THE MAXIMUM IDEMPOTENT-SEPARATING CONGRUENCE ON AN INVERSE SEMIGROUP

by J. M. HOWIE (Received 31st December 1963)

A congruence ρ on a semigroup will be called *idempotent-separating* if each ρ -class contains at most one idempotent. It is shown below that there exists a maximum such congruence μ on every inverse semigroup S. Two characterisations of μ are found, and it is shown (a) that $S/\mu \simeq E$, the semilattice of idempotents of S, if and only if E is contained in the centre of S; (b) that μ is the identical congruence on S if and only if E is self-centralising, in a sense explained below.

A congruence ρ on a semigroup S is called a group congruence if S/ρ is a group. It has been shown by Munn (4) that there exists a minimum such congruence σ on every inverse semigroup. In Section 3 of this paper necessary and sufficient conditions are given for $\sigma \cap \mu$ to be the identical congruence and for $\sigma \vee \mu$ (the smallest congruence containing both σ and μ) to be the universal congruence.

1. Definitions and preliminaries

I shall use the terminology of Clifford and Preston (2). Two elements a and a' of a semigroup will be called *inverses* of each other if

$$aa'a = a$$
, $a'aa' = a'$.

An *inverse semigroup* is a semigroup S in which every element has a unique inverse. In such a semigroup, idempotent elements commute:

$$ef = fe$$
 if $e^2 = e$ and $f^2 = f$

((2), Section 1.9). The unique inverse of the element a is written a^{-1} . Then aa^{-1} and $a^{-1}a$ are idempotents, and so also are aea^{-1} and $a^{-1}ea$, where e is any idempotent in S. In fact α_a , defined by

is a homomorphism of E, the subsemigroup of idempotents of S, into itself. We record also for future use that $e^{-1} = e$ if e is idempotent, and that

$$(a^{-1})^{-1} = a, (ab)^{-1} = b^{-1}a^{-1}$$

for any a, b in S.

If a and b are two elements of an inverse semigroup S, we write $a \leq b$ (or $b \geq a$) if

$$aa^{-1} = ab^{-1},$$

or if any one of the following equivalent conditions holds:

$$aa^{-1} = ba^{-1}, a^{-1}a = a^{-1}b, a^{-1}a = b^{-1}a.$$

The relation \leq is a compatible order relation (11, 7) on S. The following observations -variously due to Vagner (10, 11), Preston (7) and Šaĭn (9), and all readily verifiable -will be of use below. First,

$$a^{-1} \leq b^{-1}$$
 if $a \leq b$(2)

Also, if e is any idempotent and if α and b are arbitrary elements of S, then

$$ea \leq a, ae \leq a, aeb \leq ab.$$
(3)

The restriction of the order relation \leq to *E*, the subsemigroup of idempotents of *S*, is the natural semilattice order on *E*: that is,

 $e \leq f$ if and only if ef = fe = e.

Thus clearly $ef \leq e$ and $ef \leq f$ for any two idempotents e, f in S.

If H is an arbitrary subset of S, we denote by $H\omega$ the "closure" of H with respect to the above order relation: that is,

$$H\omega = \{a \in S : a \ge h \text{ for some } h \text{ in } H\}.$$

Then $H \subseteq H\omega$ for any H. A subset K will be called *closed* if $K\omega = K$. Clearly $H\omega$ is closed for any H.

If E is the semilattice of idempotents of an inverse semigroup S, we define $E\zeta$, the centraliser of E in S, by

 $E\zeta = \{z \in S: ez = ze \text{ for every } e \text{ in } E\}.$

Clearly $E \subseteq E\zeta$. If $E\zeta = S$, then the idempotents are central, and the semigroup is a union of groups (1). If $E\zeta = E$, we shall say that E is self-centralising. An example of an inverse semigroup whose semilattice of idempotents is self-centralising is the bicyclic semigroup ((2), Section 1.12).

A congruence ρ on a semigroup S is an equivalence relation which satisfies the condition that $ac\rho bc$ and $ca\rho cb$ for each c in S whenever $a\rho b$. If we denote the equivalence class containing a by $a\rho$, then we can (not quite trivially) restate this condition as follows:

$$(x\rho)(y\rho)\subseteq (xy)\rho$$

for all $x, y \in S$. Thus S/ρ can be given a semigroup structure in a natural way, and the mapping $\rho : S \rightarrow S/\rho$ defined by

$$x\rho a = x\rho$$

is a homomorphism of S onto S/ρ .

