
Publications of the Astronomical Society of Australia (2021), 38, e057, 22 pages

doi:10.1017/pasa.2021.50

Research Paper

The MWA long baseline Epoch of reionisation survey—I. Improved
source catalogue for the EoR 0 field
C. R. Lynch1,2∗ , T. J. Galvin1, J. L. B. Line1,2 , C. H. Jordan1,2 , C. M. Trott1,2, J. K. Chege1,2 , B. McKinley1,2,
M. Johnston-Hollitt3 and S. J. Tingay1
1International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley WA 6102, Australia, 2ARC Centre of Excellence for All Sky Astrophysics
in 3 Dimensions (ASTRO 3D), Perth, WA 6102, Australia and 3Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Abstract
One of the principal systematic constraints on the Epoch of Reionisation (EoR) experiment is the accuracy of the foreground calibration
model. Recent results have shown that highly accurate models of extended foreground sources, and including models for sources in both the
primary beam and its sidelobes, are necessary for reducing foreground power. To improve the accuracy of the source models for the EoR
fields observed by the Murchison Widefield Array (MWA), we conducted the MWA Long Baseline Epoch of Reionisation Survey (LoBES).
This survey consists of multi-frequency observations of the main MWA EoR fields and their eight neighbouring fields using the MWA
Phase II extended array. We present the results of the first half of this survey centred on the MWA EoR0 observing field (centred at RA
(J2000) 0h, Dec (J2000)−27◦). This half of the survey covers an area of 3 069 degrees2, with an average rms of 2.1 mJy beam–1. The resulting
catalogue contains a total of 80 824 sources, with 16 separate spectral measurements between 100 and 230 MHz, and spectral modelling
for 78% of these sources. Over this region we estimate that the catalogue is 90% complete at 32 mJy, and 70% complete at 10.5 mJy. The
overall normalised source counts are found to be in good agreement with previous low-frequency surveys at similar sensitivities. Testing the
performance of the new source models we measure lower residual rms values for peeled sources, particularly for extended sources, in a set of
MWA Phase I data. The 2-dimensional power spectrum of these data residuals also show improvement on small angular scales—consistent
with the better angular resolution of the LoBES catalogue. It is clear that the LoBES sky models improve upon the current sky model used
by the Australian MWA EoR group for the EoR0 field.
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1. Introduction

The formation of the first luminous sources and their subsequent
reionisation of the intergalactic medium (IGM) is called the Epoch
of Reionisation (EoR). During this time astrophysical sources
became the dominant influence on the conditions of the IGM and
impacted all future generations of galaxy formation and evolution
(Furlanetto, Oh, & Briggs 2006; Morales & Wyithe 2010). Despite
its importance, the EoR is one of the last uncharted eras in the
history of the Universe.

The most promising method for investigating the EoR is
through tomography of the redshifted 21 cm line of neutral hydro-
gen. Hydrogen is isotropic and ubiquitous, making up roughly
75% of the gas mass present in the IGM. Thus it acts as a conve-
nient tracer of the properties of this medium (Bowman, Morales,
& Hewitt 2009; Pritchard & Loeb 2012). The 21 cm line is pro-
duced via hyperfine splitting, caused by the interaction between
the electron and proton magnetic moments. Fluctuations in the
redshifted 21 cm signal arise from a range of different physical
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properties, including inhomogeneities in the gas density field, ion-
isation fraction, and spin temperature. These fluctuations create
angular structure as well as structure in redshift space. Thus the
21 cm line traces the entire three-dimensional ionisation history
of the IGM (Tozzi et al. 2000; Furlanetto et al. 2006; Morales &
Wyithe 2010; Pritchard & Loeb 2012).

Detecting 21 cm emission from the EoR is a goal for many
current low-frequency radio interferometers including the
Low-Frequency Array (LOFAR; van Haarlem et al. 2013), the
Murchison Widefield Array (MWA; Tingay et al. 2013; Wayth
et al. 2018), and the Precision Array to Probe the Epoch of
Reionisation (PAPER; Parsons et al. 2010). Additionally, next
generation radio telescopes including the Square Kilometre
Array (SKA; Koopmans et al. 2015), and the Hydrogen Epoch
of Reionisation Array (HERA; DeBoer et al. 2017) will have
improved sensitivities over current facilities, aiming to provide not
only high signal-to-noise detections of the EoR signal over mul-
tiple redshifts, but also the first three-dimensional tomographic
images of the EoR. Pipeline analysis and power spectrum upper
limits from current EoR experiments using the MWA (Beardsley
et al. 2016; Barry et al. 2019; Li et al. 2019; Trott et al. 2020), LOFAR
(Patil et al. 2017; Gehlot et al. 2019; Mertens et al. 2020), and
PAPER (Cheng et al. 2018; Kolopanis et al. 2019) have highlighted
several systematic challenges to making a detection. In particular,
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previous papers stress the requirement of highly precise sky
models for calibration and foreground removal (Datta, Bowman,
& Carilli 2010; Trott & Wayth 2016; Barry et al. 2016; Patil et al.
2016; Ewall-Wice et al. 2017; Byrne et al. 2019; Kern et al. 2020).

For the MWA EoR experiment, the main observing fields were
chosen based on their low sky temperature (Bowman et al. 2009)
and are designated EoR0 (centred at RA (J2000) 0h, Dec (J2000)
–27◦), and EoR1 (centred at RA (J2000) 4h, Dec (J2000) –30◦).
However, the large field of view of the MWAmakes it challenging
to avoid all bright extended radio galaxies and the Galactic plane
entirely. Therefore the MWA EoR fields contain several bright,
extended sources located near the edges of the MWA primary
beam or within the primary beam sidelobes (Jacobs et al. 2016).
Because the chromaticity of interferometers becomes stronger far
from the instrument pointing centre, sources located far from the
primary field of view will produce more foreground contamina-
tion than sources located in the central part of the field (Trott,
Wayth, & Tingay 2012; Thyagarajan et al. 2015a; Thyagarajan et
al. 2015b; Trott et al. 2020). Further, Pober et al. (2016) showed
that using a foreground model that includes only sources located
within the main lobe of the primary beam will be insufficient
to suppress foreground power leakage and concluded that fore-
grounds should be considered as a wide-field contaminant.

Additionally, detecting the 21 cm emission from the EoR
requires accurate structure models for all foreground sources, but
especially bright extended sources (Procopio et al. 2017; Trott
& Wayth 2017). Comparing the residual power for point source
models versus multi-gaussian models based on higher resolution
data from TGSS ADR1 (Intema et al. 2017), Procopio et al. (2017)
showed that mismodelling bright, extended sources in the EoR1
field as point sources contributes the majority of the foreground
residual power. Most recently, Line et al. (2020) modelled Fornax
A, one of the brightest and most complex sources located within
the MWA EoR main observing fields, using shapelets and MWA
data at multiple resolutions. When testing the shapelet model of
Fornax A, Line et al. (2020), found that the residuals in their set of
real MWA test data were dominated by systematics unrelated to
Fornax A alone. However, when using a simulated MWA data set,
the residual power in the EoR PS after foreground removal was
reduced by two orders of magnitude at all angular scales, just by
improving the Fornax A model.

The current sky model used by the Australian MWA EoR
group is derived from a set of archival multi-frequency radio cat-
alogues that were cross-matched using the Positional Update and
Matching Algorithm (puma; Line et al. 2017; Line 2018). The cat-
alogues included are 74 MHz Very Large Array Low Frequency
Sky Survey re-dux (VLSSr; Lane et al. 2012), the 843 MHz Sydney
University Molonglo Sky Survey (SUMSS; Mauch et al. 2003), the
1.4 GHz NRAO VLA Sky Survey (NVSS; Condon et al. 1998), and
the GLactic and Extragalactic All-sky MWA survey Extragalactic
Catalogue Release 2 (GLEAM; Hurley-Walker et al. 2017). This
sky model is missing sources in the sky region bounded by decli-
nations between 0 – +30◦, and right ascensions between 22 – 0 h.
This is a result of the current Australian MWA EoR sky model
being based mostly on GLEAM, which similarly lacks sources
within this region due to poor ionospheric conditions during
observations of this region of the sky. The majority of the sky
model sources are modelled using single-component models, with
a subset of the sources located in the EoR1 fieldmodelled using the
multi-gaussian models from Procopio et al. (2017). Also included
is the shapelet model for Fornax A from Line et al. (2020). What

is lacking from the current Australian MWA EoR sky model is
accurate, high-resolution, source modelling for complex sources
located within the primary beam sidelobes of the main MWA EoR
fields, and wide-range spectral coverage for these more complex
models.With the recent upgrade to theMWA, we can now address
these issues within the current Australian MWA EoR sky model.

The Phase II upgrade to the MWA doubles the total num-
ber of antenna tiles deployed in the array to a total of 256 tiles,
however the current correlator of the array can only process 128
dual-polarisation signals at a time. The array is then periodically
re-configured between a compact configuration consisting of 56
MWA Phase I core tiles and 72 additional tiles arranged in two
compact hexagonal cores, and an extended configuration of 72
MWA Phase I outer tiles and 56 new long baseline tiles. Further
details on the upgrade to the MWA can be found in Wayth et al.
(2018) and Beardsley et al. (2019).

In the extended configuration the longest baseline of the MWA
is 5.3 km, nearly doubling the longest baseline of Phase I. The
longer baselines provide higher resolution imaging and a reduc-
tion in the classical confusion noise for the MWA. Additionally,
the extended configuration does not include the original MWA
Phase I core and so it no longer contains the core’s many short
baselines. This results in a more uniformly filled uv-plane as
compared to the Phase I array (Wayth et al. 2018), with an asso-
ciated improvement in the synthesised beam and lower sidelobe
confusion noise.

Taking advantage of the improved resolution and expected
lower confusion noise of the longer baselines, we use the MWA
Phase II extended array to conduct the Long Baselines Epoch of
Reionisation survey (LoBES). This survey consists of deep multi-
frequency observations of the two primary MWA EoR fields and
their eight neighbouring fields (see Figure 1). Observations of
the neighbouring fields will improve our ability to calibrate and
remove these contaminating sources in the main EoR field side-
lobes. In this paper we present the first results from the LoBE
survey for the MWA EoR0 field and its four neighbouring fields.
Previous efforts to accurately model the foreground sources in
the MWA EoR0 field include Offringa et al. (2016) and Carroll
et al. (2016). Both works used MWA Phase I data to generate their
source models. Additionally, Offringa et al. (2016) and Carroll et
al. (2016) focused only on sources found within the main lobe of
the MWA primary beam. The LoBE survey improves upon these
results by using higher angular resolution imaging and includes
sources over a larger area of the sky, covering the full MWA pri-
mary beam response. Results for the MWA EoR1 field will be
presented in a follow-up paper (Lynch et al. in preparation).

