already remarked that p is a congruence on S. Moreover,
it follows immediately from Theorems 3.1 and 2.5 that a^p and n^p; hence
ffv/igp. It remains to prove that p£ffv/i. Weproveinfactthatpsao/ioff,
which is clearly sufficient.

Suppose, then, that (x, y) e p. Then there exists z e Et, such that xy~l ^z.
Let

u = zy and v = z~xzy.

Then xu~x = xy~1z~l'^zz~1 eE and so xu~l e Eco. Thus (x, u)ea. Also,

v~*v = y~1z~1zz~1zy = y~1z~izy = u~lu

and, for every e in E,

uv~le = zyy~lz~lze = zeyy~lz~lz (since yy~iz~1ze E)

= ezyy~1z~1z = euv~v (since z e EC,).

Thus uv~l e EC and so, by Theorem 2.5, we have that (u, v)efi. Finally,
vy~l = z~1zyy~1 e E^Eco, and so (v, y) e a. Summarising, we have that

(x, u) e a, (u, v) e fi, (v, y) e a,

and so (x, y) 6 IT O \I o a as required. This completes the proof.
An obvious consequence of the theorem is

Corollary 3.8. The smallest congruence <rv/j containing a and \i is the
universal congruence if and only if (EQco = S.

Proof. It is clear that a v ft = a>s if (EQco = S. Conversely, if a v /i = cos,
then xy'1 e (EQco for all x, y in S. In particular, for all x in 5",

x(x~1x)~1 = xx~*x = xe(EQco.
Thus (EQco = S.

Note. In the proof of Theorem 3.7 it emerged incidentally that

<TV H = cr o [i o a.

This remains true if fi is replaced by any congruence whatever on S:

Theorem 3.9. Let a be the minimum group congruence on an inverse semi-
group S, and let ^ be an arbitrary congruence on S. Then aw £ = CTO^OOT.
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Proof. Clearly a o £ o o^ov £. To show the opposite inclusion it suffices
to prove that a o ^ o a is transitive, for it is then a congruence containing
a and % (and therefore containing a v £). Suppose, then, that (x, y) and (y, z)
belong to a o £ o a. Then there exist a, b, c, d in S such that

(x, a) e a, (a, b) e £, (Z>, JO e a,

(y, c) e a, (c, rf) e £, (rf, z) e a.

Now, by the transitivity of a, we have immediately that (b, c) e a, and so
there exists an idempotent e such that eb = ec. By the left-compatibility of
£, we have that

(ea, e6) e f, (ec, erf) e £,

and so (ea, erf) s £. Moreover, ea = e . ea, and so (a, ea)ea; hence, by
transitivity, (x, ea) ea. A similar argument shows that (erf, z) e a. Hence,
summarising, we have that

(x, ea) e ff, (ea, erf) e <J, (erf, z) e a,

and so (x, z) e a o I; o a as required.
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