It is often convenient to consider a relation on S as a subset of $S \times S$, and to write $(a, b) \in \rho$ rather than $a\rho b$. Thus, when ρ and σ are two congruences,

72

the statement $\rho \subseteq \sigma$ and the expressions $\rho \cap \sigma$, $\rho \cup \sigma$ have the obvious set-theoretic meanings. It is easy to check that $\rho \cap \sigma$ is a congruence. On the other hand, $\rho \cup \sigma$ is not necessarily a congruence; we denote by $\rho \vee \sigma$ the smallest congruence containing ρ and σ . We note that

$$\iota_S = \{(x, x) \colon x \in S\}$$
 and $\omega_S = S \times S$

are congruences, which we call respectively the *identical* and the *universal* congruence on S.

If ξ and η are relations on a set S, then we write $\xi \circ \eta$ for the relation consisting of all (x, y) in $S \times S$ for which there exists z in S such that $(x, z) \in \xi$ and $(z, y) \in \eta$.

2. The maximum idempotent-separating congruence

As a starting point for our investigations we have the following theorem, and a lemma on which the theorem depends, both due to Vagner (10) and Preston (6).

Theorem 2.1. A homomorphic image of an inverse semigroup is an inverse semigroup.

Lemma 2.2. Let ρ be a congruence on an inverse semigroup S. Then the inverse image $e(\rho^{\frac{1}{2}})^{-1}$ of an idempotent e in $S|\rho$ contains an idempotent of S.

At this stage we record one consequence of the theorem which will be particularly useful.

Corollary 2.3. If ρ is a congruence on an inverse semigroup, then $(x, y) \in \rho$ if and only if $(x^{-1}, y^{-1}) \in \rho$.

Proof. We denote the inverse semigroup by S. If $(x, y) \in \rho$, then the two elements $x\rho$ and $y\rho$ of S/ρ are equal. It is easy to verify that $x^{-1}\rho$ and $y^{-1}\rho$ are both inverses of $x\rho$ in S/ρ , and so $x^{-1}\rho = y^{-1}\rho$ since S/ρ is an inverse semigroup. That is $(x^{-1}, y^{-1}) \in \rho$. The converse follows from the fact that $(x^{-1})^{-1} = x$ and $(y^{-1})^{-1} = y$.

Theorem 2.4. Let S be an inverse semigroup and let α_a be defined by (1) for any a in S. Then the relation μ defined by the rule that $(x, y) \in \mu$ if and only if $\alpha_x = \alpha_y$ is the maximum idempotent-separating congruence on S.

Proof. It is immediate that μ is an equivalence relation. Now suppose that $(x, y) \in \mu$ and that z is an arbitrary element of S. Then from the supposition that $x^{-1}ex = y^{-1}ey$ for every idempotent e it follows immediately that $z^{-1}x^{-1}exz = z^{-1}y^{-1}eyz$ for every idempotent e: that is, $(xz, yz) \in \mu$. To show that $(zx, zy) \in \mu$, we note that $z^{-1}ez$ is an idempotent for every idempotent e, and so $x^{-1}(z^{-1}ez)x = y^{-1}(z^{-1}ez)y$ for every idempotent e. Thus $(zx, zy) \in \mu$ as required, and so μ is a congruence.

We next show that μ is idempotent-separating. Suppose that $(e, f) \in \mu$, where e and f are idempotents. Then, for every idempotent g, we have that $e^{-1}ge = f^{-1}gf$: that is, eg = fg. The equality holds in particular when

g = e; hence e = fe. We similarly obtain that ef = f by putting g = f. Since ef = fe, it follows that e = f. Thus μ is idempotent-separating.