2. Observations and reduction

2.1. Observations

We observed the MWA EoR0 field and its four flanking fields
using the new extended MWA Phase II array. These fields were
observed in four frequency bands covering: (1) band 1= 103.7–
133.1 MHz; (2) band 2= 139.5–169.0 MHz; (3) band 3= 170.2–
199.7 MHz; and (4) band 4= 201.0–230.4 MHz. While the major-
ity of these observations took place in November 2017, due to bad
weather the two lower bands for field 2 were re-observed 2019 June
24 using Directors Discretionary Time. For all the observations
we utilised the MWA’s ‘drift and shift’ observing mode, where an
analogue beamformer steers the main lobe of the primary beam

https://doi.org/10.1017/pasa.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2021.50


Publications of the Astronomical Society of Australia 3

Table 1. Details of the MWA Phase II data set used to the create new sky model for the EoR0 fields. Listed is the LoBES
field number and central right ascension (RA) and declination (Dec), date of the observations, the total integration time per
snapshot image, the central frequency of the observing band, and the observation IDs associated with this data.

Field RA Dec Integration time (s) Frequency

(J2000) (J2000) Date (MHz) Observation IDs

1 00:00:00 –27:00:00 2017 Nov 08 2017 120 119.0/154.9 1194179376–1194183816

1 00:00:00 –27:00:00 2017 Nov 09 2017 120 185.6/216.3 1194265064–1194269984

2 22:42:00 –27:00:00 2019 Jun 24 2019 296 119.0 1245435024–1245437096

2 22:42:00 –27:00:00 2019 Jun 24 2019 296 154.9 1245437424–1245439496

2 22:42:00 –27:00:00 2017 Nov 09 2017 120 185.6/216.3 1194260392–1194264840

3 00:00:00 –07:00:00 2017 Nov 12 2017 120 119.0/154.9 1194523552–1194528472

3 00:00:00 –07:00:00 2017 Nov 13 2017 120 185.6/216.3 1194609720–1194614640

4 01:18:00 –27:00:00 2017 Nov 08 2017 120 119.0/154.9 1194184048–1194188488

4 01:18:00 –27:00:00 2017 Nov 09 2017 120 185.6/216.3 1194270208–1194274648

5 00:00:00 –47:00:00 2017 Nov 23 2017 120 119.0/154.9 1195471360–1195476160

5 00:00:00 –47:00:00 2017 Nov 25 2017 120 185.6/216.3 1195643688–1195648608

Figure 1. Layout of the observing fields contained with the LoBE survey. In this paper we focus on fields 1–5; these are the fields associated with the main MWA EoR observing
field EoR0. Note that the MWA EoR1 observing field contains two A-Team sources, Fornax A and Pictor A, whose modelling and removal requires more advanced techniques than
those outlined in this paper.

to approximately the same sky coordinates for each pointing of
the array. The sky is then allowed to drift for roughly 10 min,
while a series of short ‘snapshot’ observations are taken, before
re-pointing. The observations for fields 1, 3–5, and the upper two
bands of field 2 were recorded as a set of 120 s snapshots, alternat-
ing between the two frequencies listed in Table 1 for each field.
We observed the lower two bands for field 2 in a set of 296 s
snapshots, where observations occurred consecutively, with band
1 followed by band 2. For each LoBES field, 40 min of observation
were recorded in each frequency band.

2.2. Characterising the ionospheric activity

The ionosphere is a turbulent region of the Earth’s upper atmo-
sphere, permeated by the Earth’s magnetic field and ionised by
Solar radiation (Kintner & Seyler 1985). It acts as a refractive
medium for incident radio waves, imparting line-of-sight refrac-
tive shifts that are proportional to the square of the wavelength

of the incident radiation. Variations in ionospheric heating by the
Sun lead to changes in the total electron content (TEC) of the iono-
sphere. The variations of the TEC towards background astronom-
ical sources will cause angular shifts in their positions as observed
by a radio interferometer (Thompson, Moran, & Swenson 2001).
During extreme ionospheric activity, these positional offsets can
be large (e.g. Loi et al. 2015). If these effects are not accounted for
when combining multiple observations, the result will be to blur
the resolution element for the combined image.

Using data from the MWA, Jordan et al. (2017) developed a
quality metric to describe the degree of ionospheric activity during
an observation. They found that 74% of MWA observations can
be described as having little to no ionospheric activity. Similarly,
Mevius et al. (2016) used a set of LOFAR data to sample the night-
time ionospheric activity and assessed the quality of the data via
the ionospheric diffractive scale, i.e. the length scale where the
phase variance is 1 rad2. They found that about 90% of the sam-
ple data had ionospheric diffractive scales large enough to allow
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for the high dynamic range imaging required by the LOFAR EoR
experiment.

To assess the ionospheric activity during the nights the LoBES
data were observed, we calculated ionospheric quality metrics
using the Real Time system (RTS; Mitchell et al. 2008) and
cthulhu as outlined in Jordan et al. (2017). Removing active nights
removed 12% of the total data. For the majority of the LoBES fields
only a few observations were removed per band, leaving between
35 and 40 min of data, however for the upper two bands of the
LoBES 4 field, half of the data were removed due to ionospheric
activity, leaving 20 min per band.

2.3. Pre-processing, calibration, and peeling

We used the supercomputing facilities at the Pawsey
Supercomputing Centrea in Perth, Western Australia to carry
out data reduction and imaging on a per field, per frequency
basis. The LoBES data were flagged for radio frequency interfer-
ence (RFI), averaged and converted to casa measurement sets
(McMullin et al. 2007), and downloaded via the MWA All-Sky
Virtual Observatory b (MWA ASVO). The MWA ASVO uses
the aoflagger algorithm (Offringa, van de Gronde, & Roerdink
2012; Offringa et al. 2015) to flag RFI and perform averaging and
conversion of the visibilities. The visibilities downloaded from
the LoBE survey were averaged to a time resolution of 4 s and
frequency resolution of 40 kHz.

We calibrated each snapshot observation using the Australian
MWA EoR sky model as described in Section 1. For each observa-
tion, we generated a sky model from the cross-matched catalogue
containing the brightest 200 sources for the appropriate point-
ing on the sky, taking into account the MWA primary beam.
We generated and applied amplitude and phase solutions on a
per snapshot basis using mitchcal (Offringa et al. 2016) which
is an implementation of the direction-independent (DI), full-
polarisation algorithm described by Mitchell et al. (2008). After
applying the calibration, we re-flagged the visibilities using aoflag-
ger to flag any remaining radio frequency interference missed
during the initial processing of the data. Initial calibration and
imaging of the LoBES field 5 revealed additional bad data in the
lowest two observing bands. Using casa we identified the bad data
as being associated with a single tile, which was then flagged.

2.4. Self-calibration and imaging

We image each snapshot observation using the wide-field imager
wsclean (Offringa et al. 2014), which uses w-stacking to deal
with the wide-field w-term effects. Recently, both multi-scale and
multi-frequency deconvolution algorithms were integrated into
wsclean (Offringa & Smirnov 2017). Spectral variations need to
be taken into account during deconvolution due to intrinsic spec-
tral variations of the foreground sources, the chromatic primary
beam of the MWA, and the high dynamic range required for
images of the EoR foreground sky. Multi-scale imaging reduces
the impact of negative bowls around bright, resolved sources in
our images and has better convergence properties (Rich et al.
2008). An auto-masking algorithm is also implemented within
wsclean, which allows for automated deep cleaning using a single

ahttps://pawsey.org.au.
b https://asvo.mwatelescope.org/.

Table 2. Imaging parameters used for each of the four frequency bands
included in LoBES survey. Table columns are the central frequency, the
pixel size (Cell), and the imaged field of view (FOV).

Frequency (MHz) Cell (arcsec pixel–1) FOV (deg2)

119.0 24.5× 24.5 39.7× 39.7

154.9 18.7× 18.7 37.3× 37.3

185.6 15.5× 15.5 30.0× 30.0

216.3 13.3× 13.3 25.0× 25.0

run of wsclean and improves the multi-scale cleaning by main-
taining scale-dependent masks. The auto-masking algorithm first
cleans down to an initial threshold set using the ‘auto-mask’
parameter, while simultaneously recording the positions and scale
of each component in a scale-dependent mask. After this first
threshold is reached, the cleaning will continue down towards a
final threshold set by the ‘auto-threshold’ parameter. During this
last stage of cleaning the recorded scale-dependent mask is used to
constrain the cleaning (Offringa & Smirnov 2017). To implement
these algorithms, we used the ‘multi-scale’ and ‘join-channels’
options in wsclean, splitting the total 30.72 MHz bandwidth into
four 7.68 MHz channels and jointly cleaning them. This outputs
four 7.68 MHz subband images as well as a full-bandwidth, MFS
image. We used both these algorithms within wsclean to generate
sets of spectral images for each snapshot observation.

For all imaging, we used the Briggs scheme with a robust
parameter of 0.0 (Briggs 1995), which provides greater image sen-
sitivity over uniform weighting without sacrificing too much with
regards to image resolution. We imaged the primary beam down
to the 10% level and chose the pixel scales so that the full width
at half its maximum value of the synthesised beam is sampled
by at least 5 pixels. The imaging parameters for each of the four
frequency bands are given in Table 2.

We performed a single iteration of self-calibration for each
snapshot observation.We created a shallow image, jointly cleaning
in instrumental polarisation (XX,YY ,YX,XY) using an auto-mask
threshold of eight times the predicted thermal noise and a final
auto-threshold of five times the noise. During this initial imag-
ing, wsclean stored the best clean model in the model column of
the measurement set. We then calibrated the data using mitchcal
and the stored model. After applying these calibration solutions
we performed a final round of flagging.