Finally, let v be an idempotent-separating congruence on S; we shall show that $v \subseteq \mu$. Suppose that $(x, y) \in v$. Then $(x^{-1}, y^{-1}) \in v$ by Corollary 2.3 and, since v is a congruence, it follows that $(x^{-1}ex, y^{-1}ey) \in v$ for every idempotent e. But both $x^{-1}ex$ and $y^{-1}ey$ are idempotents, and so it follows that $x^{-1}ex = y^{-1}ey$ for every idempotent e, since v is by assumption idempotent separating. Thus $(x, y) \in \mu$ and so $v \subseteq \mu$ as required. This completes the proof of Theorem 2.4.

An alternative characterisation of μ is provided by the next theorem.

Theorem 2.5. Let S be an inverse semigroup with semilattice of idempotents E, let μ be the maximum idempotent-separating congruence on S, and let $E\zeta$ be the centraliser of E in S. Then $(x, y) \in \mu$ if and only if $x^{-1}x = y^{-1}y$ and $xy^{-1} \in E\zeta$. Dually, $(x, y) \in \mu$ if and only if $xx^{-1} = yy^{-1}$ and $x^{-1}y \in E\zeta$.

Proof. It will be sufficient to prove the first of the two dual statements. Suppose first that $(x, y) \in \mu$, so that

$$x^{-1}ex = y^{-1}ey$$
(4)

for every e in E. Then $(x^{-1}, y^{-1}) \in \mu$ by Corollary 2.3; that is, $xex^{-1} = yey^{-1}$ for every e in E. Hence

$$x^{-1}x = x^{-1}x \cdot x^{-1}x \cdot x^{-1}x = x^{-1} \cdot x(x^{-1}x)x^{-1} \cdot x = x^{-1} \cdot y(x^{-1}x)y^{-1} \cdot x$$

= $y^{-1} \cdot y(x^{-1}x)y^{-1} \cdot y = y^{-1}y \cdot x^{-1}x \cdot y^{-1}y = x^{-1}x \cdot y^{-1}y;$

and similarly $y^{-1}y = x^{-1}x \cdot y^{-1}y$. Thus $x^{-1}x = y^{-1}y$. Also, premultiplying both sides of (4) by x and post-multiplying by y^{-1} , we have that

$$xx^{-1}exy^{-1} = xy^{-1}eyy^{-1}$$

for every e in E. Now,

and

$$xx^{-1}exy^{-1} = exx^{-1}xy^{-1} = exy^{-1}$$
$$xy^{-1}eyy^{-1} = xy^{-1}yy^{-1}e = xy^{-1}e,$$

and so $exy^{-1} = xy^{-1}e$ for every e in E: that is, $xy^{-1} \in E\zeta$.

Conversely, if $x^{-1}x = y^{-1}y$ and if $xy^{-1} \in E\zeta$, we have that $exy^{-1} = xy^{-1}e$ for every e in E. Premultiplying by x^{-1} and postmultiplying by y, we obtain $x^{-1}exy^{-1}y = x^{-1}xy^{-1}ey$.

But $x^{-1}exy^{-1}y = x^{-1}exx^{-1}x = x^{-1}ex$, and similarly $x^{-1}xy^{-1}ey = y^{-1}ey$. Thus $x^{-1}ex = y^{-1}ey$ for every e in E, and so $(x, y) \in \mu$ as required. This completes the proof.

Remark. It has been shown by Munn (5) that for inverse semigroups (and for certain other classes of regular semigroups) the idempotent-separating congruences are precisely those contained in the equivalence relation \mathcal{H} introduced by Green ((3); see also (2), Section 2.1), and that, in an arbitrary regular semigroup, the set of congruences contained in \mathcal{H} forms a modular lattice with respect to the operations \cap and \vee .

Theorem 2.6. Let S be an inverse semigroup with semilattice of idempotents E, and let μ be the maximum idempotent-separating congruence on S. Then $S/\mu \simeq E$ if and only if E is central in S.

Proof. Since μ is idempotent-separating, it follows from Lemma 2.2 that S/μ is a semilattice if and only if each μ -class contains exactly one idempotent. Thus, if S/μ is a semilattice, we must have that $S/\mu \simeq E$.

Suppose first that each μ -class contains an idempotent. That is, for every x in S there exists an f in E such that $x^{-1}x = f^{-1}f$ and $xf^{-1} \in E\zeta$ (Theorem 2.5). Thus

$$x = xx^{-1}x = xf^{-1}f = xf = xf^{-1} \in E\zeta$$

But this holds for any x in S and so $E\zeta = S$ as required.

Conversely, suppose that $E\zeta = S$. Then, in Theorem 2.5, the condition that $xy^{-1} \in E\zeta$ becomes superfluous, and we have simply that $(x, y) \in \mu$ if and only if $x^{-1}x = y^{-1}y$. It is now clear that $(x, x^{-1}x) \in \mu$ for every x in S, since $x^{-1}x = (x^{-1}x)^{-1}(x^{-1}x)$; hence every μ -class contains an idempotent. This completes the proof.

Theorem 2.7. Let S be an inverse semigroup with semilattice of idempotents E, and let μ be the maximum idempotent-separating congruence on S. Then $\mu = \iota_S$, the identical congruence on S, if and only if E is self-centralising in S.

Proof. Suppose first that $\mu = \iota_s$, and let $z \in E\zeta$. Then, if we write f for $z^{-1}z$, it is easy to see that $z^{-1}z = f^{-1}f(=f)$ and that $zf^{-1}(=z) \in E\zeta$. Thus $(z, f) \in \mu$ by Theorem 2.5 and so, since $\mu = \iota_s$, we have that $z = f \in E$. Thus $E\zeta = E.$

Conversely, suppose that $E\zeta = E$, and let $(x, y) \in \mu$. Then, by Theorem 2.5,

$$x^{-1}x = y^{-1}y, xx^{-1} = yy^{-1}, \text{ and } xy^{-1}, x^{-1}y \in E\zeta = E.$$
(5)

Since the element xy^{-1} is idempotent it must equal its inverse; i.e.

 $xy^{-1} = yx^{-1}$(6)

Also, using the original characterisation of μ and the fact that (x^{-1}, y^{-1}) belongs to μ if (x, y) does, we have that

$$xx^{-1} = xx^{-1} \cdot xx^{-1} = x(x^{-1}x)x^{-1} = y(x^{-1}x)y^{-1}$$

= $yx^{-1} \cdot xy^{-1} = (xy^{-1})^2 = xy^{-1}$(7)
Hence $x = xx^{-1}x = xy^{-1}x = yx^{-1}x = yy^{-1}y = y$(8)

Hence

$$= xy^{-1}x = yx^{-1}x = yy^{-1}y = y$$
.....(8)

by (7), (6) and (5). Thus $\mu = i_s$, and the proof is complete.

If S is an arbitrary inverse semigroup, then S/μ can have no non-identical idempotent-separating congruences, for if v were such a congruence, then the relation v' on S defined by the rule that $(x, y) \in v'$ if and only if $(x\mu, y\mu) \in v$ would be an idempotent-separating congruence on S properly containing μ a contradiction. Hence we have the following corollary to Theorem 2.7:

Corollary 2.8. Let μ be the maximum idempotent-separating congruence on an arbitrary inverse semigroup S. Then the semilattice of idempotents of $S|\mu$ is self-centralising.

Remark. It is easy to check that $\alpha_x \alpha_y = \alpha_{xy}$, so that the mapping α which sends x to α_x is a representation. The homomorphism α_x can alternatively be considered as a partial one-to-one mapping of E into itself thus: α_x maps $\{e \in E: e \leq xx^{-1}\}$ in a one-to-one manner onto $\{e \in E: e \leq x^{-1}x\}$. Considered in this way, the representation becomes identical to that described by Preston in ((7), Section 3). The condition for α to be faithful given by Theorem 2.7 above appears to be new. We also remark that the partial one-to-one mappings α_x are restrictions to E of the partial isomorphisms considered by Preston in (8).

3. The minimum group congruence

For an arbitrary inverse semigroup S, Munn (4) has given the following characterisation of σ , the minimum group congruence: $(x, y) \in \sigma$ if and only if there exists an idempotent e in S such that ex = ey. An alternative characterisation is provided by the next theorem.

Theorem 3.1. Let S be an inverse semigroup with semilattice of idempotents E, and let σ be the minimum group congruence on S. Then $(x, y) \in \sigma$ if and only if $xy^{-1} \in E\omega$.