We imaged the self-calibrated visibilities using the implemen-
tation of image domain gridding (IDG; van der Tol, Veenboer,
& Offringa 2018) within wsclean. IDG is a new gridding algo-
rithm that makes w-term and a-term corrections computationally
more efficient when using graphics processing units and allows
for gridding with a time variable beam. Additionally, van der
Tol et al. (2018) showed that IDG more accurately deconvolves
sources as compared to classical gridding algorithms. For each
snapshot observation, we use the IDG and the ‘grid-with-beam’
options within wsclean to apply primary beam corrections using
the Full Embedded Element primary beam model for the MWA
(Sokolowski et al. 2017). We image all four Stokes polarisations
(IQUV) using the ‘link-polarisation’ option to clean sources iden-
tified in Stokes I; for the remainder of the analysis we only use the
outputted Stokes I and V images. These final images are cleaned
down to an auto-mask threshold of four times the predicted
thermal noise and a final auto-threshold of one times the noise.
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3. Mosaic creation

Mosaic creation was performed in two steps using the software
swarp (Bertin et al. 2002). First, individual mosaics were created
per LoBES field and frequency subband, generating a set of 16
spectral images for each LoBES field. During this initial stage of
mosaicking, each snapshot image was weighted by the squared
ratio of the primary beam response to the typical noise in the
centre of each image. This weighting scheme accounts for the
variation in the noise over the field for each snapshot image and
minimises the noise in resulting mosaic (Sault, Staveley-Smith, &
Brouw 1996; Hurley-Walker et al. 2017). To create a deep image to
perform source fitting, we mosaicked the eight highest frequency
spectral images into a single broad-band image for each LoBES
field. Before mosaicking the spectral images, we used the convol
command in the miriad software suite (Sault, Teuben, & Wright
1995) to convolve each of the spectral images to the resolution
of the lowest frequency image (a resolution of 77.5 arcsec). The
combined weight maps created by swarp for each spectral image
during the first mosaicking step were used as the image weights
during this last step of mosaicking. All mosaics were formed using
a slant orthographic projection.

3.1. Additional corrections

Before mosaicking the individual snapshot images, we performed
additional corrections to account for residual positional offsets
and flux density scale variations across the observed field of view.
To perform both corrections we used Aegean (Hancock et al. 2012;
Hancock, Trott, & Hurley-Walker 2018) to perform initial source
finding on each snapshot image to identify unresolved sources
with signal-to-noise ratio ≥8. We further selected only isolated
sources, removing sources that have any neighbouring sources
within 5 arcmin.

Using puma, we then cross-match the snapshot image cata-
logues with a set of radio catalogues that cover a large range
in radio frequencies and included NVSS, SUMSS, GLEAM, and
VLSSr. For both corrections outlined below we selected only
sources identified by puma as having an ‘isolated’ match type with
a positional probability greater than 95%—these are matches for
which there is only one cross-match combination and are indica-
tive of unresolved sources with no nearby confusing source at
higher resolutions (Line et al. 2017). The output from puma is
either a FITS or VOTable that includes the spectral information
collected for each base source from each matched catalogue, spec-
tral model parameters, and the updated position of the base source
based on a ranking of the matched catalogues. For our cross-
matches using LoBES we chose the ranking order based on the
resolution of each catalogue, where NVSS was the highest ranked
catalogue due to its high angular resolution. For each image
there are between 300 and 1 000 sources used to perform these
corrections, depending on the observation quality and frequency.

3.1.1. Astrometric

Using the ionospheric quality metrics from Jordan et al. (2017),
we have removed LoBES data associated with the most severe
ionospheric conditions during the observations (see Section 2.2),
however the remaining snapshot observations are still affected by
the ionosphere. To correct for these ionospheric effects we do a
image-based position correction using fits_warp (Hurley-Walker
& Hancock 2018). This program compares a catalogue of mea-
sured source positions from an image to a reference catalogue,
generates a model of the positional offsets, and uses this model

to de-distort the image. To correct our snapshot images, we feed
fits_warp the measured LoBES source positions and the updated
position from our puma cross-match of the LoBES snapshot
sources with NVSS, SUMSS, GLEAM, and VLSSr.

3.1.2. Flux density scale

As noted previously, puma reports the model parameters for a
spectral model fit to the catalogue information for each matched
source; the model fit to the flux densities, Sν , at frequencies ν is:

ln (Sν) = α ln (ν) + β (1)
where the flux densities are in Jy, the frequencies are in MHz, and
α and β are the spectral index and intercept, respectively, reported
by puma along with their associated errors. Using the spectral
model information reported by puma, we calculate the predicted
flux density for each matched LoBES point source per snapshot
image, at the appropriate observing frequency. Comparing the
predicted flux densities to those measured in the snapshot images
we find a flux density scale variation across the LoBES images.

Figure 2a shows examples of the flux density scale variation
at 189 MHz for LoBES fields 1, 2, and 4, in declination and
right ascension, for two different MWA pointings used during the
observations. We note that the flux density scale variation changes
not only field to field and with frequency, but also between the
pointings used for the same LoBES field (at the same frequency).
We believe that the characteristics of the observed flux density
scale variation are an indication that the variation is due to resid-
ual primary beam model errors. Note that the MWA is pointed
via delay steps added to the physical path lengths of individual
dipoles that make up a MWA tile. This creates a series of coarse
pointing adjustments when tracking a single point in the sky, each
with their own primary beam shape (Tingay et al. 2013).We expect
then, that each coarse pointing will have its own associated set of
primary beam errors which will be seen as not only polarisation
leakage in Stokes Q, U, and V but also flux density scale varia-
tions in total intensity, similar to that seen in Hurley-Walker et al.
(2014); Hurley-Walker et al. (2017) and Lenc et al. (2018).

Note that Duchesne et al. (2020) also found that the inte-
grated flux densities measured using an older version of aegean
were affected by an internal calculation of the PSF carried out and
applied by aegean. This internal PSF correction created a position-
dependent error in the integrated flux densities. We do not believe
this is an issue in the analysis presented here for two reasons: (1)
we used an updated version of aegean (version 2.2.3 updated 2020
July 23); (2) we performed a similar analysis of the flux density
scale using a different source finder and measured the same flux
density scale variations across the images that we measured using
aegean. The flux density scale variation wemeasure is independent
of the source finder used.

Tomodel and correct for the flux density scale variation in each
snapshot image we perform similar corrections as that described
in Lenc et al. (2018), although we have updated this method to
work for deconvolved sources by using the source integrated flux
density rather than the peak pixel values. We first calculate the
ratio between the predicted flux density from the puma spectral
model and the LoBES measured flux density for each matched
source. Using the positions of the matched LoBES sources, we then
grid the flux density ratios and fit a two-dimensional quadratic
surface to the grid to form a scaling map for each snapshot image.
This scaling map is then applied to both the Stokes I and Stokes
V image. Examples of the corrected flux density ratios are shown
in Figure 2b for LoBES fields 1, 2, and 4 at 189 MHz—here it is
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(a)

(b)

Figure 2. The uncorrected (a) and corrected (b) ratios of the measured LoBES flux density measurements as compared to that predicted by other multi-frequency radio surveys,
as a function of right ascension (top row) and declination (bottom row). These figures are for a single 2 min observation at 189 MHz in LoBES fields 1 (black triangles), 2 (purple
x’s), and 4 (green circles). The shading of the colour represents the ratio of the signal-to-noise of the source, with higher ratios represented by deeper colour. The left column and
right columns are for two different MWA pointings and illustrate that the variation is also pointing dependent.

clear that our correction has removed the variation structure as a
function of right ascension and declination.

4. Generating the source catalogue

The catalogue creation process used for the LoBE survey is similar
to that used by GLEAM. First a deep, wide-band image is used
to create a reference catalogue. For the LoBE survey, we created
a single wide-band image, covering the frequency range 170–230

MHz, for each of the five fields. These deep images minimise the
image thermal noise, while still achieving high image resolution.
Then the flux density for each source in this reference catalogue is
measured in each of the sixteen 7.68 MHz spectral images.

4.1. Wide-band image creation

To determine the set of spectral images to use to create the wide-
band image, starting with the highest frequency spectral image,
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Figure 3. The average rms (within a central 18× 18 degrees box) for combined spec-
tral images for the LoBES field 1 as a function of the combined bandwidth. The green
circles represent the Stokes I values and the blue open squares the Stokes V values; the
uncertainty for each point is the standard deviation of the rms within the region.

we iteratively combined subsets of the spectral images (proceed-
ing to lower and lower frequencies). To join the spectral images,
we first convolve the subset of images to the resolution of the low-
est frequency image and then mosaic the images using swarp, as
described in Section 3. Using the root-mean-squared (rms) as an
estimate of the image noise, we then measured the average rms
within a 18× 18 degrees central region of the produced wide-band
image. The evolution of the rms as a function of combined band-
width for the LoBES 1 field is shown in Figure 5 for both Stokes
I and V images (the other fields have a similar rms evolution).
Note that the rms estimates for the Stokes V images are shown
as an estimate of the expected thermal noise for the images. There
is a slight offset between the Stokes I and V values, however for
most of the integrated images the values agree within the 1σ error
bars. The observed offset is the result of significant variation in the
rms around bright sources in Stokes I; the Stokes V image does
not include any bright sources and the rms is much more uniform
across the image.

The Stokes I image rms is first minimised in the five LoBES
fields around 60MHz of combined bandwidth; this corresponds to
the spectral image range of 170–230MHz. Continuing to combine
spectral images beyond 60 MHz of bandwidth is not beneficial as
there is no improvement in the image rms, and the image resolu-
tion will continue to degrade as we convolve to image resolutions
of the lower frequency images added to the subset. Figure 4 shows
the inner 25× 25 degrees of the LoBES field 1 wide-band image.
The better point spread function (PSF) characteristics of theMWA
Phase II Extended configuration are evident, as many of the image
artefacts observed in Phase I data around bright sources in this
field are significantly reduced (see Figure 1 from Offringa et al.
2016 for comparison).

We created an overall rms map of the wide-band images for the
LoBES fields (left panel of Figure 5) by mosaicking the noise maps
of each field generated via the source finder pybdsf (Python Blob
Detector and Source Finder; Mohan & Rafferty 2015). To be con-
sistent with the source selection for overlapping fields (as outlined
in Section 4.2.1), when mosaicking the noise maps for each field

we choose the swarp combine type ‘MIN’, which selects the mini-
mum pixel value as the output pixel. For the rms mosaic, we use a
mollweide projection, which is an equal area projection. The rms
variation across the LoBES fields is apparent in the left panel of
Figure 5; this variation is caused by the attenuation of the primary
beam at the field edges and residual noise around bright sources
within the fields. The average rms in a box region of size 14× 48
degrees, centred at RA (J2000) 0h, Dec (J2000) –27◦, in the north-
south direction has an average rms of 2.1 mJy beam–1. A similar
box in the east-west direction has the same average rms. The right
panel of Figure 5 shows the area, and corresponding percentage,
of the image that has an rms value less than a given value. Roughly
85% of the area of the survey has an rms < 9.0 mJy beam–1.

4.2. Reference source catalogue

We used pybdsf to find and fit sources in the wide-band image for
the reference catalogue. Procopio et al. (2017) showed that errors
associated withmismodelling bright, extended sources contributes
the most to residual foreground power. Thus it is important to use
a source finder that can robustly fit these more complex sources.
The quality of source fitting performed by various source find-
ers has been compared in previous tests of radio survey data (e.g.
Hopkins et al. 2015). In these tests, pybdsf is shown to perform
well, as compared to other source finders, when fitting extended
and complex sources (Hopkins et al. 2015; Hale et al. 2019).

Using pybdsf, the background noise across each of the wide-
band images was estimated using sliding box sizes of 735 pixels.
To more accurately capture the increased local rms in regions sur-
rounding high signal-to-noise sources (≥150σ ), we decrease the
size of the sliding box to 38 pixels near such sources. To find and
fit sources, pybdsf first identifies all pixels in the image greater
than a set pixel threshold. Starting from each identified pixel, all
contiguous pixels higher than a set island threshold are estab-
lished as belonging to one island. The islands are then fitted with
multiple Gaussians and nearby Gaussians within an island are
grouped into sources. For the LoBES wide-band images, we used
the default 5σ pixel threshold for detection and 3σ island thresh-
old. Additionally, we used the pybdsf parameter group_tol, which
controls how Gaussians within the same island are grouped into
sources. We set this parameter to 3 to allow for larger sources
to be formed. This value balances grouping all Gaussians in a
single island into one source and merging too many separate
sources and identifying the island Gaussians as separate sources,
separating components of large, extended sources. This value was
optimised through trial and error testing using the interactive
mode of pybdsf.

Since the pixels in the wide-band images contain contributions
from a set of images covering close to a full hour of observation,
any residual offsets due to ionospheric activity during these obser-
vations will cause the PSF of the wide-band image to blur and vary
across the FOV. To address this issue we use pybdsf to estimate
the spatial variance in the PSF and correct for its effects. Using a
set of unresolved, bright (> 10σ ) sources, pybdsf tessellates the
image using a Voroni tessellation to produce a set of tiles. The
bright, unresolved sources within a tile are then used to calculate
the PSF for that tile and each tile is assumed to have a constant
PSF. The spatial variation of the PSF is then quantified based on
the tile PSF values and interpolated across the whole image. The
deconvolved source sizes are then adjusted by pybdsf to include
the PSF variation as a function of position.
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Figure 4. Central 25× 25 degree region of the LoBES field 1 wide-band image highlighting the high image quality of MWA phase 2 extended. The noise at the edge of the field, due
to the primary beam attenuation, is apparent.

Figure 5. The left-hand figure shows the sensitivity coverage over the full survey area presented here. Note that the rms is not uniform across the surveyed sky area, and increases
towards the edges of the survey fields and around bright sources in the fields. The right-hand figure shows the cumulative area coverage (and percentage) that has an rms less
than a given value.

https://doi.org/10.1017/pasa.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2021.50


Publications of the Astronomical Society of Australia 9

For each of the five wide-band images, pybdsf produces a ref-
erence source Catalogue with parameters relating to the overall
source flux densities, sizes, and positions, a reference Gaussian
catalogue with information about the Gaussian components (flux
densities, positions, sizes, orientations) used to fit each source.
The uncertainties on the fitted parameters are computed follow-
ing Condon (1997). Additionally, each of the sources identified
and fit by pybdsf is given a source code (the ‘S_Code’ column in
outputted catalogues). Sources fit by multiple Gaussians are given
a ‘M’ source code, sources fit by a single Gaussian, a ‘S’ source
code, and single-Gaussian sources that lie within the same island
as another source are given a ‘C’ source code. From pybdsf we also
have rms maps, residual maps, and PSF maps associated with each
field. The total number of sources found in the five LoBES wide-
band images is 100 851. Note that this initial number contains edge
sources, sources common to more than one LoBES field, spurious
emission or artefacts, and large extended sources whose individ-
ual components appear as separate sources in the pybdsf source
catalogues; these issues will be handled in the following section.

4.2.1. Final source selection

Each of the five wide-band images have hard edges where a small
number of sources should be omitted. These sources may still be
detected by pybdsf at the edge of the image, but these sources are
likely to be incomplete or have erroneous flux densities and shapes.
Thus we have removed sources that have fitted sky positions, that
when converted to pixel values are within 10 pixels of the edge of
the image. Generally less than 1% of the total sources from each
reference catalogue are removed during this step.

Adjacent LoBES fields overlap so that some sources can be
present in multiple wide-band images. To avoid double counting
sources we need to identify and remove copies of the same source
in multiple source catalogues. To do this we first use the Starlink
Tables Infrastructure Library Tool Set (stilts; Taylor 2006) to cross-
match each wide-band source catalogue with the catalogues of
their adjacent fields (for example LoBES field 2 with fields 1, 3,
and 5). We identify all matched sources within 80 arcsec between
two LoBES fields using the tskymatch2 command. For the dou-
ble entries, we discarded one of the two by directly comparing the
Island rms values reported by pybdsf during the initial source find-
ing, choosing to keep the source with the smallest rms. Removing
double-counted sources removes 20% of the total sources from the
reference catalogues.

We visually inspected a subset of the catalogue sources to iden-
tify spurious imaging artefacts that were identified as sources and
to find sources that are actually individual components, such as
radio lobes, of large extended sources. The source catalogue was
first separated into three catalogues each containing one of the
three types of sources (S, M, or C). For each of theM and C sources
we created 0.5× 0.5 degree sub-images centred on the source from
the appropriate LoBES wide-band image. For the M sources we
overlaid the sub-images with markers to indicate the position,
source size, and orientation of the source. The C sources similarly
weremarked with the location and size of the source of interest but
we also included additional markers to identify all other sources
located in the source island. Doing this for all five of the LoBES
fields created 8 500 sub-images to inspect by eye. Visually inspect-
ing the M and C source sub-images revealed 91 individual sources
that are actually components of a large extended source or imag-
ing artefacts. We remove these sources and their Gaussians fits
from the source and Gaussian catalogues and the identified large

extended sources are re-fit using pybdsf parameters better suited
to extended emission (see Section 4.2.2).

Given that the majority of the sources in the LoBES field ref-
erence catalogues are S sources, and that for each field there are
tens of thousands of these sources, it is unreasonable to visu-
ally inspect each of these sources. To get a sense of where bright
imaging artefacts might lie in the images, we inverted the LoBES
field 1 wide-band image (by taking the negative of every pixel)
and running pybdsf on the inverted image using the same fitting
parameters used to fit the original wide-band images. We expect
imaging artefacts around bright sources will have negative coun-
terparts that are detectable in the inverted image. We find that the
majority of the inverted sources lie within 5 arcmin of sources with
integrated flux densities greater than 5 Jy. To account for any noise
variation between the LoBES fields we choose only S sources in
the wide-band (non-inverted) source catalogue that lie within 5
arcmin of a source that has an integrated flux density greater than
2 Jy. This will select S sources that are most likely to be identified
as spurious imaging artefacts. This selects 791 S sources; we create
sub-images centred on each of the identified sources and by visu-
ally inspecting these sources, we identified 38 sources to remove
from the source and Gaussian catalogues.

Overall a total of 80 824 sources (comprising of 88 381Gaussian
components) are identified in this first half of the LoBES survey—
excluding the forty-five large extended sources we choose to re-fit
in Section 4.2.2. We collect these remaining identified sources
from each LoBES field reference catalogues into a single final
source and Gaussian catalogue. For each source, the final source
catalogue contains information about the peak intensity, inte-
grated flux density, position, orientation, convolved and decon-
volved shapes, and the associated errors for each of the parameters.
Similarly, the final Gaussian catalogue contains this information
but for each Gaussian fit to the identified sources. A column was
added to these catalogues to include the LoBES field from which
each source was found. We also add identifying columns to the
final source and Gaussian catalogues, where each source is given
a unique name and source ID number. These are used in the
final Gaussian catalogue to associate Gaussian components to a
single identified source. We will refer to these two catalogues as
the General Wide-band Source and General Wide-band Gaussian
catalogues.

4.2.2. Re-fitting large extended sources

The forty-five large extended sources identified in the preceding
Section are re-fitted using pybdsf parameters that are more suited
to fitting dimmer extended emission.c We create 0.3× 0.3 degree
sub-images centred on each of these sources from the appropri-
ate LoBES wide-band image. We then fit each of these sub-images
using the interactive mode of pybdsf, varying the pixel and island
thresholds to obtain an island that enclosed all significant emis-
sion, and group_tol to group all fitted Gaussians into a single
source. We also set the rms_map parameter to ‘false’ and the
mean_map parameter to ‘const’, forcing pybdsf to use a constant
mean and rms values across the sub-image; these settings account
for the background rms map likely being biased high in regions
where extended emission is present. We set flag_maxsize_bm to
50 to allow for large Gaussians to be fit, and atrous_do to ‘True’

cFor more details see https://www.astron.nl/citt/pybdsf/examples.html##image-with-
extended-emission.
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to fit Gaussians of various scales to the residual image to recover
extended emission missed in the standard fitting. The source cata-
logue for each of the forty-five sources was combined into a single
catalogue (similarly for the individual Gaussian catalogues) and
we will refer to these two catalogues as the LG-Extended Wide-
band Source and LG-Extended Wide-band Gaussian catalogues;
these two catalogues contain the same information as the General
Wide-band Source and Gaussian catalogues.

4.3. Spectral catalogue

To measure the flux densities for all of the sources in the reference
catalogue, we use the priorised fitting algorithm within aegean
(Hancock et al. 2018). This algorithm takes an input catalogue of
sources that contains the source positions and morphologies and
measures the flux density of each source within a supplied image.
We use the final reference LG-Extended and the General Wide-
band Gaussian catalogues, detailed in Section 4.2, as the input
catalogues for the priorised fitting and the supplied images are the
sixteen spectral images associated with each LoBES field. Using the
‘LoBES_FIELD’ columns in each of the reference catalogues, we
only fit sources in the spectral images associated with the LoBES
field they were identified in (i.e. LoBES field 1 sources are only
priorised fit in LoBES field 1 spectral images). We re-format the
Gaussian catalogues to have a similar formatting to that of an
aegean catalogue and include an additional column with a unique
identifier for each of the source Gaussians (the ‘UUID’ column in
an aegean catalogue). To account for PSF differences between the
input catalogue and the image, we use the PSF images created by
pybdsf for each of the wide-band images, to supply aegean with the
local PSF information for each of the reference catalogue sources.