Proof. Suppose first that ex = ey for some e in E. Then $exy^{-1} = eyy^{-1} \in E$. Now $xy^{-1} \ge exy^{-1}$ by (3), and so $xy^{-1} \in E\omega$.

Conversely, suppose that $xy^{-1} \in E\omega$. Then there exists f in E such that $xy^{-1} \ge f$, i.e. such that $fxy^{-1} = f$. If we write e for $fxy^{-1}yx^{-1}$, then $e \in E$ and clearly ef = e. Also,

$$ex = e^2 x = efxy^{-1}yx^{-1}x = efxx^{-1}xy^{-1}y = efxy^{-1}y = efy = ey$$

Thus Theorem 3.1 is proved.

This characterisation of σ is the key to the proof of the next theorem.

Theorem 3.2. Let σ be the minimum group congruence and μ the maximum idempotent-separating congruence on an inverse semigroup S with semilattice of idempotents E. Then $\sigma \cap \mu = \iota_S$ if and only if $E \omega \cap E \zeta = E$.

Proof. By Theorems 2.5 and 3.1, we have that $(x, y) \in \sigma \cap \mu$ if and only if $x^{-1}x = y^{-1}y$ and $xy^{-1} \in E\omega \cap E\zeta$. Suppose first that $E\omega \cap E\zeta = E$ and that $(x, y) \in \sigma \cap \mu$. The equalities (6), (7) and (8) then follow exactly as in the proof of Theorem 2.7. Thus x = y, and so $\sigma \cap \mu = \iota_s$ as required.

Conversely, suppose that $\sigma \cap \mu = \iota_s$, and let $z \in E\omega \cap E\zeta$. If we denote $z^{-1}z$ by e, it is clear that $ze^{-1}(=ze=z)$ belongs to $E\omega$; hence $(z, e) \in \sigma$. Also, $ze^{-1} = z \in E\zeta$ and $z^{-1}z = e^{-1}e(=e)$; hence $(z, e) \in \mu$ (Theorem 2.5). Since by assumption $\sigma \cap \mu = \iota_s$, we must therefore have that $z = e \in E$. Hence $E\omega \cap E\zeta = E$ as required. This completes the proof.

THE MAXIMUM IDEMPOTENT-SEPARATING CONGRUENCE 77

We require some preliminaries before investigating the nature of $\sigma \lor \mu$. A subsemigroup H of an inverse semigroup S is called an *inverse* subsemigroup if x^{-1} belongs to H whenever x does. An inverse subsemigroup H of S will be called *self-conjugate* if zxz^{-1} belongs to H for any z whenever x belongs to H.

The next two lemmas are implicit in Šaĭn's paper (9).

Lemma 3.3. Let K be a closed, self-conjugate inverse subsemigroup of an inverse semigroup S. Suppose further that $K \supseteq E$, the semilattice of idempotents of S. Then the relation ρ_K defined by the rule that $(x, y) \in \rho_K$ if and only if $xy^{-1} \in K$ is a congruence on S.

Proof. Since $xx^{-1} \in E \subseteq K$, we have that ρ_K is reflexive. It is symmetric since $yx^{-1} = (xy^{-1})^{-1}$ belongs to K whenever xy^{-1} does. Suppose now that $xy^{-1}, yz^{-1} \in K$. Then $xy^{-1}yz^{-1} \in K$ since K is a subsemigroup. But

$$xz^{-1} \ge xy^{-1}yz^{-1}$$

by (3), and so $xz^{-1} \in K$ since K is closed. Thus ρ_K is transitive.

Now suppose that $xy^{-1} \in K$ and that z is an arbitrary element of S. Then $(zx)(zy)^{-1} = zxy^{-1}z^{-1} \in K$ since K is self-conjugate. Also,

$$(xz)(yz)^{-1} = xzz^{-1}y^{-1} = xy^{-1} \cdot yzz^{-1}y^{-1} \in K \cdot E \subseteq K$$

Thus ρ_K is a congruence.

Lemma 3.4. If H is a self-conjugate inverse subsemigroup of an inverse semigroup S, then so is $H\omega$.