Before fitting, aegean deconvolves sources by the local cata-
logue PSF and convolves them with the local PSF of the supplied
image. Sources are then re-grouped to create islands of sources
based on their positions and morphologies. Sources are grouped
together if they overlap at the half-power point of their respec-
tive Gaussian fits. aegean then fits each of the identified islands,
jointly fitting sources grouped together. By jointly fitting grouped
sources, aegean’s priorised fitting accounts for biases in the fit-
ted flux densities due to source blending (Hancock et al. 2018).
Different fit parameters can be allowed to vary during the priorised
fitting—during our fitting of the LoBES spectral images we choose
to only fit for the flux density of each fit Gaussian, while fixing
its shape and position. The priorised fitting creates an output cat-
alogue with the fixed and fitted parameter information for each
of the source Gaussians, as well as the supplied unique identifier
(‘UUID’) from the input catalogue. We use the ‘UUID’ to match
and collect the spectral information for each of the fit Gaussians
into a single spectral Gaussian catalogue. To get the total inte-
grated flux density for each source within each frequency band,
we sum the integrated flux densities of the fit Gaussians for each
source at each frequency and use the position and source size from
the General and LG-Extended Source catalogue to create spectral
source catalogues.

4.4. Fitting spectral models

Using the spectral source catalogues, we performed spectral
modelling for all LoBES sources that are measured to have at least
six spectral measurements that are greater than 4σ ; this includes
78% of the total LoBES sources. This selection is to ensure that the
sources have a sufficient number of significant spectral measure-
ments to do the modelling. To account for the overall flux density

scale uncertainty for the LoBES measurements, the uncertainty
for each measurement is calculated to be the quadrature sum of
the aegean fitting uncertainty and a 5% flux density scale error as
calculated in Section 5.1.

To include spectral information from archival multi-frequency
radio catalogues in the spectral modelling, we used PUMA to
cross-match the spectral General Source catalogue with VLSSr,
SUMSS, and NVSS. However, for the LG-Extended sources we
were concerned that each source could be composed of multi-
ple ‘source’ entries in these archival catalogues. To ensure correct
source association for the LG-Extended sources, we downloaded
VLSSr, NVSS, and SUMSS images for each of these sources from
the SkyView Virtual Observatory (McGlynn, Scollick, & White
1998), performed an aegean priorised fit in each image using the
LG-Extended Gaussian catalogue and summed the measured flux
densities of the fit Gaussians to get the total integrated flux density
for each source in their respective images.

4.4.1. Spectral models

To capture the spectral shape for each LoBES source, we fit two dif-
ferent models. Radio sources often exhibit simiple spectra that can
be approxmiated by the standard non-thermal power-law model,
where the flux density, Sν , at frequency ν is given by

Sν = a (ν/νo)
α , (2)

here a is the amplitude of the synchrotron spectrum in Jy and νo
is the reference frequency where we used 160 MHz in this anal-
ysis. Yet at low radio frequencies, source spectra are found to be
more complex, with sources showing more curved spectra (e.g.
Laing & Peacock 1980; Blundell, Rawlings, & Willott 1999; Duffy
& Blundell 2012; Marvil, Owen, & Eilek 2015; Callingham et al.
2017; Galvin et al. 2018) until a turnover frequency, below which
they become inverted. Synchrotron self-absorption or free-free
absorption is typically thought to be responsible for the observed
spectral turnover (Callingham et al. 2015; Callingham et al. 2017).
To capture potential curvature in the spectra of the LoBES sources,
we also fit each source using a curved power-law model of
the form

Sν = a (ν/νo)
α eq ln (ν/νo)2 . (3)

Here q is the spectral curvature, where values of | q | > 0.2 rep-
resent significant curvature, and the spectral curvature flattens
towards a standard power-law as q goes to zero.

4.4.2. Fitting and selection

Following the method outlined by Callingham et al. (2015);
Callingham et al. (2017) and Galvin et al. (2018) we use a Bayesian
model inference routine to assess the parameter values of the two
spectral models fit to each of the catalogue sources. This rou-
tine samples the posterior probability distribution functions of the
model parameters using an affine invariant Markov Chain Monte
Carlo algorithm (Goodman & Weare 2010), implemented via the
emcee python package (Foreman-Mackey et al. 2013). Final model
parameters are chosen such that they maximise the log likelihood
function under physically sensible uniform priors. Here the log
likelihood function is given by

lnL(θ)= −1
2
∑
n

[
(Dn − f (θ))2

σ 2
n

+ ln (2πσ 2
n )
]
, (4)
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Table 3. The LoBE survey properties.

Total sky coverage 3 069 degree2

Number of sources 80 824

Completeness at 10.5 mJy 70%

Completeness at 50 mJy 94%

Completeness at 100 mJy 98%

Completeness at 1 Jy 100%

rms (mean) 2.1 mJy beam–1

Wide-band image resolution 77.5 arcsec

R.A. offset –0.04±1.48 arcsec
Dec. offset –0.03±1.53 arcsec
Flux density scale uncertainty 5%

where D and σ are vectors containing a set of n flux density mea-
surements and their associated uncertainties, and f (θ) is themodel
optimised using the parameter vector θ .

Equation (4) assumes that the measurements are independent
with normally distributed errors. However, the 7.68 MHz subband
measurements have correlated errors, violating this underlying
assumption. Similar to GLEAM, this correlation is introduced
through a combination of the primary beam correction, the
absolute flux density scaling and ionospheric corrections, self-
calibration, and multi-frequency synthesis performed on the full
30.72 MHz observing bandwidth before splitting it into the four
narrower subbands. As some of these effects have a direction-
dependent (DD) component, the degree of correlation between
the subbands varies as a function of position. In order use the flux
density measurements from the LoBE survey in combination with
those from other radio surveys for the spectral modelling, the cor-
relation between the LoBE survey subbands needs to be accounted
for with an appropriate covariance matrix.

Calculating the exact form of the covariance matrix describ-
ing the correlation between the LoBES points is not possible.
Following Callingham et al. (2015); Callingham et al. (2017),
we can approximate the correlation using a Matérn covariance
function (Rasmussen & Williams 2006). This type of covariance
function produces a stronger correlation between flux density
measurements closer together in frequency than further apart.
The parameterised Matérn covariance function, k, we use in the
spectral modelling is given by

k(r)=N2

(
1+

√
3r
γ

)
e
(

−√
3r

γ

)
, (5)

where r is the difference in frequency between pairs of flux den-
sity measurements, and N and γ are quantities constrained by
emcee. We use the python package georged (Ambikasaran et al.
2015) to implement the Matérn covariance function and supply
the log likelihood function of a model given the parameter vector
θ for only the LoBES measurements. The log likelihood function
from george was summed with the log likelihood function from
Equation (4) for the independent flux density measurements and
parameter vector θ .

In this modelling, we use uniform priors enforcing a range of
values that the model parameters are allowed to take. Throughout

dhttps://github.com/dfm/george.

our model fitting we ensure that the spectral index remains in the
range of −3 to 3, covering the broad range of measured values
in the literature. Additionally, we force the amplitude values a to
be positive under the assumption that the flux densities are the
result of a positive emission process. For the Matérn covariance
parameters N and γ we make no assumption about their values
and set the priors broadly enough to cover all the LoBES data.

In the Bayesian framework we can select between two equally
likely models, M1 and M2, by comparing the Bayesian evidence
values for each model evaluated for a common dataset. The
evidence value, Z, is given by

Z =
∫∫

· · ·
∫

L(θ)	(θ)d(θ), (6)

where 	(θ) is the prior probability distribution and the dimen-
sionality of the integration depends on the number of model
parameters. The evidence value represents the average likelihood
over the prior volume for a given model and favours models with
high likelihood throughout the prior parameter space. Therefore
a simpler model containing few parameters will have a larger evi-
dence value than a more complex model with a larger parameter
space, except if the complex model is a significantly better fit to the
data. We calculate the evidence values for the two different mod-
els using the dynesty python package (Speagle 2020), which uses
a nested sampling method (Skilling 2004; Skilling 2006) to obtain
an estimate of the Z values. The prior volume searched by dynesty
is informed by the results of the fitting using EMCEE.

Given the evidence values, Z1 and Z2, for models M1 and M2,
we can use the ratios of the evidences to select themodel that better
fits our flux density measurements. In this paper we perform this
comparisons in log space such that,


 ln (Z)= ln (Z2)− ln (Z1) (7)

If 
 ln (Z) ≥ 3, modelM2 is strongly favoured overM1; modelM2
is only moderately favoured over M1 if 1 < 
 ln (Z) < 3; and if

 ln (Z) < 1, preference of one model over the other is incon-
clusive (Kass & Raftery 1995). We chose M2 to be the curved
power-law model, and find that for 20% of the modelled sources
the curved power-law is strongly favoured.

5. Final catalogue properties

The final LoBES catalogue combines the positional and shape
information from the General and LG-Extended Wide-band cata-
logues with the spectral information outlined in Sections 4.3 and
4.4. The sources that do not have sufficient spectral information
to carryout modelling are included in the final catalogue but we
only include their measured values and associated uncertainties.
The catalogue associated with the results of this first paper will
be available upon request. A final catalogue containing the full
LoBE survey coverage (including the sources presented here) will
be released with paper 2.

5.1. Error estimation

In the following we summarise how we estimated the uncer-
tainties in the LoBES external flux density scale and position
measurements. To calculate the systematic uncertainty in the
LoBES spectral measurements, we first identify unresolved, iso-
lated sources with a signal-to-noise ratio ≥8 in each of the 16
spectral catalogues. We cross-match these sources with NVSS,
SUMSS, GLEAM, and VLSSr using PUMA. Again we prioritise the
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Figure 6. Ratios of the overall flux density scale in the LoBES catalogue at 189 MHz as compared to the predicted flux densities via cross-matching to other catalogues (the plots
are similar for the other spectral images). We show these ratios as a function of both Right Ascension (top) and Declination (bottom). The grey scale represents the signal-to-noise
ratio of the selected sources, with darker colours associated with the highest values. On the right of each figure we also show the weighted log-Gaussian fit to the spread in the
ratio values. We take the standard deviation of the fit log-Gaussian to be the systematic uncertainty in the flux density scale. For all spectral images the uncertainty is found
to be 5%.