Proof. Let x and y be elements of $H\omega$, and let h and k be the elements of H such that $x \ge h$ and $y \ge k$. From the compatibility of the order relation it now follows that $xy \ge hk \in H$; hence $xy \in H\omega$. By (2), we have that

$$x^{-1} \ge h^{-1} \in H;$$

hence $x^{-1} \in H\omega$. Thus $H\omega$ is an inverse subsemigroup. Finally, if z is an arbitrary element of S, it follows, again from the compatibility of the order relation, that $zxz^{-1} \ge zhz^{-1} \in H$; hence $zxz^{-1} \in H\omega$.

We also have -

Lemma 3.5. Let S be an inverse semigroup with semilattice of idempotents E. Then the centraliser $E\zeta$ of E in S is a self-conjugate inverse subsemigroup of S.

Proof. It is clear that xy belongs to $E\zeta$ if x and y do. If $x \in E\zeta$, then xe = ex for every e in E. Taking inverses, we find that $ex^{-1} = x^{-1}e$ for every e in E; hence $x^{-1} \in E\zeta$. Now let $x \in E\zeta$ and let z be an arbitrary element of S. Then

$$zxz^{-1}e = zxz^{-1}zz^{-1}e = zxz^{-1}ezz^{-1} = z(x \cdot z^{-1}ez)z^{-1}$$
$$= z(z^{-1}ez \cdot x)z^{-1} = zz^{-1}ezxz^{-1} = ezz^{-1}zxz^{-1} = ezxz^{-1}$$

for every e in E; hence $zxz^{-1} \in E\zeta$.

As an immediate consequence of the last two lemmas, we have

6 ·

Lemma 3.6. If S is an inverse semigroup with semilattice of idempotents E, then $(E\zeta)\omega$ is a closed, self-conjugate inverse subsemigroup of S.

Since $(E\zeta)\omega$ certainly contains *E*, it now follows from Lemma 3.3 that the relation $\rho_{(E\zeta)\omega}$, which from now on we shall denote simply by ρ , is a congruence on *S*.

The following theorem characterises $\sigma \lor \mu$.

Theorem 3.7. Let σ be the minimum group congruence and μ the maximum idempotent-separating congruence on an inverse semigroup S with semilattice of idempotents E. Then the relation ρ , defined by the rule that $(x, y) \in \rho$ if and only if $xy^{-1} \in (E\zeta)\omega$ is equal to $\sigma \lor \mu$.

Proof. We have already remarked that ρ is a congruence on S. Moreover, it follows immediately from Theorems 3.1 and 2.5 that $\sigma \subseteq \rho$ and $\mu \subseteq \rho$; hence $\sigma \lor \mu \subseteq \rho$. It remains to prove that $\rho \subseteq \sigma \lor \mu$. We prove in fact that $\rho \subseteq \sigma \circ \mu \circ \sigma$, which is clearly sufficient.

Suppose, then, that $(x, y) \in \rho$. Then there exists $z \in E\zeta$ such that $xy^{-1} \ge z$. Let

$$u = zy$$
 and $v = z^{-1}zy$

Then $xu^{-1} = xy^{-1}z^{-1} \ge zz^{-1} \in E$ and so $xu^{-1} \in E\omega$. Thus $(x, u) \in \sigma$. Also, $v^{-1}v = y^{-1}z^{-1}zz^{-1}zy = y^{-1}z^{-1}zy = u^{-1}u$

and, for every e in E,

$$uv^{-1}e = zyy^{-1}z^{-1}ze = zeyy^{-1}z^{-1}z$$
 (since $yy^{-1}z^{-1}z \in E$)
= $ezyy^{-1}z^{-1}z = euv^{-1}$ (since $z \in E\zeta$).

Thus $uv^{-1} \in E\zeta$ and so, by Theorem 2.5, we have that $(u, v) \in \mu$. Finally, $vy^{-1} = z^{-1}zyy^{-1} \in E \subseteq E\omega$, and so $(v, y) \in \sigma$. Summarising, we have that

 $(x, u) \in \sigma, (u, v) \in \mu, (v, y) \in \sigma,$

and so $(x, y) \in \sigma$ o μ o σ as required. This completes the proof.

An obvious consequence of the theorem is

Corollary 3.8. The smallest congruence $\sigma \lor \mu$ containing σ and μ is the universal congruence if and only if $(E\zeta)\omega = S$.