NVSS positions over the other catalogues. Carrying out a similar
analysis as that used to measure and correct for the flux density
scale variation in the individual LoBES images, we estimate the
ratio of the measured to predicted flux density for each of the
bright sources found in the spectral images. We fit a weighted log-
Gaussian to the distribution of ratios, where the weight for each
source is taken to be the signal-to-noise ratio, and take the stan-
dard deviation of this fitted Gaussian as the uncertainty in the flux
density scale at that frequency. For all spectral images, the system-
atic uncertainty is found to be 5%.We show the distribution of flux
density ratios for all five of the 189 MHz images in Figure 6—the
other spectral images look similar. Here the grey scale represents
the signal-to-noise ratio for each of the sources, with the dark-
est colours associated with the highest signal-to-noise ratios. We
additionally show the fitted log-Gaussian in the right-hand panel
of this figure.

Similarly, to measure the astrometric uncertainty in the
LoBES catalogue, we identify unresolved, isolated sources with
a signal-to-noise ratio ≥8 in the General Wide-band catalogues.

We cross-match these sources with NVSS, SUMSS, GLEAM,
and VLSSr using PUMA and calculate the difference in the sky
position between the original LoBES position and the updated
position reported by PUMA. The distribution of these positional
differences are shown in Figure 7. For these sources the average
offset in Declination and Right Ascension is consistent with
zero. These offsets are smaller than the pybdsf fitted Gaussian
uncertainties for 99% of the sources in the catalogue. Given the
small scatter in these offsets, and their relative size to the Gaussian
fit uncertainties, we do not make any corrections for the offsets.

5.2. Spectral indices

To assess the quality of the spectral modelling in Section 4.4 we can
compare the average spectral index for the sources fit by a power-
law in the LoBE survey, to spectral indicesmeasured by other radio
surveys. We identify 50 673 sources whose spectral properties are
best fit by a standard power-law. The histogram of spectral indices
for these sources in Figure 8. Here we have broken the sources into

https://doi.org/10.1017/pasa.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2021.50


Publications of the Astronomical Society of Australia 13

Figure 7. Positional offsets in RA and Dec as calculated from the updated source posi-
tion as reported from a cross-match with NVSS, SUMSS, GLEAM and VLSSr using PUMA.
We also showhistograms of the differences in RA (top) andDec (right), which are tightly
centred on zero. The dashed line represents the average offset in both cases, which is
smaller than 99% of the source fitted positional uncertainties.

Figure 8. The spectral index distribution for sources best fit by a power-law in Section
4.4. The sources are grouped by their measured flux density at 204 MHz. From lightest
shade of green to darkest the bins are: flux densities≤ 0.05 Jy; flux densities between
0.05 and 0.15 Jy; fluxes between 0.15 and 0.5 Jy; and flux densities greater than 0.5 Jy.
The corresponding dashed lines indicate the associated median spectral indices for
each flux bin.

four flux density bins: S204~MHz ≤ 0.05 Jy (26 187 sources); 0.05 Jy
< S204~MHz ≤ 0.15 Jy (15 327 sources); 0.15 Jy < S204~MHz ≤ 0.5 Jy
(6 670 sources); S204~MHz > 0.5 Jy (2 489 sources). The associated
median spectral indices for these flux density bins are –0.72± 0.22,
–0.75 ± 0.16, –0.77 ± 0.12, and –0.78 ± 0.11, respectively.

Several other papers have reported spectral indices for sources
identified at ∼100 MHz. Our median spectral indices are in agree-
ment with these previous results. GLEAM measured the spectral
indices within the frequency coverage of that survey, breaking the
sources into flux density bins. The bottom two flux density bins
used by GLEAM are similar to those we use here; they report spec-
tral indices of –0.78 ± 0.2 and –0.79 ± 0.15 in these bins. While
our top flux density bin includes both the top flux density bins
used in GLEAM, the spectral indices for this range of flux densi-
ties (> 0.5 Jy) are in agreement, with GLEAM reporting a spectral
index of –0.83± 0.12 and –0.83± 0.11 in these two bins. Similarly,
our results agree with Williams et al. (2016) who reported an aver-
age spectral index of –0.79 ± 0.01 between 150 and 1 400 MHz for
sources located in the Boötes field; de Gasperin et al. (2018) used
the TGSS ADR1 and NVSS catalogues to create a large area spec-
tral index map, they report median spectral indices that span the
range of –0.611 in their lowest flux density bin (0.0025–0.05 Jy)
to –0.81 in the highest flux density bin (0.5–500 Jy); finally Heald
et al. (2015) used the LOFAR High Band Antenna to measure a
median index of –0.77 (between 120 – 160 MHz).

5.3. Classification of sources

Following the method described in Franzen et al. (2015); Franzen
et al. (2019), we identify extended sources within our catalogue
using the ratio of the measured integrated flux density, Sint, to the
peak intensity, Speak, for each source. To detect source extension at
the 2σ level

ln
(

Sint
Speak

)
> 2

√(
σint

Sint

)2

+
(

σpeak

Speak

)2

. (8)

Here σpeak and σint are the uncertainties in the measured peak
and integrated flux densities, respectively. We take these to be the
sum quadrature of the Gaussian fitting uncertainties reported by
pybdsf and an overall flux density scale uncertainty of 5%, calcu-
lated in Section 5.1. Figure 9 shows the ratio of the integrated to
peak intensity densities as a function of the signal-to-noise ratio of
the source for detected sources in the LoBES wide-band image at
200 MHz (with resolution of 77 arcsec). Extended sources in this
figure are represented by dark green circles; these sources make up
22% of sources in the Wide-band catalogues.

5.4. Source counts

Here we investigate the source counts of the radio sources within
the LoBES EoR0 fields. Source counts as a function of flux
density are important for understanding radio source popula-
tions and can provide more realistic estimates of the expected
foreground contamination in simulations for EoR experiments
(e.g. Murray, Trott, & Jordan 2017; Nasirudin et al. 2020). Source
counts can also provide an objective way of comparing the results
from different surveys.

The chance of detecting sources of various sizes and flux densi-
ties in our survey is a function of their location within the survey
images as well as their signal-to-noise ratio. This means that the
source counts from using pybdsf will not reflect the true extra-
galactic source count distribution. Several correction factors need
to be calculated and applied to the source counts generated from
our source finding procedure in order to calculate the expected
extragalactic source counts. We outline these correction factors in
the following.
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Figure 9. Ratios of the integrated to peak intensity as a function of the signal-to-noise
ratio of the source. The dark green circles represent extended sources within the cata-
logue and the light green crosses are point sources. Extended sources make up 22% of
the LoBES General and LG-Extended Wide-band catalogue.

5.4.1. False detection rate

To account for noise spikes and artefacts in the images that pybdsf
identified as real sources, we use the false detection rate (FDR).
From the symmetry of the image noise, we expect that positive
noise spikes will have counterpart negative spikes. We will be able
to detect these negative spikes in the inverse (negative) image.
Using the inverted wide-band images, we run pybdsf using the
same parameters as when creating the source catalogue. However,
this over estimates the FDR at high flux densities, as pybdsf uses
regions of high rms around bright sources to avoid finding and fit-
ting image artefacts around such objects (Hale et al. 2019). In the
inverted image there are no negative counterparts to the bright
sources in the image, thus it is more likely that negative peaks near
bright sources may be counted as sources in the inverted image
while their positive counterparts were not detected. Additionally,
the FDR should generally be an issue at faint flux densities where
noise peaks may be confused with sources. To correct the FDR
we exclude regions around bright sources by masking out circular
regions of 5 arcmin around sources with flux densities greater than
5 Jy.

To estimate the FDR we first bin the sources we originally
detected in our wide-band image by flux density. We then calcu-
late the number of inverted image sources that are detected in each
of these bins. The fraction of real sources in the ith flux density bin
is given by

freal,i = Ncatalogue,i −Ninverted,i

Ncatalogue,i
(9)

This fraction is applied multiplicatively to the raw source counts
in each flux density bin for the wide-band catalogue and the
uncertainty in the FDR is calculated using Poisson errors in the
individual number counts. We show the FDR correction factors

we used to correct our source counts in the left-hand panel of
Figure 10 (indicated by the purple circles) and list the factors for
each flux density bin in Table 4.

5.4.2. Source completeness

The completeness of a catalogue is the probability that all sources
above a given flux density are included in the catalogue. Several
factors can have an effect on the completeness of a catalogue.
Eddington bias is the result of noise redistributing weak sources
into higher flux density bins (Eddington 1913). This bias is signifi-
cant near the detection limit of the survey andmay boost counts in
the faintest bins. Additionally, source finding algorithms, includ-
ing pybdsf, use peak intensity values to identify sources within
an image. This creates a bias against detecting extended sources
(termed resolution bias). As the size of a resolved source increases,
the ratio of the peak to integrated flux density decreases. Thus
an extended source of the same integrated flux density as a point
source could have a peak intensity (in units of Jy beam–1) that is
undetectable by peak-flux-finding algorithms. Lastly, the variation
in the image sensitivity for the sky area covered by the LoBE survey
means that faint sources are not detectable across the full survey
region—this is taken into account by considering the visibility area
for sources in different flux density bins.

Following the method outlined by Williams et al. (2016), Hale
et al. (2019), Franzen et al. (2019), we quantify the various biases
in our catalogue by injecting 33 000 simulated sources into our set
of five wide-band images. These sources are randomly distributed
throughout the survey area but with an enforced minimum dis-
tance of 5 arcmin between any two simulated sources. We do not
limit the location of a simulated source with respect to the actual
sources in the image—this allows us to account for source con-
fusion. We also make a random 10% of these sources extended
(i.e. source sizes larger than the image beam size). It is important
to generate realistic flux densities for these sources and extend
the simulated flux densities to well below the 5σ detection limit
in order to accurately account for Eddington Bias. Intema et al.
(2011) and Williams et al. (2013) showed that deep source counts
at 153MHz are well represented by dN/dS∝ S−1.59. The flux densi-
ties of the simulated sources were then drawn randomly from this
power-law distribution between 5mJy and 10 Jy and then scaled to
200MHz using a spectral index of –0.8. To generate good statistics
we create 100 of these simulations.

To inject the sources into the images we used aeres from the
aegean package. For each simulation we then performed the same
source finding procedures used to generate the LoBES wide-band
catalogues. The only step excluded in this procedure was the final
visual inspection of sources to identify image artefacts and compo-
nents of large extended sources. We expect the components of the
large extended sources will be detected in the simulations and orig-
inal LoBES wide-band images in the same manner. Additionally,
the FDR and masking outlined in Section 5.4.1 should account for
image artefacts. Thus, in our final source count analysis we use the
LoBES wide-band catalogue before removing sources identified
via visual inspection.