Proof. It is clear that $\sigma \lor \mu = \omega_s$ if $(E\zeta)\omega = S$. Conversely, if $\sigma \lor \mu = \omega_s$, then $xy^{-1} \in (E\zeta)\omega$ for all x, y in S. In particular, for all x in S,

$$x(x^{-1}x)^{-1} = xx^{-1}x = x \in (E\zeta)\omega.$$

Thus $(E\zeta)\omega = S$.

Note. In the proof of Theorem 3.7 it emerged incidentally that

$$\sigma \lor \mu = \sigma \circ \mu \circ \sigma.$$

This remains true if μ is replaced by any congruence whatever on S:

Theorem 3.9. Let σ be the minimum group congruence on an inverse semigroup S, and let ξ be an arbitrary congruence on S. Then $\sigma \lor \xi = \sigma \circ \xi \circ \sigma$.

THE MAXIMUM IDEMPOTENT-SEPARATING CONGRUENCE 79

Proof. Clearly $\sigma \circ \xi \circ \sigma \subseteq \sigma \lor \xi$. To show the opposite inclusion it suffices to prove that $\sigma \circ \xi \circ \sigma$ is transitive, for it is then a congruence containing σ and ξ (and therefore containing $\sigma \lor \xi$). Suppose, then, that (x, y) and (y, z) belong to $\sigma \circ \xi \circ \sigma$. Then there exist a, b, c, d in S such that

$$(x, a) \in \sigma, (a, b) \in \xi, (b, y) \in \sigma,$$

 $(y, c) \in \sigma, (c, d) \in \xi, (d, z) \in \sigma.$

Now, by the transitivity of σ , we have immediately that $(b, c) \in \sigma$, and so there exists an idempotent e such that eb = ec. By the left-compatibility of ξ , we have that

$$(ea, eb) \in \xi$$
, $(ec, ed) \in \xi$,

and so $(ea, ed) \in \xi$. Moreover, $ea = e \cdot ea$, and so $(a, ea) \in \sigma$; hence, by transitivity, $(x, ea) \in \sigma$. A similar argument shows that $(ed, z) \in \sigma$. Hence, summarising, we have that

$$(x, ea) \in \sigma$$
, $(ea, ed) \in \xi$, $(ed, z) \in \sigma$,

and so $(x, z) \in \sigma$ o ξ o σ as required.

REFERENCES

(1) A. H. CLIFFORD, Semigroups admitting relative inverses, Annals of Math., 42 (1941), 1037-1049.

(2) A. H. CLIFFORD and G. B. PRESTON, *The Algebraic Theory of Semigroups*, vol. 1, Math. Surveys of the American Math. Soc. 7 (Providence, R.I., 1961).

(3) J. A. GREEN, On the structure of semigroups, Annals of Math., 54 (1951), 163-172.

(4) W. D. MUNN, A class of irreducible matrix representations of an arbitrary inverse semigroup, *Proc. Glasgow Math. Assoc.*, 5 (1961), 41-48.

(5) W. D. MUNN, A certain sublattice of the lattice of congruences on a regular semigroup, *Proc. Cambridge Phil. Soc.* (to appear).

(6) G. B. PRESTON, Inverse semi-groups, J. London Math. Soc., 29 (1954), 396-403.

(7) G. B. PRESTON, Representations of inverse semi-groups, J. London Math. Soc., 29 (1954), 411-419.

(8) G. B. PRESTON, A note on representations of inverse semigroups, *Proc.* American Math. Soc., 8 (1957), 1144-1147.

(9) B. M. ŠAIN, Representations of generalised groups, Izvestiya Vysšikh Učebnykh Zavedenii (Matematika), 28 (1962), 164-176 (Russian).

(10) V. V. VAGNER, The theory of generalised groups and generalised heaps, *Mat. Sbornik* (N.S.), 32 (1953), 545-632 (Russian).

(11) V. V. VAGNER, Generalised groups, *Doklady Akad. Nauk SSSR*, 84 (1952), 1119-1122 (Russian).

DEPARTMENT OF MATHEMATICS THE UNIVERSITY GLASGOW, W.2