From this process we have a set of 100 source catalogues con-
taining both the detected injected sources and original image
sources. To calculate the completeness correction, we then use
stilts to do a simple cross-match between each of the 100 cat-
alogues with the original injected source catalogue, matching
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Table 4.The Euclidean-normalised differential source counts for the LoBES EoR0 fields scaled to 154 MHz. The
range of the flux density bin is given by Srange, with a centre flux density of Sc.N is the total number of uncorrected
sources per bin and the last column gives the corrected normalised source counts (S2.5 dN/dS).

Srange Sc Corrected S2.5 dN/dS

(Jy) (Jy) N FDR Completeness correction (Jy3/2 sr–1)

0.015–0.021 0.018 7 620 0.99±0.02 3.29±0.09 174±6
0.021–0.032 0.027 12 682 0.99±0.01 1.94±0.03 252±6
0.032–0.048 0.040 12 501 0.99±0.01 1.43±0.02 357±8
0.048–0.072 0.060 11 732 0.99±0.01 1.20±0.01 506±10
0.072–0.108 0.090 9 959 0.98±0.01 1.080±0.008 731±14
0.108–0.164 0.136 8 396 0.98±0.01 1.080±0.008 1 101±21
0.164–0.247 0.205 6 359 0.98±0.02 1.034±0.007 1 481±32
0.247–0.370 0.308 4 767 0.97±0.02 1.016±0.004 2 019±50
0.370–0.556 0.463 3 215 0.98±0.02 1.010±0.005 2 488±76
0.556–0.836 0.696 2 107 0.99±0.03 1.008±0.005 3 033±118
1.836–1.257 1.047 1 325 0.99±0.04 1.008±0.005 3 511±176
1.257–1.890 1.573 812 0.99±0.05 1.008±0.005 3 979±216
1.890–2.841 2.365 438 0.99±0.06 1.007±0.006 3 983±306
2.841–4.271 3.556 231 – – 3 877±248
4.271–6.420 5.346 128 – – 3 970±340
6.420–9.651 8.036 61 – – 3 476±431
9.651–14.51 12.08 33 – – 3 483±585
14.51–21.81 18.16 18 – – 3 521±799
21.81–32.80 27.30 9 – – 3 055±1 010
32.80–49.30 41.05 1 – – 704±658

Figure 10. The left-hand panel shows the false detection rate (purple circles) and the completeness correction (orange triangles) calculated for the LoBE survey in 15 flux density
bins. The correction factors are dominated by the completeness correction, especially at low flux densities. The completeness of the survey is shown on the right. The dashed
lines indicate the completeness at 10.5 mJy (70% complete), the minimum detection threshold of the survey, and the 90% completeness level at 32 mJy.

sources within the resolution of the wide-band image. This identi-
fies which of the injected sources are recovered in each of the 100
simulations. To account for source confusion between the injected
sources and the original LoBES sources, we then cross-match the
identified sources with the original LoBES wide-band catalogue.
We remove matched sources that have measured source positions

closer to a matched LoBES source than to the matched injected
source.

The correction factor in the ith flux density bin is then
calculated as

Completeness Correctioni =
Ninjected,i

Nrecovered,i
(10)
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Figure 11. Corrected source counts from the LoBE survey (filled brown circles) com-
pared to other survey source counts at ∼100 MHz. The comparison surveys included
are: MWA results from Franzen et al. (2016) (orange open squares) and Franzen et al.
(2019) (filled light orange triangles); GMRT results from Intema et al. (2017) (filled pur-
ple stars), and Williams et al. (2013) (dark purple open diamonds); LOFAR results from
Mandal et al. (2021) (light blue filled inverted triangles). The LoBES source counts are
in agreement with previous surveys and with the upgrades to the MWA, the sources
counts are now becoming competitive with the deepest source counts from the GMRT.

The final correction factors in each of the flux density bins
is taken as the median of the correction values calculated in the
100 simulations; the uncertainties are taken as the 16 and 84th
percentile values. The left-hand panel of Figure 12 shows the
completeness correction factors for the LoBES catalogue (orange
triangles); the values for each bin are also listed in Table 4. In this
figure (and in the table) it is evident that the completeness correc-
tion contributes the most to the overall correction of the source
counts, with the largest correction factors occurring in the low-
est flux density bins. The completeness of the catalogue at a given
flux density is then determined by integrating the detected fraction
of sources (i.e. the inverse of the completeness correction value)
upwards from a given flux density limit. The completeness of the
LoBES catalogue from 10 mJy to 1 Jy is shown in the right-hand
panel of Figure 10.We estimate that the catalogue is 90% complete
above a flux density of 32 mJy.

5.4.3. Final source counts

To calculate the corrected source counts for LoBES we combine
the FDR and completeness corrections multiplicatively and mul-
tiply the source counts in each flux density bin by the appropriate
factor. The uncertainties in the FDR, completeness correction, and
source counts are combined in quadrature. To compare to other
surveys we scale the flux density bins to 154MHz assuming a spec-
tral index of −0.8. The corrected source counts bewteen 15 mJy
and 50 Jy are show in Figure 11, with the values in each scaled flux
density bin listed in Table 4.

Figure 11 compares the source counts measured here (brown
circles) to those in the literature, including a deep survey of the
Boötes region at 150 MHz using the GMRT (dark purple open
diamonds Williams et al. 2013), the source counts estimated from

the TGSS ADR1 survey (purple stars, Intema et al. 2017), source
counts estimated using a deep MWA phase I images at 154 MHz
of the EoR0 region (orange squares, Franzen et al. 2016), 154 MHz
source counts from the MWA GLEAM survey (light orange tri-
angles, Franzen et al. 2019), and 150 MHz source counts from the
LOFAR Two Meter Sky Survey (LoTTS) Deep Fields (light blue
inverted triangles Mandal et al. 2021). Note that this list of papers
is not exhaustive. The LoBES source counts are in good agreement
with the literature, and the deepest LoBES source counts are com-
parable to the deepest source counts from the GMRT surveys at
154 MHz.

6. Impact of improvedmodel

To investigate the performance of the new LoBES sky model as
compared to the current Australian MWA EoR sky model, we use
each sky model in one of the standard MWA EoR collaboration
pipelines (as outlined in Jacobs et al. 2016) for estimating the EoR
power spectrum. We then compare the data residuals resulting
from each run of the pipeline. We use real data from Phase I of the
MWA in this investigation. We choose to use MWA Phase I data
to test the sky models because the MWA Phase I configuration is
sensitive to the spatial scales needed to do EoR science.

The MWA EoR pipeline we use involves first calibrating and
removing foreground sources from the MWA data using the RTS
and then measuring the power spectrum of the residuals using the
Cosmological H I Power Spectrum Estimator (CHIPS; Trott et al.
2016). Because it is not currently computationally feasible to use
a horizon-to-horizon sky model for either calibration or source
removal using the MWA EoR pipelines, only a subset of the total
sky is used to complete these steps (Jacobs et al. 2016). Previous
MWA EoR limits using the RTS and CHIPS pipeline select the 1
000 apparently brightest sources for each snapshot observation to
use during calibration and source removal (Yoshiura et al. 2021;
Trott et al. 2020). Similarly in the following analysis we use the
primary beam model from Sokolowski et al. (2017) to choose the
apparently brightest 1 000 sources from the LoBES sky model for
each observation. To be consistent, we identify the source mod-
els associated with these 1 000 sources in the current Australian
MWA EoR sky model for each observation to use in our com-
parison. The source models from either LoBES or the current
Australian MWA EoR sky model for these 1 000 sources are used
for both calibration and source removal.

To assess the relative impact of the new sky model, we use
the two-dimensional power spectrum (2D PS). The 2D PS is
formed by averaging k-modes associated with angular scales on
the sky, and plotting the power as a function of angular k-modes
(modes perpendicular to the line of sight; k⊥), and spectral k-
modes (modes parallel to the line of sight; k‖). Generally, it is
expected that astrophysical foregrounds with be spectrally smooth
and contaminate only small values of k‖. However, the inherent
chromaticity of the radio interferometer will cause the foreground
emission to spread to higher values of k‖ where measurements of
the EoR are expected to occur. This creates the so-called ‘fore-
ground wedge’ and the remainder of the 2D PS parameter space
is dubbed the ‘window’ (Datta et al. 2010; Trott et al. 2012;
Thyagarajan et al. 2013; Vedantham et al. 2012). Additionally,
frequency-dependent calibration errors will couple with residual
foreground power and further leak power into the EoR window
(e.g. Barry et al. 2016; Trott & Wayth 2016; Offringa et al. 2016;
Ewall-Wice et al. 2017). Because the power of EoR signal decreases
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(a)

(b)

Figure 12. Comparison between the current Australian MWA EoR sky model and the LoBES sky model for two sources located with the EoR0 field. Shown are the GLEAM images
for both sources in panels (1); the LoBES wide-band image in panels (2); panels (3) show the peel residuals for the current Australian MWA EoR Sky Model using our set of 2014
MWA Phase I test data; and panels (4) show the peel residuals in the 2014 MWA Phase I test data using the LoBES Sky Model. The current Australian MWA EoR sky model for each
source is overlaid in the orange ellipses in panels (1) and (3); similarly the LoBES Sky Model is overlaid in panels (2) and (4). Comparing the peel residuals for the two models it is
evident that the LoBES source model removes more emission than the current sky model for these two sources.
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with increasing ‖k‖, themost sensitivemeasurements are expected
to be in the lower-left corner of the EoR window. Thus it is criti-
cal to reduce the amount of foreground power that leaks from the
wedge to the window.

6.1. Observations and reduction

To test our sky model using MWA Phase I data, we select six-
teen zenith scans (encompassing roughly 30 min of data) from the
2014 September 1 observing campaign of the MWA EoR0 field,
observed in the 170.2–199.7 MHz frequency band. These data
were chosen based on the ionospheric quality metrics from Jordan
et al. (2017), choosing data associated with quiet ionospheric
conditions.

Using the RTS we process each observation scan separately.
During calibration, a compound calibrator model is generated
consisting of the 1 000 apparently brightest sources within the
observation field of view. These sources are combined into a single
calibrator in order to achieve a high signal-to-noise ratio. The DI
Jones matrices for eachMWA tile are then computed by fitting the
uncalibrated visibilities with the compound calibrator model. To
create this compound calibrator model we first selected the 1 000
apparently brightest sources from the LoBES catalogue using the
MWA primary beam model from Sokolowski et al. (2017). The
associated sky models for these 1 000 sources from the current
Australian MWA EoR sky model are then identified. Initially we
used these two sets of sky models for the same 1 000 sources to
carry out two independent runs of the RTS to do DI calibration
of the MWA test data. However, we found that using the same
1 000 sources from each sky model to perform this calibration
step caused differences in the overall flux density scale between the
two sets of calibrated visibilities. This is due to differences in the
source flux densities between the current Australian MWA EoR
sky model and LoBES for the same 1 000 sources. To ensure a fair
comparison between the two sky models, we use the sky models
for the 1 000 apparently brightest sources from LoBES to perform
DI calibration for both runs of the MWA EoR pipeline.

Using the same 1 000 sources used for DI calibration, we then
run the RTS a second time to perform DD calibration. During DD
calibration for the two runs of the MWA EoR pipeline we used
either the source models from the LoBES catalogue or the source
models from the current Australian MWA EoR sky model for
these 1 000 sources. The DD calibration in the RTS is based upon
the ‘peeling’ technique (Noordam 2004). Using the DI calibration
solution and the source models for the 1 000 calibrator sources, all
1 000 sources are directly subtracted from the observed visibilities.
The sources are then ranked based on their apparent brightness.
For each source in the ranked source list, starting with the top
ranked source, the RTS then adds back the calibrator source and
phase-rotates the visibilities to the location of this source. The
source position is then corrected for ionospheric refraction in the
source direction by fitting a phase ramp to the phased visibilities.
For only the top five brightest sources in the ranked list the full
antenna-based DD gain solutions are calculated and applied. This
DD calibration process essentially peels the five brightest sources
and directly subtracts the remaining 995 sources. However for
simplicity we will use the word ‘peeling’ when referring to any
source subtraction performed. For more details on this process see
Mitchell et al. (2008).

For each observation we find about 38% of the peeled sources
are modelled by a single point source in both catalogues; roughly

Figure 13. Differences in residual rms between the current Australian MWA EoR sky
model and the LoBES sky model as a function of angular size of removed sources in
our 2014 test data set. Purple circles indicate sources that are fit with more compo-
nents in LoBES than in the current skymodel; blue circles represent sources fitwith the
same number of components in the two sky models. Dashed lines indicate 1σ rms val-
ues in the integrated images. Sources with positive differences greater than the image
noise have smaller residuals using the LoBES models (27% of the sources). Note that
the largest sources peeled from the data have improved rms value when using LoBES
models.

58% of the sources modelled by a point source in the current
Australian MWA EoR sky model are modelled by at least one
Gaussian in the LoBES catalogue; and finally about 4% of the
peeled sources are modelled by at least one Gaussian in both sky
models, but for all these sources LoBES uses more Gaussian com-
ponents to model each source than the current sky model. This
means that overall 62% of the peeled sources are modelled bymore
components in LoBES than in the current sky model.

Using wsclean we imaged both sets of calibrated and peeled
observations, integrating over the full 30 min and 30.72 MHz
bandwidth; we used the same clean parameters listed in Section
2.4 for this imaging. Comparing the residuals for the removed
sources in these two images by eye, it is clear that there is signif-
icant improvement for some of the more complex sources in the
field. Figure 12 shows two examples of improved residuals using
the LoBES sky model for two of the brightest extended sources in
the EoR0 field.

To quantify the differences in the source residuals we measure
the rms within regions centred on the peeled sources in each of the
integrated images. In this analysis we assume that smaller rms val-
ues are indicative of a better source subtraction. Figure 13 shows
the differences in the residual rms as a function of the convolved
angular source size as measured in LoBES. The dark purple points
indicate sources that are fitted with more components in the
LoBES sky model than their counterpart in the current Australian
MWA EoR sky model; the light blue points are for sources with
the same number of fit components in both sky models. In this fig-
ure, large positive differences in the residual rms indicate that the
LoBES sky models reduced the local rms significantly as compared
to the current Australian MWA EoR sky model. Roughly 88% of
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Figure 14. The resulting 2D PS from using the current Australian MWA EoR sky model (top left) and LoBES sky model (top right) to peel sources from 30 min of MWA Phase I data.
The bottom row shows the ratio (left) of the residual power from the current model to the LoBES model, and difference (right) in residual power between the current model and
LoBES. Also indicated are the primary field of view and horizon lines. These indicate the expected contamination areas for sources in the primary field of view and sidelobes.
Within the difference plot its clear that the LoBES catalogue better removes foreground power on small angular scales within the foreground wedge.

the sources with a different number of model components have
a smaller rms using the LoBES model, however only about 27%
of these sources have a rms difference that is significant, meaning
that the difference is greater than the expected 1σ image noise
(indicated by the dashed line in Figure 13). The improvement
for the sources fit with the same number of components, which
is dominated by sources fit with a single component, is marginal
with only 5% of these sources showing a significant improvement
in the residual rms for the LoBES model. Figure 13 shows that the
multi-gaussian source modelling had the most significant impact

on the largest peeled sources; as the source size increases the pro-
portion of sources with significant improvement in the residual
rms increases. This is consistent with the larger differences being
found in the sources with more model components in LoBES as
these tend to be the largest sources within the catalogue.

We also investigate how the differences between these two
sky models impact the 2D PS. The top two panels of Figure 14
show the resulting 2D PS for the current Australian MWA EoR
sky model (top left) and LoBES sky model (top right) in the YY-
polarisation. To more easily see any differences between the 2D
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PS for the two sky models we also include the ratio plot for the
current sky model residual power to the LoBES model residual
power (bottom left) and the difference plot, where the values rep-
resent the current sky model minus the LoBES model (bottom
right). In each of the 2D PS we also indicate the ‘primary field
of view’ line (dashed) and the ‘horizon’ line (solid) which indi-
cate the expected contamination limits for sources in the primary
field of view and the sidelobes. The blue areas within the differ-
ence plot show regions of the 2D PS where the residual power is
higher for the current Australian MWA EoR sky model as com-
pared to the LoBES sky model. In Figure 14, the consistently blue
region restricted to sources within the primary field of view and on
small angular scales (large k⊥) is statistically significant as com-
pared to the residual power within this region of the LoBES 2D
PS. This blue region indicates that the LoBES sky model per-
formed better at modelling emission on small angular scales. This
improvement is consistent with the difference in resolution for the
two catalogues, where the LoBES catalogue includes higher reso-
lution modelling and is expected to remove smaller scale emission
better.

There is no significant difference between the two catalogues
on larger angular scales.We believe that any possible differences in
the residual power between the two models is being overwhelmed
by other systematics in the data. One obvious systematic that is
expected on these angular scales is the contribution of foreground
power from the Milky Way. The EoR0 field is known to con-
tain significant diffuse polarised emission from the Galactic plane
(Lenc et al. 2017; Bernardi et al. 2013). In our analysis here we
do not consider the impact of excluding this foreground in our
sky models and it is likely this component dominates residual
power on large angular scales. Additionally there may be other
data quality metrics, beyond ionospheric quality, that need to be
considered. Both Barry et al. (2019) and Li et al. (2019) have
shown that improvements in the PS generation pipeline and care-
ful selection of data can have a significant impact on the residual
power in the PS. For example Barry et al. (2019) showed that
removing data that contain low-level RFI, missed by the normal
flagging algorithms (Wilensky et al. 2019), yielded improved PS
limits. Preliminary investigations into what could be the limiting
systematic, revealed a variation in the quality of the source peel-
ing from observation to observation for sources located towards
the edge of the field of view. We used the analytic beam model to
approximate the MWA primary beam when calibrating and peel-
ing using the RTS. This beam model is known to be inaccurate far
from the phase centre (Sokolowski et al. 2017; Sutinjo et al. 2015).
Future investigations into the peel quality will determine whether
using improved beammodels will remove this variation in the peel
residuals.

7. Summary

In this paper we present the first results from the LoBE survey.
The main goal of this survey is to use the new extended configu-
ration of the MWA to provide higher resolution, multi-frequency
modelling of the foreground sources within the main MWA EoR
observing fields and their eight neighbouring fields. Here we focus
on theMWAEoR0 field, centred at 0.0 h and –27.0 degrees, and its
four neighbouring fields. The survey covers the frequency range of
100–230MHzwith 16 spectral measurements and reaches an aver-
age sensitivity of 2.1 mJy beam–1 in a deep wide-band (60 MHz)
image. This half of the survey covers an area of 3 069 degrees2 and

we identify 80 824 sources, including 45 large extended sources,
within this sky region. Given the wide frequency coverage of our
survey we perform spectral modelling for 78% of the sources in
our catalogue, taking into account any spectral curvature that is
observed. The derived spectral indices for sources best fit with a
standard power-law agree with those previously measured in the
literature.

We calculate that our source catalogue is 70% complete at 10.5
mJy and 90% at 32 mJy. The differential source counts measured
in the LoBE survey, after correcting for various bias factors, are
in good agreement with other surveys at ∼100 MHz and similar
sensitivities. While still not reaching the sensitivities of LOFAR,
the upgrades to the MWA have resulted in greater imaging capa-
bilities, reaching sensitivities comparable to the deepest surveys
from the GMRT at similar frequencies. Thus, we expect future
all-sky Southern Hemisphere surveys using the MWA phase II
capabilities, like GLEAM-X (Hurley-Walker in prep.), will be able
to provide complementary source counts and catalogues to those
using Northern Hemisphere low-frequency telescopes. This will
be particularly important for the future SKA Low, as sky models
developed from MWA surveys will be crucial to initially calibrate
data from this telescope.

Testing the new LoBES models using MWA Phase I data, we
find an improvement in the peel residuals when using the new
models as compared to using the current Australian MWA EoR
sky model. This is particularly true for the largest sources in the
EoR0 field. Comparing the 2D PS of the residual power for the two
catalogues, we find that the LoBES sky models remove more fore-
ground emission on small angular scales within the foreground
wedge. The residual large scale power for the two catalogues is
not significantly different and likely limited by other systemat-
ics. We suggest various factors which could be contributing to the
overlying systematics in the data, including foreground emission
from the Galactic plane. The bright foreground emission from the
Milky Way has thus far been ignored in MWA EoR analysis. Once
the LoBES extragalactic catalogue is complete (in a forthcoming
paper 2), the next major step in foreground modelling for the
MWA experiment will be to include models of the diffuse Galactic
emission.
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